1 /* 2 * Suspend support specific for i386/x86-64. 3 * 4 * Distribute under GPLv2 5 * 6 * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl> 7 * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz> 8 * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org> 9 */ 10 11 #include <linux/suspend.h> 12 #include <linux/export.h> 13 #include <linux/smp.h> 14 #include <linux/perf_event.h> 15 16 #include <asm/pgtable.h> 17 #include <asm/proto.h> 18 #include <asm/mtrr.h> 19 #include <asm/page.h> 20 #include <asm/mce.h> 21 #include <asm/xcr.h> 22 #include <asm/suspend.h> 23 #include <asm/debugreg.h> 24 #include <asm/fpu-internal.h> /* pcntxt_mask */ 25 #include <asm/cpu.h> 26 27 #ifdef CONFIG_X86_32 28 __visible unsigned long saved_context_ebx; 29 __visible unsigned long saved_context_esp, saved_context_ebp; 30 __visible unsigned long saved_context_esi, saved_context_edi; 31 __visible unsigned long saved_context_eflags; 32 #endif 33 struct saved_context saved_context; 34 35 /** 36 * __save_processor_state - save CPU registers before creating a 37 * hibernation image and before restoring the memory state from it 38 * @ctxt - structure to store the registers contents in 39 * 40 * NOTE: If there is a CPU register the modification of which by the 41 * boot kernel (ie. the kernel used for loading the hibernation image) 42 * might affect the operations of the restored target kernel (ie. the one 43 * saved in the hibernation image), then its contents must be saved by this 44 * function. In other words, if kernel A is hibernated and different 45 * kernel B is used for loading the hibernation image into memory, the 46 * kernel A's __save_processor_state() function must save all registers 47 * needed by kernel A, so that it can operate correctly after the resume 48 * regardless of what kernel B does in the meantime. 49 */ 50 static void __save_processor_state(struct saved_context *ctxt) 51 { 52 #ifdef CONFIG_X86_32 53 mtrr_save_fixed_ranges(NULL); 54 #endif 55 kernel_fpu_begin(); 56 57 /* 58 * descriptor tables 59 */ 60 #ifdef CONFIG_X86_32 61 store_idt(&ctxt->idt); 62 #else 63 /* CONFIG_X86_64 */ 64 store_idt((struct desc_ptr *)&ctxt->idt_limit); 65 #endif 66 /* 67 * We save it here, but restore it only in the hibernate case. 68 * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit 69 * mode in "secondary_startup_64". In 32-bit mode it is done via 70 * 'pmode_gdt' in wakeup_start. 71 */ 72 ctxt->gdt_desc.size = GDT_SIZE - 1; 73 ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_table(smp_processor_id()); 74 75 store_tr(ctxt->tr); 76 77 /* XMM0..XMM15 should be handled by kernel_fpu_begin(). */ 78 /* 79 * segment registers 80 */ 81 #ifdef CONFIG_X86_32 82 savesegment(es, ctxt->es); 83 savesegment(fs, ctxt->fs); 84 savesegment(gs, ctxt->gs); 85 savesegment(ss, ctxt->ss); 86 #else 87 /* CONFIG_X86_64 */ 88 asm volatile ("movw %%ds, %0" : "=m" (ctxt->ds)); 89 asm volatile ("movw %%es, %0" : "=m" (ctxt->es)); 90 asm volatile ("movw %%fs, %0" : "=m" (ctxt->fs)); 91 asm volatile ("movw %%gs, %0" : "=m" (ctxt->gs)); 92 asm volatile ("movw %%ss, %0" : "=m" (ctxt->ss)); 93 94 rdmsrl(MSR_FS_BASE, ctxt->fs_base); 95 rdmsrl(MSR_GS_BASE, ctxt->gs_base); 96 rdmsrl(MSR_KERNEL_GS_BASE, ctxt->gs_kernel_base); 97 mtrr_save_fixed_ranges(NULL); 98 99 rdmsrl(MSR_EFER, ctxt->efer); 100 #endif 101 102 /* 103 * control registers 104 */ 105 ctxt->cr0 = read_cr0(); 106 ctxt->cr2 = read_cr2(); 107 ctxt->cr3 = read_cr3(); 108 #ifdef CONFIG_X86_32 109 ctxt->cr4 = read_cr4_safe(); 110 #else 111 /* CONFIG_X86_64 */ 112 ctxt->cr4 = read_cr4(); 113 ctxt->cr8 = read_cr8(); 114 #endif 115 ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE, 116 &ctxt->misc_enable); 117 } 118 119 /* Needed by apm.c */ 120 void save_processor_state(void) 121 { 122 __save_processor_state(&saved_context); 123 x86_platform.save_sched_clock_state(); 124 } 125 #ifdef CONFIG_X86_32 126 EXPORT_SYMBOL(save_processor_state); 127 #endif 128 129 static void do_fpu_end(void) 130 { 131 /* 132 * Restore FPU regs if necessary. 133 */ 134 kernel_fpu_end(); 135 } 136 137 static void fix_processor_context(void) 138 { 139 int cpu = smp_processor_id(); 140 struct tss_struct *t = &per_cpu(init_tss, cpu); 141 #ifdef CONFIG_X86_64 142 struct desc_struct *desc = get_cpu_gdt_table(cpu); 143 tss_desc tss; 144 #endif 145 set_tss_desc(cpu, t); /* 146 * This just modifies memory; should not be 147 * necessary. But... This is necessary, because 148 * 386 hardware has concept of busy TSS or some 149 * similar stupidity. 150 */ 151 152 #ifdef CONFIG_X86_64 153 memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc)); 154 tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */ 155 write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS); 156 157 syscall_init(); /* This sets MSR_*STAR and related */ 158 #endif 159 load_TR_desc(); /* This does ltr */ 160 load_LDT(¤t->active_mm->context); /* This does lldt */ 161 } 162 163 /** 164 * __restore_processor_state - restore the contents of CPU registers saved 165 * by __save_processor_state() 166 * @ctxt - structure to load the registers contents from 167 */ 168 static void notrace __restore_processor_state(struct saved_context *ctxt) 169 { 170 if (ctxt->misc_enable_saved) 171 wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable); 172 /* 173 * control registers 174 */ 175 /* cr4 was introduced in the Pentium CPU */ 176 #ifdef CONFIG_X86_32 177 if (ctxt->cr4) 178 write_cr4(ctxt->cr4); 179 #else 180 /* CONFIG X86_64 */ 181 wrmsrl(MSR_EFER, ctxt->efer); 182 write_cr8(ctxt->cr8); 183 write_cr4(ctxt->cr4); 184 #endif 185 write_cr3(ctxt->cr3); 186 write_cr2(ctxt->cr2); 187 write_cr0(ctxt->cr0); 188 189 /* 190 * now restore the descriptor tables to their proper values 191 * ltr is done i fix_processor_context(). 192 */ 193 #ifdef CONFIG_X86_32 194 load_idt(&ctxt->idt); 195 #else 196 /* CONFIG_X86_64 */ 197 load_idt((const struct desc_ptr *)&ctxt->idt_limit); 198 #endif 199 200 /* 201 * segment registers 202 */ 203 #ifdef CONFIG_X86_32 204 loadsegment(es, ctxt->es); 205 loadsegment(fs, ctxt->fs); 206 loadsegment(gs, ctxt->gs); 207 loadsegment(ss, ctxt->ss); 208 209 /* 210 * sysenter MSRs 211 */ 212 if (boot_cpu_has(X86_FEATURE_SEP)) 213 enable_sep_cpu(); 214 #else 215 /* CONFIG_X86_64 */ 216 asm volatile ("movw %0, %%ds" :: "r" (ctxt->ds)); 217 asm volatile ("movw %0, %%es" :: "r" (ctxt->es)); 218 asm volatile ("movw %0, %%fs" :: "r" (ctxt->fs)); 219 load_gs_index(ctxt->gs); 220 asm volatile ("movw %0, %%ss" :: "r" (ctxt->ss)); 221 222 wrmsrl(MSR_FS_BASE, ctxt->fs_base); 223 wrmsrl(MSR_GS_BASE, ctxt->gs_base); 224 wrmsrl(MSR_KERNEL_GS_BASE, ctxt->gs_kernel_base); 225 #endif 226 227 /* 228 * restore XCR0 for xsave capable cpu's. 229 */ 230 if (cpu_has_xsave) 231 xsetbv(XCR_XFEATURE_ENABLED_MASK, pcntxt_mask); 232 233 fix_processor_context(); 234 235 do_fpu_end(); 236 x86_platform.restore_sched_clock_state(); 237 mtrr_bp_restore(); 238 perf_restore_debug_store(); 239 } 240 241 /* Needed by apm.c */ 242 void notrace restore_processor_state(void) 243 { 244 __restore_processor_state(&saved_context); 245 } 246 #ifdef CONFIG_X86_32 247 EXPORT_SYMBOL(restore_processor_state); 248 #endif 249 250 /* 251 * When bsp_check() is called in hibernate and suspend, cpu hotplug 252 * is disabled already. So it's unnessary to handle race condition between 253 * cpumask query and cpu hotplug. 254 */ 255 static int bsp_check(void) 256 { 257 if (cpumask_first(cpu_online_mask) != 0) { 258 pr_warn("CPU0 is offline.\n"); 259 return -ENODEV; 260 } 261 262 return 0; 263 } 264 265 static int bsp_pm_callback(struct notifier_block *nb, unsigned long action, 266 void *ptr) 267 { 268 int ret = 0; 269 270 switch (action) { 271 case PM_SUSPEND_PREPARE: 272 case PM_HIBERNATION_PREPARE: 273 ret = bsp_check(); 274 break; 275 #ifdef CONFIG_DEBUG_HOTPLUG_CPU0 276 case PM_RESTORE_PREPARE: 277 /* 278 * When system resumes from hibernation, online CPU0 because 279 * 1. it's required for resume and 280 * 2. the CPU was online before hibernation 281 */ 282 if (!cpu_online(0)) 283 _debug_hotplug_cpu(0, 1); 284 break; 285 case PM_POST_RESTORE: 286 /* 287 * When a resume really happens, this code won't be called. 288 * 289 * This code is called only when user space hibernation software 290 * prepares for snapshot device during boot time. So we just 291 * call _debug_hotplug_cpu() to restore to CPU0's state prior to 292 * preparing the snapshot device. 293 * 294 * This works for normal boot case in our CPU0 hotplug debug 295 * mode, i.e. CPU0 is offline and user mode hibernation 296 * software initializes during boot time. 297 * 298 * If CPU0 is online and user application accesses snapshot 299 * device after boot time, this will offline CPU0 and user may 300 * see different CPU0 state before and after accessing 301 * the snapshot device. But hopefully this is not a case when 302 * user debugging CPU0 hotplug. Even if users hit this case, 303 * they can easily online CPU0 back. 304 * 305 * To simplify this debug code, we only consider normal boot 306 * case. Otherwise we need to remember CPU0's state and restore 307 * to that state and resolve racy conditions etc. 308 */ 309 _debug_hotplug_cpu(0, 0); 310 break; 311 #endif 312 default: 313 break; 314 } 315 return notifier_from_errno(ret); 316 } 317 318 static int __init bsp_pm_check_init(void) 319 { 320 /* 321 * Set this bsp_pm_callback as lower priority than 322 * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called 323 * earlier to disable cpu hotplug before bsp online check. 324 */ 325 pm_notifier(bsp_pm_callback, -INT_MAX); 326 return 0; 327 } 328 329 core_initcall(bsp_pm_check_init); 330