1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Suspend support specific for i386/x86-64. 4 * 5 * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl> 6 * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz> 7 * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org> 8 */ 9 10 #include <linux/suspend.h> 11 #include <linux/export.h> 12 #include <linux/smp.h> 13 #include <linux/perf_event.h> 14 #include <linux/tboot.h> 15 #include <linux/dmi.h> 16 #include <linux/pgtable.h> 17 18 #include <asm/proto.h> 19 #include <asm/mtrr.h> 20 #include <asm/page.h> 21 #include <asm/mce.h> 22 #include <asm/suspend.h> 23 #include <asm/fpu/internal.h> 24 #include <asm/debugreg.h> 25 #include <asm/cpu.h> 26 #include <asm/mmu_context.h> 27 #include <asm/cpu_device_id.h> 28 29 #ifdef CONFIG_X86_32 30 __visible unsigned long saved_context_ebx; 31 __visible unsigned long saved_context_esp, saved_context_ebp; 32 __visible unsigned long saved_context_esi, saved_context_edi; 33 __visible unsigned long saved_context_eflags; 34 #endif 35 struct saved_context saved_context; 36 37 static void msr_save_context(struct saved_context *ctxt) 38 { 39 struct saved_msr *msr = ctxt->saved_msrs.array; 40 struct saved_msr *end = msr + ctxt->saved_msrs.num; 41 42 while (msr < end) { 43 msr->valid = !rdmsrl_safe(msr->info.msr_no, &msr->info.reg.q); 44 msr++; 45 } 46 } 47 48 static void msr_restore_context(struct saved_context *ctxt) 49 { 50 struct saved_msr *msr = ctxt->saved_msrs.array; 51 struct saved_msr *end = msr + ctxt->saved_msrs.num; 52 53 while (msr < end) { 54 if (msr->valid) 55 wrmsrl(msr->info.msr_no, msr->info.reg.q); 56 msr++; 57 } 58 } 59 60 /** 61 * __save_processor_state() - Save CPU registers before creating a 62 * hibernation image and before restoring 63 * the memory state from it 64 * @ctxt: Structure to store the registers contents in. 65 * 66 * NOTE: If there is a CPU register the modification of which by the 67 * boot kernel (ie. the kernel used for loading the hibernation image) 68 * might affect the operations of the restored target kernel (ie. the one 69 * saved in the hibernation image), then its contents must be saved by this 70 * function. In other words, if kernel A is hibernated and different 71 * kernel B is used for loading the hibernation image into memory, the 72 * kernel A's __save_processor_state() function must save all registers 73 * needed by kernel A, so that it can operate correctly after the resume 74 * regardless of what kernel B does in the meantime. 75 */ 76 static void __save_processor_state(struct saved_context *ctxt) 77 { 78 #ifdef CONFIG_X86_32 79 mtrr_save_fixed_ranges(NULL); 80 #endif 81 kernel_fpu_begin(); 82 83 /* 84 * descriptor tables 85 */ 86 store_idt(&ctxt->idt); 87 88 /* 89 * We save it here, but restore it only in the hibernate case. 90 * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit 91 * mode in "secondary_startup_64". In 32-bit mode it is done via 92 * 'pmode_gdt' in wakeup_start. 93 */ 94 ctxt->gdt_desc.size = GDT_SIZE - 1; 95 ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_rw(smp_processor_id()); 96 97 store_tr(ctxt->tr); 98 99 /* XMM0..XMM15 should be handled by kernel_fpu_begin(). */ 100 /* 101 * segment registers 102 */ 103 savesegment(gs, ctxt->gs); 104 #ifdef CONFIG_X86_64 105 savesegment(fs, ctxt->fs); 106 savesegment(ds, ctxt->ds); 107 savesegment(es, ctxt->es); 108 109 rdmsrl(MSR_FS_BASE, ctxt->fs_base); 110 rdmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base); 111 rdmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base); 112 mtrr_save_fixed_ranges(NULL); 113 114 rdmsrl(MSR_EFER, ctxt->efer); 115 #endif 116 117 /* 118 * control registers 119 */ 120 ctxt->cr0 = read_cr0(); 121 ctxt->cr2 = read_cr2(); 122 ctxt->cr3 = __read_cr3(); 123 ctxt->cr4 = __read_cr4(); 124 ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE, 125 &ctxt->misc_enable); 126 msr_save_context(ctxt); 127 } 128 129 /* Needed by apm.c */ 130 void save_processor_state(void) 131 { 132 __save_processor_state(&saved_context); 133 x86_platform.save_sched_clock_state(); 134 } 135 #ifdef CONFIG_X86_32 136 EXPORT_SYMBOL(save_processor_state); 137 #endif 138 139 static void do_fpu_end(void) 140 { 141 /* 142 * Restore FPU regs if necessary. 143 */ 144 kernel_fpu_end(); 145 } 146 147 static void fix_processor_context(void) 148 { 149 int cpu = smp_processor_id(); 150 #ifdef CONFIG_X86_64 151 struct desc_struct *desc = get_cpu_gdt_rw(cpu); 152 tss_desc tss; 153 #endif 154 155 /* 156 * We need to reload TR, which requires that we change the 157 * GDT entry to indicate "available" first. 158 * 159 * XXX: This could probably all be replaced by a call to 160 * force_reload_TR(). 161 */ 162 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss); 163 164 #ifdef CONFIG_X86_64 165 memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc)); 166 tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */ 167 write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS); 168 169 syscall_init(); /* This sets MSR_*STAR and related */ 170 #else 171 if (boot_cpu_has(X86_FEATURE_SEP)) 172 enable_sep_cpu(); 173 #endif 174 load_TR_desc(); /* This does ltr */ 175 load_mm_ldt(current->active_mm); /* This does lldt */ 176 initialize_tlbstate_and_flush(); 177 178 fpu__resume_cpu(); 179 180 /* The processor is back on the direct GDT, load back the fixmap */ 181 load_fixmap_gdt(cpu); 182 } 183 184 /** 185 * __restore_processor_state() - Restore the contents of CPU registers saved 186 * by __save_processor_state() 187 * @ctxt: Structure to load the registers contents from. 188 * 189 * The asm code that gets us here will have restored a usable GDT, although 190 * it will be pointing to the wrong alias. 191 */ 192 static void notrace __restore_processor_state(struct saved_context *ctxt) 193 { 194 struct cpuinfo_x86 *c; 195 196 if (ctxt->misc_enable_saved) 197 wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable); 198 /* 199 * control registers 200 */ 201 /* cr4 was introduced in the Pentium CPU */ 202 #ifdef CONFIG_X86_32 203 if (ctxt->cr4) 204 __write_cr4(ctxt->cr4); 205 #else 206 /* CONFIG X86_64 */ 207 wrmsrl(MSR_EFER, ctxt->efer); 208 __write_cr4(ctxt->cr4); 209 #endif 210 write_cr3(ctxt->cr3); 211 write_cr2(ctxt->cr2); 212 write_cr0(ctxt->cr0); 213 214 /* Restore the IDT. */ 215 load_idt(&ctxt->idt); 216 217 /* 218 * Just in case the asm code got us here with the SS, DS, or ES 219 * out of sync with the GDT, update them. 220 */ 221 loadsegment(ss, __KERNEL_DS); 222 loadsegment(ds, __USER_DS); 223 loadsegment(es, __USER_DS); 224 225 /* 226 * Restore percpu access. Percpu access can happen in exception 227 * handlers or in complicated helpers like load_gs_index(). 228 */ 229 #ifdef CONFIG_X86_64 230 wrmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base); 231 #else 232 loadsegment(fs, __KERNEL_PERCPU); 233 #endif 234 235 /* Restore the TSS, RO GDT, LDT, and usermode-relevant MSRs. */ 236 fix_processor_context(); 237 238 /* 239 * Now that we have descriptor tables fully restored and working 240 * exception handling, restore the usermode segments. 241 */ 242 #ifdef CONFIG_X86_64 243 loadsegment(ds, ctxt->es); 244 loadsegment(es, ctxt->es); 245 loadsegment(fs, ctxt->fs); 246 load_gs_index(ctxt->gs); 247 248 /* 249 * Restore FSBASE and GSBASE after restoring the selectors, since 250 * restoring the selectors clobbers the bases. Keep in mind 251 * that MSR_KERNEL_GS_BASE is horribly misnamed. 252 */ 253 wrmsrl(MSR_FS_BASE, ctxt->fs_base); 254 wrmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base); 255 #else 256 loadsegment(gs, ctxt->gs); 257 #endif 258 259 do_fpu_end(); 260 tsc_verify_tsc_adjust(true); 261 x86_platform.restore_sched_clock_state(); 262 mtrr_bp_restore(); 263 perf_restore_debug_store(); 264 msr_restore_context(ctxt); 265 266 c = &cpu_data(smp_processor_id()); 267 if (cpu_has(c, X86_FEATURE_MSR_IA32_FEAT_CTL)) 268 init_ia32_feat_ctl(c); 269 } 270 271 /* Needed by apm.c */ 272 void notrace restore_processor_state(void) 273 { 274 __restore_processor_state(&saved_context); 275 } 276 #ifdef CONFIG_X86_32 277 EXPORT_SYMBOL(restore_processor_state); 278 #endif 279 280 #if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU) 281 static void resume_play_dead(void) 282 { 283 play_dead_common(); 284 tboot_shutdown(TB_SHUTDOWN_WFS); 285 hlt_play_dead(); 286 } 287 288 int hibernate_resume_nonboot_cpu_disable(void) 289 { 290 void (*play_dead)(void) = smp_ops.play_dead; 291 int ret; 292 293 /* 294 * Ensure that MONITOR/MWAIT will not be used in the "play dead" loop 295 * during hibernate image restoration, because it is likely that the 296 * monitored address will be actually written to at that time and then 297 * the "dead" CPU will attempt to execute instructions again, but the 298 * address in its instruction pointer may not be possible to resolve 299 * any more at that point (the page tables used by it previously may 300 * have been overwritten by hibernate image data). 301 * 302 * First, make sure that we wake up all the potentially disabled SMT 303 * threads which have been initially brought up and then put into 304 * mwait/cpuidle sleep. 305 * Those will be put to proper (not interfering with hibernation 306 * resume) sleep afterwards, and the resumed kernel will decide itself 307 * what to do with them. 308 */ 309 ret = cpuhp_smt_enable(); 310 if (ret) 311 return ret; 312 smp_ops.play_dead = resume_play_dead; 313 ret = freeze_secondary_cpus(0); 314 smp_ops.play_dead = play_dead; 315 return ret; 316 } 317 #endif 318 319 /* 320 * When bsp_check() is called in hibernate and suspend, cpu hotplug 321 * is disabled already. So it's unnecessary to handle race condition between 322 * cpumask query and cpu hotplug. 323 */ 324 static int bsp_check(void) 325 { 326 if (cpumask_first(cpu_online_mask) != 0) { 327 pr_warn("CPU0 is offline.\n"); 328 return -ENODEV; 329 } 330 331 return 0; 332 } 333 334 static int bsp_pm_callback(struct notifier_block *nb, unsigned long action, 335 void *ptr) 336 { 337 int ret = 0; 338 339 switch (action) { 340 case PM_SUSPEND_PREPARE: 341 case PM_HIBERNATION_PREPARE: 342 ret = bsp_check(); 343 break; 344 #ifdef CONFIG_DEBUG_HOTPLUG_CPU0 345 case PM_RESTORE_PREPARE: 346 /* 347 * When system resumes from hibernation, online CPU0 because 348 * 1. it's required for resume and 349 * 2. the CPU was online before hibernation 350 */ 351 if (!cpu_online(0)) 352 _debug_hotplug_cpu(0, 1); 353 break; 354 case PM_POST_RESTORE: 355 /* 356 * When a resume really happens, this code won't be called. 357 * 358 * This code is called only when user space hibernation software 359 * prepares for snapshot device during boot time. So we just 360 * call _debug_hotplug_cpu() to restore to CPU0's state prior to 361 * preparing the snapshot device. 362 * 363 * This works for normal boot case in our CPU0 hotplug debug 364 * mode, i.e. CPU0 is offline and user mode hibernation 365 * software initializes during boot time. 366 * 367 * If CPU0 is online and user application accesses snapshot 368 * device after boot time, this will offline CPU0 and user may 369 * see different CPU0 state before and after accessing 370 * the snapshot device. But hopefully this is not a case when 371 * user debugging CPU0 hotplug. Even if users hit this case, 372 * they can easily online CPU0 back. 373 * 374 * To simplify this debug code, we only consider normal boot 375 * case. Otherwise we need to remember CPU0's state and restore 376 * to that state and resolve racy conditions etc. 377 */ 378 _debug_hotplug_cpu(0, 0); 379 break; 380 #endif 381 default: 382 break; 383 } 384 return notifier_from_errno(ret); 385 } 386 387 static int __init bsp_pm_check_init(void) 388 { 389 /* 390 * Set this bsp_pm_callback as lower priority than 391 * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called 392 * earlier to disable cpu hotplug before bsp online check. 393 */ 394 pm_notifier(bsp_pm_callback, -INT_MAX); 395 return 0; 396 } 397 398 core_initcall(bsp_pm_check_init); 399 400 static int msr_build_context(const u32 *msr_id, const int num) 401 { 402 struct saved_msrs *saved_msrs = &saved_context.saved_msrs; 403 struct saved_msr *msr_array; 404 int total_num; 405 int i, j; 406 407 total_num = saved_msrs->num + num; 408 409 msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL); 410 if (!msr_array) { 411 pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n"); 412 return -ENOMEM; 413 } 414 415 if (saved_msrs->array) { 416 /* 417 * Multiple callbacks can invoke this function, so copy any 418 * MSR save requests from previous invocations. 419 */ 420 memcpy(msr_array, saved_msrs->array, 421 sizeof(struct saved_msr) * saved_msrs->num); 422 423 kfree(saved_msrs->array); 424 } 425 426 for (i = saved_msrs->num, j = 0; i < total_num; i++, j++) { 427 msr_array[i].info.msr_no = msr_id[j]; 428 msr_array[i].valid = false; 429 msr_array[i].info.reg.q = 0; 430 } 431 saved_msrs->num = total_num; 432 saved_msrs->array = msr_array; 433 434 return 0; 435 } 436 437 /* 438 * The following sections are a quirk framework for problematic BIOSen: 439 * Sometimes MSRs are modified by the BIOSen after suspended to 440 * RAM, this might cause unexpected behavior after wakeup. 441 * Thus we save/restore these specified MSRs across suspend/resume 442 * in order to work around it. 443 * 444 * For any further problematic BIOSen/platforms, 445 * please add your own function similar to msr_initialize_bdw. 446 */ 447 static int msr_initialize_bdw(const struct dmi_system_id *d) 448 { 449 /* Add any extra MSR ids into this array. */ 450 u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL }; 451 452 pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident); 453 return msr_build_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id)); 454 } 455 456 static const struct dmi_system_id msr_save_dmi_table[] = { 457 { 458 .callback = msr_initialize_bdw, 459 .ident = "BROADWELL BDX_EP", 460 .matches = { 461 DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"), 462 DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"), 463 }, 464 }, 465 {} 466 }; 467 468 static int msr_save_cpuid_features(const struct x86_cpu_id *c) 469 { 470 u32 cpuid_msr_id[] = { 471 MSR_AMD64_CPUID_FN_1, 472 }; 473 474 pr_info("x86/pm: family %#hx cpu detected, MSR saving is needed during suspending.\n", 475 c->family); 476 477 return msr_build_context(cpuid_msr_id, ARRAY_SIZE(cpuid_msr_id)); 478 } 479 480 static const struct x86_cpu_id msr_save_cpu_table[] = { 481 X86_MATCH_VENDOR_FAM(AMD, 0x15, &msr_save_cpuid_features), 482 X86_MATCH_VENDOR_FAM(AMD, 0x16, &msr_save_cpuid_features), 483 {} 484 }; 485 486 typedef int (*pm_cpu_match_t)(const struct x86_cpu_id *); 487 static int pm_cpu_check(const struct x86_cpu_id *c) 488 { 489 const struct x86_cpu_id *m; 490 int ret = 0; 491 492 m = x86_match_cpu(msr_save_cpu_table); 493 if (m) { 494 pm_cpu_match_t fn; 495 496 fn = (pm_cpu_match_t)m->driver_data; 497 ret = fn(m); 498 } 499 500 return ret; 501 } 502 503 static int pm_check_save_msr(void) 504 { 505 dmi_check_system(msr_save_dmi_table); 506 pm_cpu_check(msr_save_cpu_table); 507 508 return 0; 509 } 510 511 device_initcall(pm_check_save_msr); 512