xref: /openbmc/linux/arch/x86/power/cpu.c (revision 1fd02f66)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Suspend support specific for i386/x86-64.
4  *
5  * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl>
6  * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz>
7  * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
8  */
9 
10 #include <linux/suspend.h>
11 #include <linux/export.h>
12 #include <linux/smp.h>
13 #include <linux/perf_event.h>
14 #include <linux/tboot.h>
15 #include <linux/dmi.h>
16 #include <linux/pgtable.h>
17 
18 #include <asm/proto.h>
19 #include <asm/mtrr.h>
20 #include <asm/page.h>
21 #include <asm/mce.h>
22 #include <asm/suspend.h>
23 #include <asm/fpu/api.h>
24 #include <asm/debugreg.h>
25 #include <asm/cpu.h>
26 #include <asm/mmu_context.h>
27 #include <asm/cpu_device_id.h>
28 
29 #ifdef CONFIG_X86_32
30 __visible unsigned long saved_context_ebx;
31 __visible unsigned long saved_context_esp, saved_context_ebp;
32 __visible unsigned long saved_context_esi, saved_context_edi;
33 __visible unsigned long saved_context_eflags;
34 #endif
35 struct saved_context saved_context;
36 
37 static void msr_save_context(struct saved_context *ctxt)
38 {
39 	struct saved_msr *msr = ctxt->saved_msrs.array;
40 	struct saved_msr *end = msr + ctxt->saved_msrs.num;
41 
42 	while (msr < end) {
43 		if (msr->valid)
44 			rdmsrl(msr->info.msr_no, msr->info.reg.q);
45 		msr++;
46 	}
47 }
48 
49 static void msr_restore_context(struct saved_context *ctxt)
50 {
51 	struct saved_msr *msr = ctxt->saved_msrs.array;
52 	struct saved_msr *end = msr + ctxt->saved_msrs.num;
53 
54 	while (msr < end) {
55 		if (msr->valid)
56 			wrmsrl(msr->info.msr_no, msr->info.reg.q);
57 		msr++;
58 	}
59 }
60 
61 /**
62  * __save_processor_state() - Save CPU registers before creating a
63  *                             hibernation image and before restoring
64  *                             the memory state from it
65  * @ctxt: Structure to store the registers contents in.
66  *
67  * NOTE: If there is a CPU register the modification of which by the
68  * boot kernel (ie. the kernel used for loading the hibernation image)
69  * might affect the operations of the restored target kernel (ie. the one
70  * saved in the hibernation image), then its contents must be saved by this
71  * function.  In other words, if kernel A is hibernated and different
72  * kernel B is used for loading the hibernation image into memory, the
73  * kernel A's __save_processor_state() function must save all registers
74  * needed by kernel A, so that it can operate correctly after the resume
75  * regardless of what kernel B does in the meantime.
76  */
77 static void __save_processor_state(struct saved_context *ctxt)
78 {
79 #ifdef CONFIG_X86_32
80 	mtrr_save_fixed_ranges(NULL);
81 #endif
82 	kernel_fpu_begin();
83 
84 	/*
85 	 * descriptor tables
86 	 */
87 	store_idt(&ctxt->idt);
88 
89 	/*
90 	 * We save it here, but restore it only in the hibernate case.
91 	 * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit
92 	 * mode in "secondary_startup_64". In 32-bit mode it is done via
93 	 * 'pmode_gdt' in wakeup_start.
94 	 */
95 	ctxt->gdt_desc.size = GDT_SIZE - 1;
96 	ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_rw(smp_processor_id());
97 
98 	store_tr(ctxt->tr);
99 
100 	/* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
101 	/*
102 	 * segment registers
103 	 */
104 	savesegment(gs, ctxt->gs);
105 #ifdef CONFIG_X86_64
106 	savesegment(fs, ctxt->fs);
107 	savesegment(ds, ctxt->ds);
108 	savesegment(es, ctxt->es);
109 
110 	rdmsrl(MSR_FS_BASE, ctxt->fs_base);
111 	rdmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
112 	rdmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
113 	mtrr_save_fixed_ranges(NULL);
114 
115 	rdmsrl(MSR_EFER, ctxt->efer);
116 #endif
117 
118 	/*
119 	 * control registers
120 	 */
121 	ctxt->cr0 = read_cr0();
122 	ctxt->cr2 = read_cr2();
123 	ctxt->cr3 = __read_cr3();
124 	ctxt->cr4 = __read_cr4();
125 	ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE,
126 					       &ctxt->misc_enable);
127 	msr_save_context(ctxt);
128 }
129 
130 /* Needed by apm.c */
131 void save_processor_state(void)
132 {
133 	__save_processor_state(&saved_context);
134 	x86_platform.save_sched_clock_state();
135 }
136 #ifdef CONFIG_X86_32
137 EXPORT_SYMBOL(save_processor_state);
138 #endif
139 
140 static void do_fpu_end(void)
141 {
142 	/*
143 	 * Restore FPU regs if necessary.
144 	 */
145 	kernel_fpu_end();
146 }
147 
148 static void fix_processor_context(void)
149 {
150 	int cpu = smp_processor_id();
151 #ifdef CONFIG_X86_64
152 	struct desc_struct *desc = get_cpu_gdt_rw(cpu);
153 	tss_desc tss;
154 #endif
155 
156 	/*
157 	 * We need to reload TR, which requires that we change the
158 	 * GDT entry to indicate "available" first.
159 	 *
160 	 * XXX: This could probably all be replaced by a call to
161 	 * force_reload_TR().
162 	 */
163 	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
164 
165 #ifdef CONFIG_X86_64
166 	memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc));
167 	tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */
168 	write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS);
169 
170 	syscall_init();				/* This sets MSR_*STAR and related */
171 #else
172 	if (boot_cpu_has(X86_FEATURE_SEP))
173 		enable_sep_cpu();
174 #endif
175 	load_TR_desc();				/* This does ltr */
176 	load_mm_ldt(current->active_mm);	/* This does lldt */
177 	initialize_tlbstate_and_flush();
178 
179 	fpu__resume_cpu();
180 
181 	/* The processor is back on the direct GDT, load back the fixmap */
182 	load_fixmap_gdt(cpu);
183 }
184 
185 /**
186  * __restore_processor_state() - Restore the contents of CPU registers saved
187  *                               by __save_processor_state()
188  * @ctxt: Structure to load the registers contents from.
189  *
190  * The asm code that gets us here will have restored a usable GDT, although
191  * it will be pointing to the wrong alias.
192  */
193 static void notrace __restore_processor_state(struct saved_context *ctxt)
194 {
195 	struct cpuinfo_x86 *c;
196 
197 	if (ctxt->misc_enable_saved)
198 		wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable);
199 	/*
200 	 * control registers
201 	 */
202 	/* cr4 was introduced in the Pentium CPU */
203 #ifdef CONFIG_X86_32
204 	if (ctxt->cr4)
205 		__write_cr4(ctxt->cr4);
206 #else
207 /* CONFIG X86_64 */
208 	wrmsrl(MSR_EFER, ctxt->efer);
209 	__write_cr4(ctxt->cr4);
210 #endif
211 	write_cr3(ctxt->cr3);
212 	write_cr2(ctxt->cr2);
213 	write_cr0(ctxt->cr0);
214 
215 	/* Restore the IDT. */
216 	load_idt(&ctxt->idt);
217 
218 	/*
219 	 * Just in case the asm code got us here with the SS, DS, or ES
220 	 * out of sync with the GDT, update them.
221 	 */
222 	loadsegment(ss, __KERNEL_DS);
223 	loadsegment(ds, __USER_DS);
224 	loadsegment(es, __USER_DS);
225 
226 	/*
227 	 * Restore percpu access.  Percpu access can happen in exception
228 	 * handlers or in complicated helpers like load_gs_index().
229 	 */
230 #ifdef CONFIG_X86_64
231 	wrmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
232 #else
233 	loadsegment(fs, __KERNEL_PERCPU);
234 #endif
235 
236 	/* Restore the TSS, RO GDT, LDT, and usermode-relevant MSRs. */
237 	fix_processor_context();
238 
239 	/*
240 	 * Now that we have descriptor tables fully restored and working
241 	 * exception handling, restore the usermode segments.
242 	 */
243 #ifdef CONFIG_X86_64
244 	loadsegment(ds, ctxt->es);
245 	loadsegment(es, ctxt->es);
246 	loadsegment(fs, ctxt->fs);
247 	load_gs_index(ctxt->gs);
248 
249 	/*
250 	 * Restore FSBASE and GSBASE after restoring the selectors, since
251 	 * restoring the selectors clobbers the bases.  Keep in mind
252 	 * that MSR_KERNEL_GS_BASE is horribly misnamed.
253 	 */
254 	wrmsrl(MSR_FS_BASE, ctxt->fs_base);
255 	wrmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
256 #else
257 	loadsegment(gs, ctxt->gs);
258 #endif
259 
260 	do_fpu_end();
261 	tsc_verify_tsc_adjust(true);
262 	x86_platform.restore_sched_clock_state();
263 	mtrr_bp_restore();
264 	perf_restore_debug_store();
265 	msr_restore_context(ctxt);
266 
267 	c = &cpu_data(smp_processor_id());
268 	if (cpu_has(c, X86_FEATURE_MSR_IA32_FEAT_CTL))
269 		init_ia32_feat_ctl(c);
270 }
271 
272 /* Needed by apm.c */
273 void notrace restore_processor_state(void)
274 {
275 	__restore_processor_state(&saved_context);
276 }
277 #ifdef CONFIG_X86_32
278 EXPORT_SYMBOL(restore_processor_state);
279 #endif
280 
281 #if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU)
282 static void resume_play_dead(void)
283 {
284 	play_dead_common();
285 	tboot_shutdown(TB_SHUTDOWN_WFS);
286 	hlt_play_dead();
287 }
288 
289 int hibernate_resume_nonboot_cpu_disable(void)
290 {
291 	void (*play_dead)(void) = smp_ops.play_dead;
292 	int ret;
293 
294 	/*
295 	 * Ensure that MONITOR/MWAIT will not be used in the "play dead" loop
296 	 * during hibernate image restoration, because it is likely that the
297 	 * monitored address will be actually written to at that time and then
298 	 * the "dead" CPU will attempt to execute instructions again, but the
299 	 * address in its instruction pointer may not be possible to resolve
300 	 * any more at that point (the page tables used by it previously may
301 	 * have been overwritten by hibernate image data).
302 	 *
303 	 * First, make sure that we wake up all the potentially disabled SMT
304 	 * threads which have been initially brought up and then put into
305 	 * mwait/cpuidle sleep.
306 	 * Those will be put to proper (not interfering with hibernation
307 	 * resume) sleep afterwards, and the resumed kernel will decide itself
308 	 * what to do with them.
309 	 */
310 	ret = cpuhp_smt_enable();
311 	if (ret)
312 		return ret;
313 	smp_ops.play_dead = resume_play_dead;
314 	ret = freeze_secondary_cpus(0);
315 	smp_ops.play_dead = play_dead;
316 	return ret;
317 }
318 #endif
319 
320 /*
321  * When bsp_check() is called in hibernate and suspend, cpu hotplug
322  * is disabled already. So it's unnecessary to handle race condition between
323  * cpumask query and cpu hotplug.
324  */
325 static int bsp_check(void)
326 {
327 	if (cpumask_first(cpu_online_mask) != 0) {
328 		pr_warn("CPU0 is offline.\n");
329 		return -ENODEV;
330 	}
331 
332 	return 0;
333 }
334 
335 static int bsp_pm_callback(struct notifier_block *nb, unsigned long action,
336 			   void *ptr)
337 {
338 	int ret = 0;
339 
340 	switch (action) {
341 	case PM_SUSPEND_PREPARE:
342 	case PM_HIBERNATION_PREPARE:
343 		ret = bsp_check();
344 		break;
345 #ifdef CONFIG_DEBUG_HOTPLUG_CPU0
346 	case PM_RESTORE_PREPARE:
347 		/*
348 		 * When system resumes from hibernation, online CPU0 because
349 		 * 1. it's required for resume and
350 		 * 2. the CPU was online before hibernation
351 		 */
352 		if (!cpu_online(0))
353 			_debug_hotplug_cpu(0, 1);
354 		break;
355 	case PM_POST_RESTORE:
356 		/*
357 		 * When a resume really happens, this code won't be called.
358 		 *
359 		 * This code is called only when user space hibernation software
360 		 * prepares for snapshot device during boot time. So we just
361 		 * call _debug_hotplug_cpu() to restore to CPU0's state prior to
362 		 * preparing the snapshot device.
363 		 *
364 		 * This works for normal boot case in our CPU0 hotplug debug
365 		 * mode, i.e. CPU0 is offline and user mode hibernation
366 		 * software initializes during boot time.
367 		 *
368 		 * If CPU0 is online and user application accesses snapshot
369 		 * device after boot time, this will offline CPU0 and user may
370 		 * see different CPU0 state before and after accessing
371 		 * the snapshot device. But hopefully this is not a case when
372 		 * user debugging CPU0 hotplug. Even if users hit this case,
373 		 * they can easily online CPU0 back.
374 		 *
375 		 * To simplify this debug code, we only consider normal boot
376 		 * case. Otherwise we need to remember CPU0's state and restore
377 		 * to that state and resolve racy conditions etc.
378 		 */
379 		_debug_hotplug_cpu(0, 0);
380 		break;
381 #endif
382 	default:
383 		break;
384 	}
385 	return notifier_from_errno(ret);
386 }
387 
388 static int __init bsp_pm_check_init(void)
389 {
390 	/*
391 	 * Set this bsp_pm_callback as lower priority than
392 	 * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called
393 	 * earlier to disable cpu hotplug before bsp online check.
394 	 */
395 	pm_notifier(bsp_pm_callback, -INT_MAX);
396 	return 0;
397 }
398 
399 core_initcall(bsp_pm_check_init);
400 
401 static int msr_build_context(const u32 *msr_id, const int num)
402 {
403 	struct saved_msrs *saved_msrs = &saved_context.saved_msrs;
404 	struct saved_msr *msr_array;
405 	int total_num;
406 	int i, j;
407 
408 	total_num = saved_msrs->num + num;
409 
410 	msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL);
411 	if (!msr_array) {
412 		pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n");
413 		return -ENOMEM;
414 	}
415 
416 	if (saved_msrs->array) {
417 		/*
418 		 * Multiple callbacks can invoke this function, so copy any
419 		 * MSR save requests from previous invocations.
420 		 */
421 		memcpy(msr_array, saved_msrs->array,
422 		       sizeof(struct saved_msr) * saved_msrs->num);
423 
424 		kfree(saved_msrs->array);
425 	}
426 
427 	for (i = saved_msrs->num, j = 0; i < total_num; i++, j++) {
428 		u64 dummy;
429 
430 		msr_array[i].info.msr_no	= msr_id[j];
431 		msr_array[i].valid		= !rdmsrl_safe(msr_id[j], &dummy);
432 		msr_array[i].info.reg.q		= 0;
433 	}
434 	saved_msrs->num   = total_num;
435 	saved_msrs->array = msr_array;
436 
437 	return 0;
438 }
439 
440 /*
441  * The following sections are a quirk framework for problematic BIOSen:
442  * Sometimes MSRs are modified by the BIOSen after suspended to
443  * RAM, this might cause unexpected behavior after wakeup.
444  * Thus we save/restore these specified MSRs across suspend/resume
445  * in order to work around it.
446  *
447  * For any further problematic BIOSen/platforms,
448  * please add your own function similar to msr_initialize_bdw.
449  */
450 static int msr_initialize_bdw(const struct dmi_system_id *d)
451 {
452 	/* Add any extra MSR ids into this array. */
453 	u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL };
454 
455 	pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident);
456 	return msr_build_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id));
457 }
458 
459 static const struct dmi_system_id msr_save_dmi_table[] = {
460 	{
461 	 .callback = msr_initialize_bdw,
462 	 .ident = "BROADWELL BDX_EP",
463 	 .matches = {
464 		DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"),
465 		DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"),
466 		},
467 	},
468 	{}
469 };
470 
471 static int msr_save_cpuid_features(const struct x86_cpu_id *c)
472 {
473 	u32 cpuid_msr_id[] = {
474 		MSR_AMD64_CPUID_FN_1,
475 	};
476 
477 	pr_info("x86/pm: family %#hx cpu detected, MSR saving is needed during suspending.\n",
478 		c->family);
479 
480 	return msr_build_context(cpuid_msr_id, ARRAY_SIZE(cpuid_msr_id));
481 }
482 
483 static const struct x86_cpu_id msr_save_cpu_table[] = {
484 	X86_MATCH_VENDOR_FAM(AMD, 0x15, &msr_save_cpuid_features),
485 	X86_MATCH_VENDOR_FAM(AMD, 0x16, &msr_save_cpuid_features),
486 	{}
487 };
488 
489 typedef int (*pm_cpu_match_t)(const struct x86_cpu_id *);
490 static int pm_cpu_check(const struct x86_cpu_id *c)
491 {
492 	const struct x86_cpu_id *m;
493 	int ret = 0;
494 
495 	m = x86_match_cpu(msr_save_cpu_table);
496 	if (m) {
497 		pm_cpu_match_t fn;
498 
499 		fn = (pm_cpu_match_t)m->driver_data;
500 		ret = fn(m);
501 	}
502 
503 	return ret;
504 }
505 
506 static void pm_save_spec_msr(void)
507 {
508 	u32 spec_msr_id[] = {
509 		MSR_IA32_SPEC_CTRL,
510 		MSR_IA32_TSX_CTRL,
511 		MSR_TSX_FORCE_ABORT,
512 		MSR_IA32_MCU_OPT_CTRL,
513 		MSR_AMD64_LS_CFG,
514 	};
515 
516 	msr_build_context(spec_msr_id, ARRAY_SIZE(spec_msr_id));
517 }
518 
519 static int pm_check_save_msr(void)
520 {
521 	dmi_check_system(msr_save_dmi_table);
522 	pm_cpu_check(msr_save_cpu_table);
523 	pm_save_spec_msr();
524 
525 	return 0;
526 }
527 
528 device_initcall(pm_check_save_msr);
529