1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Suspend support specific for i386/x86-64. 4 * 5 * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl> 6 * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz> 7 * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org> 8 */ 9 10 #include <linux/suspend.h> 11 #include <linux/export.h> 12 #include <linux/smp.h> 13 #include <linux/perf_event.h> 14 #include <linux/tboot.h> 15 #include <linux/dmi.h> 16 #include <linux/pgtable.h> 17 18 #include <asm/proto.h> 19 #include <asm/mtrr.h> 20 #include <asm/page.h> 21 #include <asm/mce.h> 22 #include <asm/suspend.h> 23 #include <asm/fpu/api.h> 24 #include <asm/debugreg.h> 25 #include <asm/cpu.h> 26 #include <asm/cacheinfo.h> 27 #include <asm/mmu_context.h> 28 #include <asm/cpu_device_id.h> 29 #include <asm/microcode.h> 30 31 #ifdef CONFIG_X86_32 32 __visible unsigned long saved_context_ebx; 33 __visible unsigned long saved_context_esp, saved_context_ebp; 34 __visible unsigned long saved_context_esi, saved_context_edi; 35 __visible unsigned long saved_context_eflags; 36 #endif 37 struct saved_context saved_context; 38 39 static void msr_save_context(struct saved_context *ctxt) 40 { 41 struct saved_msr *msr = ctxt->saved_msrs.array; 42 struct saved_msr *end = msr + ctxt->saved_msrs.num; 43 44 while (msr < end) { 45 if (msr->valid) 46 rdmsrl(msr->info.msr_no, msr->info.reg.q); 47 msr++; 48 } 49 } 50 51 static void msr_restore_context(struct saved_context *ctxt) 52 { 53 struct saved_msr *msr = ctxt->saved_msrs.array; 54 struct saved_msr *end = msr + ctxt->saved_msrs.num; 55 56 while (msr < end) { 57 if (msr->valid) 58 wrmsrl(msr->info.msr_no, msr->info.reg.q); 59 msr++; 60 } 61 } 62 63 /** 64 * __save_processor_state() - Save CPU registers before creating a 65 * hibernation image and before restoring 66 * the memory state from it 67 * @ctxt: Structure to store the registers contents in. 68 * 69 * NOTE: If there is a CPU register the modification of which by the 70 * boot kernel (ie. the kernel used for loading the hibernation image) 71 * might affect the operations of the restored target kernel (ie. the one 72 * saved in the hibernation image), then its contents must be saved by this 73 * function. In other words, if kernel A is hibernated and different 74 * kernel B is used for loading the hibernation image into memory, the 75 * kernel A's __save_processor_state() function must save all registers 76 * needed by kernel A, so that it can operate correctly after the resume 77 * regardless of what kernel B does in the meantime. 78 */ 79 static void __save_processor_state(struct saved_context *ctxt) 80 { 81 #ifdef CONFIG_X86_32 82 mtrr_save_fixed_ranges(NULL); 83 #endif 84 kernel_fpu_begin(); 85 86 /* 87 * descriptor tables 88 */ 89 store_idt(&ctxt->idt); 90 91 /* 92 * We save it here, but restore it only in the hibernate case. 93 * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit 94 * mode in "secondary_startup_64". In 32-bit mode it is done via 95 * 'pmode_gdt' in wakeup_start. 96 */ 97 ctxt->gdt_desc.size = GDT_SIZE - 1; 98 ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_rw(smp_processor_id()); 99 100 store_tr(ctxt->tr); 101 102 /* XMM0..XMM15 should be handled by kernel_fpu_begin(). */ 103 /* 104 * segment registers 105 */ 106 savesegment(gs, ctxt->gs); 107 #ifdef CONFIG_X86_64 108 savesegment(fs, ctxt->fs); 109 savesegment(ds, ctxt->ds); 110 savesegment(es, ctxt->es); 111 112 rdmsrl(MSR_FS_BASE, ctxt->fs_base); 113 rdmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base); 114 rdmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base); 115 mtrr_save_fixed_ranges(NULL); 116 117 rdmsrl(MSR_EFER, ctxt->efer); 118 #endif 119 120 /* 121 * control registers 122 */ 123 ctxt->cr0 = read_cr0(); 124 ctxt->cr2 = read_cr2(); 125 ctxt->cr3 = __read_cr3(); 126 ctxt->cr4 = __read_cr4(); 127 ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE, 128 &ctxt->misc_enable); 129 msr_save_context(ctxt); 130 } 131 132 /* Needed by apm.c */ 133 void save_processor_state(void) 134 { 135 __save_processor_state(&saved_context); 136 x86_platform.save_sched_clock_state(); 137 } 138 #ifdef CONFIG_X86_32 139 EXPORT_SYMBOL(save_processor_state); 140 #endif 141 142 static void do_fpu_end(void) 143 { 144 /* 145 * Restore FPU regs if necessary. 146 */ 147 kernel_fpu_end(); 148 } 149 150 static void fix_processor_context(void) 151 { 152 int cpu = smp_processor_id(); 153 #ifdef CONFIG_X86_64 154 struct desc_struct *desc = get_cpu_gdt_rw(cpu); 155 tss_desc tss; 156 #endif 157 158 /* 159 * We need to reload TR, which requires that we change the 160 * GDT entry to indicate "available" first. 161 * 162 * XXX: This could probably all be replaced by a call to 163 * force_reload_TR(). 164 */ 165 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss); 166 167 #ifdef CONFIG_X86_64 168 memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc)); 169 tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */ 170 write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS); 171 172 syscall_init(); /* This sets MSR_*STAR and related */ 173 #else 174 if (boot_cpu_has(X86_FEATURE_SEP)) 175 enable_sep_cpu(); 176 #endif 177 load_TR_desc(); /* This does ltr */ 178 load_mm_ldt(current->active_mm); /* This does lldt */ 179 initialize_tlbstate_and_flush(); 180 181 fpu__resume_cpu(); 182 183 /* The processor is back on the direct GDT, load back the fixmap */ 184 load_fixmap_gdt(cpu); 185 } 186 187 /** 188 * __restore_processor_state() - Restore the contents of CPU registers saved 189 * by __save_processor_state() 190 * @ctxt: Structure to load the registers contents from. 191 * 192 * The asm code that gets us here will have restored a usable GDT, although 193 * it will be pointing to the wrong alias. 194 */ 195 static void notrace __restore_processor_state(struct saved_context *ctxt) 196 { 197 struct cpuinfo_x86 *c; 198 199 if (ctxt->misc_enable_saved) 200 wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable); 201 /* 202 * control registers 203 */ 204 /* cr4 was introduced in the Pentium CPU */ 205 #ifdef CONFIG_X86_32 206 if (ctxt->cr4) 207 __write_cr4(ctxt->cr4); 208 #else 209 /* CONFIG X86_64 */ 210 wrmsrl(MSR_EFER, ctxt->efer); 211 __write_cr4(ctxt->cr4); 212 #endif 213 write_cr3(ctxt->cr3); 214 write_cr2(ctxt->cr2); 215 write_cr0(ctxt->cr0); 216 217 /* Restore the IDT. */ 218 load_idt(&ctxt->idt); 219 220 /* 221 * Just in case the asm code got us here with the SS, DS, or ES 222 * out of sync with the GDT, update them. 223 */ 224 loadsegment(ss, __KERNEL_DS); 225 loadsegment(ds, __USER_DS); 226 loadsegment(es, __USER_DS); 227 228 /* 229 * Restore percpu access. Percpu access can happen in exception 230 * handlers or in complicated helpers like load_gs_index(). 231 */ 232 #ifdef CONFIG_X86_64 233 wrmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base); 234 #else 235 loadsegment(fs, __KERNEL_PERCPU); 236 #endif 237 238 /* Restore the TSS, RO GDT, LDT, and usermode-relevant MSRs. */ 239 fix_processor_context(); 240 241 /* 242 * Now that we have descriptor tables fully restored and working 243 * exception handling, restore the usermode segments. 244 */ 245 #ifdef CONFIG_X86_64 246 loadsegment(ds, ctxt->es); 247 loadsegment(es, ctxt->es); 248 loadsegment(fs, ctxt->fs); 249 load_gs_index(ctxt->gs); 250 251 /* 252 * Restore FSBASE and GSBASE after restoring the selectors, since 253 * restoring the selectors clobbers the bases. Keep in mind 254 * that MSR_KERNEL_GS_BASE is horribly misnamed. 255 */ 256 wrmsrl(MSR_FS_BASE, ctxt->fs_base); 257 wrmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base); 258 #else 259 loadsegment(gs, ctxt->gs); 260 #endif 261 262 do_fpu_end(); 263 tsc_verify_tsc_adjust(true); 264 x86_platform.restore_sched_clock_state(); 265 cache_bp_restore(); 266 perf_restore_debug_store(); 267 268 c = &cpu_data(smp_processor_id()); 269 if (cpu_has(c, X86_FEATURE_MSR_IA32_FEAT_CTL)) 270 init_ia32_feat_ctl(c); 271 272 microcode_bsp_resume(); 273 274 /* 275 * This needs to happen after the microcode has been updated upon resume 276 * because some of the MSRs are "emulated" in microcode. 277 */ 278 msr_restore_context(ctxt); 279 } 280 281 /* Needed by apm.c */ 282 void notrace restore_processor_state(void) 283 { 284 __restore_processor_state(&saved_context); 285 } 286 #ifdef CONFIG_X86_32 287 EXPORT_SYMBOL(restore_processor_state); 288 #endif 289 290 #if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU) 291 static void resume_play_dead(void) 292 { 293 play_dead_common(); 294 tboot_shutdown(TB_SHUTDOWN_WFS); 295 hlt_play_dead(); 296 } 297 298 int hibernate_resume_nonboot_cpu_disable(void) 299 { 300 void (*play_dead)(void) = smp_ops.play_dead; 301 int ret; 302 303 /* 304 * Ensure that MONITOR/MWAIT will not be used in the "play dead" loop 305 * during hibernate image restoration, because it is likely that the 306 * monitored address will be actually written to at that time and then 307 * the "dead" CPU will attempt to execute instructions again, but the 308 * address in its instruction pointer may not be possible to resolve 309 * any more at that point (the page tables used by it previously may 310 * have been overwritten by hibernate image data). 311 * 312 * First, make sure that we wake up all the potentially disabled SMT 313 * threads which have been initially brought up and then put into 314 * mwait/cpuidle sleep. 315 * Those will be put to proper (not interfering with hibernation 316 * resume) sleep afterwards, and the resumed kernel will decide itself 317 * what to do with them. 318 */ 319 ret = cpuhp_smt_enable(); 320 if (ret) 321 return ret; 322 smp_ops.play_dead = resume_play_dead; 323 ret = freeze_secondary_cpus(0); 324 smp_ops.play_dead = play_dead; 325 return ret; 326 } 327 #endif 328 329 /* 330 * When bsp_check() is called in hibernate and suspend, cpu hotplug 331 * is disabled already. So it's unnecessary to handle race condition between 332 * cpumask query and cpu hotplug. 333 */ 334 static int bsp_check(void) 335 { 336 if (cpumask_first(cpu_online_mask) != 0) { 337 pr_warn("CPU0 is offline.\n"); 338 return -ENODEV; 339 } 340 341 return 0; 342 } 343 344 static int bsp_pm_callback(struct notifier_block *nb, unsigned long action, 345 void *ptr) 346 { 347 int ret = 0; 348 349 switch (action) { 350 case PM_SUSPEND_PREPARE: 351 case PM_HIBERNATION_PREPARE: 352 ret = bsp_check(); 353 break; 354 #ifdef CONFIG_DEBUG_HOTPLUG_CPU0 355 case PM_RESTORE_PREPARE: 356 /* 357 * When system resumes from hibernation, online CPU0 because 358 * 1. it's required for resume and 359 * 2. the CPU was online before hibernation 360 */ 361 if (!cpu_online(0)) 362 _debug_hotplug_cpu(0, 1); 363 break; 364 case PM_POST_RESTORE: 365 /* 366 * When a resume really happens, this code won't be called. 367 * 368 * This code is called only when user space hibernation software 369 * prepares for snapshot device during boot time. So we just 370 * call _debug_hotplug_cpu() to restore to CPU0's state prior to 371 * preparing the snapshot device. 372 * 373 * This works for normal boot case in our CPU0 hotplug debug 374 * mode, i.e. CPU0 is offline and user mode hibernation 375 * software initializes during boot time. 376 * 377 * If CPU0 is online and user application accesses snapshot 378 * device after boot time, this will offline CPU0 and user may 379 * see different CPU0 state before and after accessing 380 * the snapshot device. But hopefully this is not a case when 381 * user debugging CPU0 hotplug. Even if users hit this case, 382 * they can easily online CPU0 back. 383 * 384 * To simplify this debug code, we only consider normal boot 385 * case. Otherwise we need to remember CPU0's state and restore 386 * to that state and resolve racy conditions etc. 387 */ 388 _debug_hotplug_cpu(0, 0); 389 break; 390 #endif 391 default: 392 break; 393 } 394 return notifier_from_errno(ret); 395 } 396 397 static int __init bsp_pm_check_init(void) 398 { 399 /* 400 * Set this bsp_pm_callback as lower priority than 401 * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called 402 * earlier to disable cpu hotplug before bsp online check. 403 */ 404 pm_notifier(bsp_pm_callback, -INT_MAX); 405 return 0; 406 } 407 408 core_initcall(bsp_pm_check_init); 409 410 static int msr_build_context(const u32 *msr_id, const int num) 411 { 412 struct saved_msrs *saved_msrs = &saved_context.saved_msrs; 413 struct saved_msr *msr_array; 414 int total_num; 415 int i, j; 416 417 total_num = saved_msrs->num + num; 418 419 msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL); 420 if (!msr_array) { 421 pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n"); 422 return -ENOMEM; 423 } 424 425 if (saved_msrs->array) { 426 /* 427 * Multiple callbacks can invoke this function, so copy any 428 * MSR save requests from previous invocations. 429 */ 430 memcpy(msr_array, saved_msrs->array, 431 sizeof(struct saved_msr) * saved_msrs->num); 432 433 kfree(saved_msrs->array); 434 } 435 436 for (i = saved_msrs->num, j = 0; i < total_num; i++, j++) { 437 u64 dummy; 438 439 msr_array[i].info.msr_no = msr_id[j]; 440 msr_array[i].valid = !rdmsrl_safe(msr_id[j], &dummy); 441 msr_array[i].info.reg.q = 0; 442 } 443 saved_msrs->num = total_num; 444 saved_msrs->array = msr_array; 445 446 return 0; 447 } 448 449 /* 450 * The following sections are a quirk framework for problematic BIOSen: 451 * Sometimes MSRs are modified by the BIOSen after suspended to 452 * RAM, this might cause unexpected behavior after wakeup. 453 * Thus we save/restore these specified MSRs across suspend/resume 454 * in order to work around it. 455 * 456 * For any further problematic BIOSen/platforms, 457 * please add your own function similar to msr_initialize_bdw. 458 */ 459 static int msr_initialize_bdw(const struct dmi_system_id *d) 460 { 461 /* Add any extra MSR ids into this array. */ 462 u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL }; 463 464 pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident); 465 return msr_build_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id)); 466 } 467 468 static const struct dmi_system_id msr_save_dmi_table[] = { 469 { 470 .callback = msr_initialize_bdw, 471 .ident = "BROADWELL BDX_EP", 472 .matches = { 473 DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"), 474 DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"), 475 }, 476 }, 477 {} 478 }; 479 480 static int msr_save_cpuid_features(const struct x86_cpu_id *c) 481 { 482 u32 cpuid_msr_id[] = { 483 MSR_AMD64_CPUID_FN_1, 484 }; 485 486 pr_info("x86/pm: family %#hx cpu detected, MSR saving is needed during suspending.\n", 487 c->family); 488 489 return msr_build_context(cpuid_msr_id, ARRAY_SIZE(cpuid_msr_id)); 490 } 491 492 static const struct x86_cpu_id msr_save_cpu_table[] = { 493 X86_MATCH_VENDOR_FAM(AMD, 0x15, &msr_save_cpuid_features), 494 X86_MATCH_VENDOR_FAM(AMD, 0x16, &msr_save_cpuid_features), 495 {} 496 }; 497 498 typedef int (*pm_cpu_match_t)(const struct x86_cpu_id *); 499 static int pm_cpu_check(const struct x86_cpu_id *c) 500 { 501 const struct x86_cpu_id *m; 502 int ret = 0; 503 504 m = x86_match_cpu(msr_save_cpu_table); 505 if (m) { 506 pm_cpu_match_t fn; 507 508 fn = (pm_cpu_match_t)m->driver_data; 509 ret = fn(m); 510 } 511 512 return ret; 513 } 514 515 static void pm_save_spec_msr(void) 516 { 517 struct msr_enumeration { 518 u32 msr_no; 519 u32 feature; 520 } msr_enum[] = { 521 { MSR_IA32_SPEC_CTRL, X86_FEATURE_MSR_SPEC_CTRL }, 522 { MSR_IA32_TSX_CTRL, X86_FEATURE_MSR_TSX_CTRL }, 523 { MSR_TSX_FORCE_ABORT, X86_FEATURE_TSX_FORCE_ABORT }, 524 { MSR_IA32_MCU_OPT_CTRL, X86_FEATURE_SRBDS_CTRL }, 525 { MSR_AMD64_LS_CFG, X86_FEATURE_LS_CFG_SSBD }, 526 { MSR_AMD64_DE_CFG, X86_FEATURE_LFENCE_RDTSC }, 527 }; 528 int i; 529 530 for (i = 0; i < ARRAY_SIZE(msr_enum); i++) { 531 if (boot_cpu_has(msr_enum[i].feature)) 532 msr_build_context(&msr_enum[i].msr_no, 1); 533 } 534 } 535 536 static int pm_check_save_msr(void) 537 { 538 dmi_check_system(msr_save_dmi_table); 539 pm_cpu_check(msr_save_cpu_table); 540 pm_save_spec_msr(); 541 542 return 0; 543 } 544 545 device_initcall(pm_check_save_msr); 546