xref: /openbmc/linux/arch/x86/platform/uv/uv_time.c (revision e0d07278)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * SGI RTC clock/timer routines.
4  *
5  *  Copyright (c) 2009-2013 Silicon Graphics, Inc.  All Rights Reserved.
6  *  Copyright (c) Dimitri Sivanich
7  */
8 #include <linux/clockchips.h>
9 #include <linux/slab.h>
10 
11 #include <asm/uv/uv_mmrs.h>
12 #include <asm/uv/uv_hub.h>
13 #include <asm/uv/bios.h>
14 #include <asm/uv/uv.h>
15 #include <asm/apic.h>
16 #include <asm/cpu.h>
17 
18 #define RTC_NAME		"sgi_rtc"
19 
20 static u64 uv_read_rtc(struct clocksource *cs);
21 static int uv_rtc_next_event(unsigned long, struct clock_event_device *);
22 static int uv_rtc_shutdown(struct clock_event_device *evt);
23 
24 static struct clocksource clocksource_uv = {
25 	.name		= RTC_NAME,
26 	.rating		= 299,
27 	.read		= uv_read_rtc,
28 	.mask		= (u64)UVH_RTC_REAL_TIME_CLOCK_MASK,
29 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
30 };
31 
32 static struct clock_event_device clock_event_device_uv = {
33 	.name			= RTC_NAME,
34 	.features		= CLOCK_EVT_FEAT_ONESHOT,
35 	.shift			= 20,
36 	.rating			= 400,
37 	.irq			= -1,
38 	.set_next_event		= uv_rtc_next_event,
39 	.set_state_shutdown	= uv_rtc_shutdown,
40 	.event_handler		= NULL,
41 };
42 
43 static DEFINE_PER_CPU(struct clock_event_device, cpu_ced);
44 
45 /* There is one of these allocated per node */
46 struct uv_rtc_timer_head {
47 	spinlock_t	lock;
48 	/* next cpu waiting for timer, local node relative: */
49 	int		next_cpu;
50 	/* number of cpus on this node: */
51 	int		ncpus;
52 	struct {
53 		int	lcpu;		/* systemwide logical cpu number */
54 		u64	expires;	/* next timer expiration for this cpu */
55 	} cpu[1];
56 };
57 
58 /*
59  * Access to uv_rtc_timer_head via blade id.
60  */
61 static struct uv_rtc_timer_head		**blade_info __read_mostly;
62 
63 static int				uv_rtc_evt_enable;
64 
65 /*
66  * Hardware interface routines
67  */
68 
69 /* Send IPIs to another node */
70 static void uv_rtc_send_IPI(int cpu)
71 {
72 	unsigned long apicid, val;
73 	int pnode;
74 
75 	apicid = cpu_physical_id(cpu);
76 	pnode = uv_apicid_to_pnode(apicid);
77 	val = (1UL << UVH_IPI_INT_SEND_SHFT) |
78 	      (apicid << UVH_IPI_INT_APIC_ID_SHFT) |
79 	      (X86_PLATFORM_IPI_VECTOR << UVH_IPI_INT_VECTOR_SHFT);
80 
81 	uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
82 }
83 
84 /* Check for an RTC interrupt pending */
85 static int uv_intr_pending(int pnode)
86 {
87 	if (is_uvx_hub())
88 		return uv_read_global_mmr64(pnode, UVXH_EVENT_OCCURRED2) &
89 			UVXH_EVENT_OCCURRED2_RTC_1_MASK;
90 	return 0;
91 }
92 
93 /* Setup interrupt and return non-zero if early expiration occurred. */
94 static int uv_setup_intr(int cpu, u64 expires)
95 {
96 	u64 val;
97 	unsigned long apicid = cpu_physical_id(cpu);
98 	int pnode = uv_cpu_to_pnode(cpu);
99 
100 	uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
101 		UVH_RTC1_INT_CONFIG_M_MASK);
102 	uv_write_global_mmr64(pnode, UVH_INT_CMPB, -1L);
103 
104 	uv_write_global_mmr64(pnode, UVXH_EVENT_OCCURRED2_ALIAS,
105 			      UVXH_EVENT_OCCURRED2_RTC_1_MASK);
106 
107 	val = (X86_PLATFORM_IPI_VECTOR << UVH_RTC1_INT_CONFIG_VECTOR_SHFT) |
108 		((u64)apicid << UVH_RTC1_INT_CONFIG_APIC_ID_SHFT);
109 
110 	/* Set configuration */
111 	uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG, val);
112 	/* Initialize comparator value */
113 	uv_write_global_mmr64(pnode, UVH_INT_CMPB, expires);
114 
115 	if (uv_read_rtc(NULL) <= expires)
116 		return 0;
117 
118 	return !uv_intr_pending(pnode);
119 }
120 
121 /*
122  * Per-cpu timer tracking routines
123  */
124 
125 static __init void uv_rtc_deallocate_timers(void)
126 {
127 	int bid;
128 
129 	for_each_possible_blade(bid) {
130 		kfree(blade_info[bid]);
131 	}
132 	kfree(blade_info);
133 }
134 
135 /* Allocate per-node list of cpu timer expiration times. */
136 static __init int uv_rtc_allocate_timers(void)
137 {
138 	int cpu;
139 
140 	blade_info = kcalloc(uv_possible_blades, sizeof(void *), GFP_KERNEL);
141 	if (!blade_info)
142 		return -ENOMEM;
143 
144 	for_each_present_cpu(cpu) {
145 		int nid = cpu_to_node(cpu);
146 		int bid = uv_cpu_to_blade_id(cpu);
147 		int bcpu = uv_cpu_blade_processor_id(cpu);
148 		struct uv_rtc_timer_head *head = blade_info[bid];
149 
150 		if (!head) {
151 			head = kmalloc_node(sizeof(struct uv_rtc_timer_head) +
152 				(uv_blade_nr_possible_cpus(bid) *
153 					2 * sizeof(u64)),
154 				GFP_KERNEL, nid);
155 			if (!head) {
156 				uv_rtc_deallocate_timers();
157 				return -ENOMEM;
158 			}
159 			spin_lock_init(&head->lock);
160 			head->ncpus = uv_blade_nr_possible_cpus(bid);
161 			head->next_cpu = -1;
162 			blade_info[bid] = head;
163 		}
164 
165 		head->cpu[bcpu].lcpu = cpu;
166 		head->cpu[bcpu].expires = ULLONG_MAX;
167 	}
168 
169 	return 0;
170 }
171 
172 /* Find and set the next expiring timer.  */
173 static void uv_rtc_find_next_timer(struct uv_rtc_timer_head *head, int pnode)
174 {
175 	u64 lowest = ULLONG_MAX;
176 	int c, bcpu = -1;
177 
178 	head->next_cpu = -1;
179 	for (c = 0; c < head->ncpus; c++) {
180 		u64 exp = head->cpu[c].expires;
181 		if (exp < lowest) {
182 			bcpu = c;
183 			lowest = exp;
184 		}
185 	}
186 	if (bcpu >= 0) {
187 		head->next_cpu = bcpu;
188 		c = head->cpu[bcpu].lcpu;
189 		if (uv_setup_intr(c, lowest))
190 			/* If we didn't set it up in time, trigger */
191 			uv_rtc_send_IPI(c);
192 	} else {
193 		uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
194 			UVH_RTC1_INT_CONFIG_M_MASK);
195 	}
196 }
197 
198 /*
199  * Set expiration time for current cpu.
200  *
201  * Returns 1 if we missed the expiration time.
202  */
203 static int uv_rtc_set_timer(int cpu, u64 expires)
204 {
205 	int pnode = uv_cpu_to_pnode(cpu);
206 	int bid = uv_cpu_to_blade_id(cpu);
207 	struct uv_rtc_timer_head *head = blade_info[bid];
208 	int bcpu = uv_cpu_blade_processor_id(cpu);
209 	u64 *t = &head->cpu[bcpu].expires;
210 	unsigned long flags;
211 	int next_cpu;
212 
213 	spin_lock_irqsave(&head->lock, flags);
214 
215 	next_cpu = head->next_cpu;
216 	*t = expires;
217 
218 	/* Will this one be next to go off? */
219 	if (next_cpu < 0 || bcpu == next_cpu ||
220 			expires < head->cpu[next_cpu].expires) {
221 		head->next_cpu = bcpu;
222 		if (uv_setup_intr(cpu, expires)) {
223 			*t = ULLONG_MAX;
224 			uv_rtc_find_next_timer(head, pnode);
225 			spin_unlock_irqrestore(&head->lock, flags);
226 			return -ETIME;
227 		}
228 	}
229 
230 	spin_unlock_irqrestore(&head->lock, flags);
231 	return 0;
232 }
233 
234 /*
235  * Unset expiration time for current cpu.
236  *
237  * Returns 1 if this timer was pending.
238  */
239 static int uv_rtc_unset_timer(int cpu, int force)
240 {
241 	int pnode = uv_cpu_to_pnode(cpu);
242 	int bid = uv_cpu_to_blade_id(cpu);
243 	struct uv_rtc_timer_head *head = blade_info[bid];
244 	int bcpu = uv_cpu_blade_processor_id(cpu);
245 	u64 *t = &head->cpu[bcpu].expires;
246 	unsigned long flags;
247 	int rc = 0;
248 
249 	spin_lock_irqsave(&head->lock, flags);
250 
251 	if ((head->next_cpu == bcpu && uv_read_rtc(NULL) >= *t) || force)
252 		rc = 1;
253 
254 	if (rc) {
255 		*t = ULLONG_MAX;
256 		/* Was the hardware setup for this timer? */
257 		if (head->next_cpu == bcpu)
258 			uv_rtc_find_next_timer(head, pnode);
259 	}
260 
261 	spin_unlock_irqrestore(&head->lock, flags);
262 
263 	return rc;
264 }
265 
266 
267 /*
268  * Kernel interface routines.
269  */
270 
271 /*
272  * Read the RTC.
273  *
274  * Starting with HUB rev 2.0, the UV RTC register is replicated across all
275  * cachelines of it's own page.  This allows faster simultaneous reads
276  * from a given socket.
277  */
278 static u64 uv_read_rtc(struct clocksource *cs)
279 {
280 	unsigned long offset;
281 
282 	if (uv_get_min_hub_revision_id() == 1)
283 		offset = 0;
284 	else
285 		offset = (uv_blade_processor_id() * L1_CACHE_BYTES) % PAGE_SIZE;
286 
287 	return (u64)uv_read_local_mmr(UVH_RTC | offset);
288 }
289 
290 /*
291  * Program the next event, relative to now
292  */
293 static int uv_rtc_next_event(unsigned long delta,
294 			     struct clock_event_device *ced)
295 {
296 	int ced_cpu = cpumask_first(ced->cpumask);
297 
298 	return uv_rtc_set_timer(ced_cpu, delta + uv_read_rtc(NULL));
299 }
300 
301 /*
302  * Shutdown the RTC timer
303  */
304 static int uv_rtc_shutdown(struct clock_event_device *evt)
305 {
306 	int ced_cpu = cpumask_first(evt->cpumask);
307 
308 	uv_rtc_unset_timer(ced_cpu, 1);
309 	return 0;
310 }
311 
312 static void uv_rtc_interrupt(void)
313 {
314 	int cpu = smp_processor_id();
315 	struct clock_event_device *ced = &per_cpu(cpu_ced, cpu);
316 
317 	if (!ced || !ced->event_handler)
318 		return;
319 
320 	if (uv_rtc_unset_timer(cpu, 0) != 1)
321 		return;
322 
323 	ced->event_handler(ced);
324 }
325 
326 static int __init uv_enable_evt_rtc(char *str)
327 {
328 	uv_rtc_evt_enable = 1;
329 
330 	return 1;
331 }
332 __setup("uvrtcevt", uv_enable_evt_rtc);
333 
334 static __init void uv_rtc_register_clockevents(struct work_struct *dummy)
335 {
336 	struct clock_event_device *ced = this_cpu_ptr(&cpu_ced);
337 
338 	*ced = clock_event_device_uv;
339 	ced->cpumask = cpumask_of(smp_processor_id());
340 	clockevents_register_device(ced);
341 }
342 
343 static __init int uv_rtc_setup_clock(void)
344 {
345 	int rc;
346 
347 	if (!is_uv_system())
348 		return -ENODEV;
349 
350 	rc = clocksource_register_hz(&clocksource_uv, sn_rtc_cycles_per_second);
351 	if (rc)
352 		printk(KERN_INFO "UV RTC clocksource failed rc %d\n", rc);
353 	else
354 		printk(KERN_INFO "UV RTC clocksource registered freq %lu MHz\n",
355 			sn_rtc_cycles_per_second/(unsigned long)1E6);
356 
357 	if (rc || !uv_rtc_evt_enable || x86_platform_ipi_callback)
358 		return rc;
359 
360 	/* Setup and register clockevents */
361 	rc = uv_rtc_allocate_timers();
362 	if (rc)
363 		goto error;
364 
365 	x86_platform_ipi_callback = uv_rtc_interrupt;
366 
367 	clock_event_device_uv.mult = div_sc(sn_rtc_cycles_per_second,
368 				NSEC_PER_SEC, clock_event_device_uv.shift);
369 
370 	clock_event_device_uv.min_delta_ns = NSEC_PER_SEC /
371 						sn_rtc_cycles_per_second;
372 	clock_event_device_uv.min_delta_ticks = 1;
373 
374 	clock_event_device_uv.max_delta_ns = clocksource_uv.mask *
375 				(NSEC_PER_SEC / sn_rtc_cycles_per_second);
376 	clock_event_device_uv.max_delta_ticks = clocksource_uv.mask;
377 
378 	rc = schedule_on_each_cpu(uv_rtc_register_clockevents);
379 	if (rc) {
380 		x86_platform_ipi_callback = NULL;
381 		uv_rtc_deallocate_timers();
382 		goto error;
383 	}
384 
385 	printk(KERN_INFO "UV RTC clockevents registered\n");
386 
387 	return 0;
388 
389 error:
390 	clocksource_unregister(&clocksource_uv);
391 	printk(KERN_INFO "UV RTC clockevents failed rc %d\n", rc);
392 
393 	return rc;
394 }
395 arch_initcall(uv_rtc_setup_clock);
396