xref: /openbmc/linux/arch/x86/platform/uv/uv_time.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  * SGI RTC clock/timer routines.
3  *
4  *  This program is free software; you can redistribute it and/or modify
5  *  it under the terms of the GNU General Public License as published by
6  *  the Free Software Foundation; either version 2 of the License, or
7  *  (at your option) any later version.
8  *
9  *  This program is distributed in the hope that it will be useful,
10  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  *  GNU General Public License for more details.
13  *
14  *  You should have received a copy of the GNU General Public License
15  *  along with this program; if not, write to the Free Software
16  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
17  *
18  *  Copyright (c) 2009 Silicon Graphics, Inc.  All Rights Reserved.
19  *  Copyright (c) Dimitri Sivanich
20  */
21 #include <linux/clockchips.h>
22 #include <linux/slab.h>
23 
24 #include <asm/uv/uv_mmrs.h>
25 #include <asm/uv/uv_hub.h>
26 #include <asm/uv/bios.h>
27 #include <asm/uv/uv.h>
28 #include <asm/apic.h>
29 #include <asm/cpu.h>
30 
31 #define RTC_NAME		"sgi_rtc"
32 
33 static cycle_t uv_read_rtc(struct clocksource *cs);
34 static int uv_rtc_next_event(unsigned long, struct clock_event_device *);
35 static void uv_rtc_timer_setup(enum clock_event_mode,
36 				struct clock_event_device *);
37 
38 static struct clocksource clocksource_uv = {
39 	.name		= RTC_NAME,
40 	.rating		= 400,
41 	.read		= uv_read_rtc,
42 	.mask		= (cycle_t)UVH_RTC_REAL_TIME_CLOCK_MASK,
43 	.shift		= 10,
44 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
45 };
46 
47 static struct clock_event_device clock_event_device_uv = {
48 	.name		= RTC_NAME,
49 	.features	= CLOCK_EVT_FEAT_ONESHOT,
50 	.shift		= 20,
51 	.rating		= 400,
52 	.irq		= -1,
53 	.set_next_event	= uv_rtc_next_event,
54 	.set_mode	= uv_rtc_timer_setup,
55 	.event_handler	= NULL,
56 };
57 
58 static DEFINE_PER_CPU(struct clock_event_device, cpu_ced);
59 
60 /* There is one of these allocated per node */
61 struct uv_rtc_timer_head {
62 	spinlock_t	lock;
63 	/* next cpu waiting for timer, local node relative: */
64 	int		next_cpu;
65 	/* number of cpus on this node: */
66 	int		ncpus;
67 	struct {
68 		int	lcpu;		/* systemwide logical cpu number */
69 		u64	expires;	/* next timer expiration for this cpu */
70 	} cpu[1];
71 };
72 
73 /*
74  * Access to uv_rtc_timer_head via blade id.
75  */
76 static struct uv_rtc_timer_head		**blade_info __read_mostly;
77 
78 static int				uv_rtc_evt_enable;
79 
80 /*
81  * Hardware interface routines
82  */
83 
84 /* Send IPIs to another node */
85 static void uv_rtc_send_IPI(int cpu)
86 {
87 	unsigned long apicid, val;
88 	int pnode;
89 
90 	apicid = cpu_physical_id(cpu);
91 	pnode = uv_apicid_to_pnode(apicid);
92 	apicid |= uv_apicid_hibits;
93 	val = (1UL << UVH_IPI_INT_SEND_SHFT) |
94 	      (apicid << UVH_IPI_INT_APIC_ID_SHFT) |
95 	      (X86_PLATFORM_IPI_VECTOR << UVH_IPI_INT_VECTOR_SHFT);
96 
97 	uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
98 }
99 
100 /* Check for an RTC interrupt pending */
101 static int uv_intr_pending(int pnode)
102 {
103 	return uv_read_global_mmr64(pnode, UVH_EVENT_OCCURRED0) &
104 		UVH_EVENT_OCCURRED0_RTC1_MASK;
105 }
106 
107 /* Setup interrupt and return non-zero if early expiration occurred. */
108 static int uv_setup_intr(int cpu, u64 expires)
109 {
110 	u64 val;
111 	unsigned long apicid = cpu_physical_id(cpu) | uv_apicid_hibits;
112 	int pnode = uv_cpu_to_pnode(cpu);
113 
114 	uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
115 		UVH_RTC1_INT_CONFIG_M_MASK);
116 	uv_write_global_mmr64(pnode, UVH_INT_CMPB, -1L);
117 
118 	uv_write_global_mmr64(pnode, UVH_EVENT_OCCURRED0_ALIAS,
119 		UVH_EVENT_OCCURRED0_RTC1_MASK);
120 
121 	val = (X86_PLATFORM_IPI_VECTOR << UVH_RTC1_INT_CONFIG_VECTOR_SHFT) |
122 		((u64)apicid << UVH_RTC1_INT_CONFIG_APIC_ID_SHFT);
123 
124 	/* Set configuration */
125 	uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG, val);
126 	/* Initialize comparator value */
127 	uv_write_global_mmr64(pnode, UVH_INT_CMPB, expires);
128 
129 	if (uv_read_rtc(NULL) <= expires)
130 		return 0;
131 
132 	return !uv_intr_pending(pnode);
133 }
134 
135 /*
136  * Per-cpu timer tracking routines
137  */
138 
139 static __init void uv_rtc_deallocate_timers(void)
140 {
141 	int bid;
142 
143 	for_each_possible_blade(bid) {
144 		kfree(blade_info[bid]);
145 	}
146 	kfree(blade_info);
147 }
148 
149 /* Allocate per-node list of cpu timer expiration times. */
150 static __init int uv_rtc_allocate_timers(void)
151 {
152 	int cpu;
153 
154 	blade_info = kmalloc(uv_possible_blades * sizeof(void *), GFP_KERNEL);
155 	if (!blade_info)
156 		return -ENOMEM;
157 	memset(blade_info, 0, uv_possible_blades * sizeof(void *));
158 
159 	for_each_present_cpu(cpu) {
160 		int nid = cpu_to_node(cpu);
161 		int bid = uv_cpu_to_blade_id(cpu);
162 		int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
163 		struct uv_rtc_timer_head *head = blade_info[bid];
164 
165 		if (!head) {
166 			head = kmalloc_node(sizeof(struct uv_rtc_timer_head) +
167 				(uv_blade_nr_possible_cpus(bid) *
168 					2 * sizeof(u64)),
169 				GFP_KERNEL, nid);
170 			if (!head) {
171 				uv_rtc_deallocate_timers();
172 				return -ENOMEM;
173 			}
174 			spin_lock_init(&head->lock);
175 			head->ncpus = uv_blade_nr_possible_cpus(bid);
176 			head->next_cpu = -1;
177 			blade_info[bid] = head;
178 		}
179 
180 		head->cpu[bcpu].lcpu = cpu;
181 		head->cpu[bcpu].expires = ULLONG_MAX;
182 	}
183 
184 	return 0;
185 }
186 
187 /* Find and set the next expiring timer.  */
188 static void uv_rtc_find_next_timer(struct uv_rtc_timer_head *head, int pnode)
189 {
190 	u64 lowest = ULLONG_MAX;
191 	int c, bcpu = -1;
192 
193 	head->next_cpu = -1;
194 	for (c = 0; c < head->ncpus; c++) {
195 		u64 exp = head->cpu[c].expires;
196 		if (exp < lowest) {
197 			bcpu = c;
198 			lowest = exp;
199 		}
200 	}
201 	if (bcpu >= 0) {
202 		head->next_cpu = bcpu;
203 		c = head->cpu[bcpu].lcpu;
204 		if (uv_setup_intr(c, lowest))
205 			/* If we didn't set it up in time, trigger */
206 			uv_rtc_send_IPI(c);
207 	} else {
208 		uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
209 			UVH_RTC1_INT_CONFIG_M_MASK);
210 	}
211 }
212 
213 /*
214  * Set expiration time for current cpu.
215  *
216  * Returns 1 if we missed the expiration time.
217  */
218 static int uv_rtc_set_timer(int cpu, u64 expires)
219 {
220 	int pnode = uv_cpu_to_pnode(cpu);
221 	int bid = uv_cpu_to_blade_id(cpu);
222 	struct uv_rtc_timer_head *head = blade_info[bid];
223 	int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
224 	u64 *t = &head->cpu[bcpu].expires;
225 	unsigned long flags;
226 	int next_cpu;
227 
228 	spin_lock_irqsave(&head->lock, flags);
229 
230 	next_cpu = head->next_cpu;
231 	*t = expires;
232 
233 	/* Will this one be next to go off? */
234 	if (next_cpu < 0 || bcpu == next_cpu ||
235 			expires < head->cpu[next_cpu].expires) {
236 		head->next_cpu = bcpu;
237 		if (uv_setup_intr(cpu, expires)) {
238 			*t = ULLONG_MAX;
239 			uv_rtc_find_next_timer(head, pnode);
240 			spin_unlock_irqrestore(&head->lock, flags);
241 			return -ETIME;
242 		}
243 	}
244 
245 	spin_unlock_irqrestore(&head->lock, flags);
246 	return 0;
247 }
248 
249 /*
250  * Unset expiration time for current cpu.
251  *
252  * Returns 1 if this timer was pending.
253  */
254 static int uv_rtc_unset_timer(int cpu, int force)
255 {
256 	int pnode = uv_cpu_to_pnode(cpu);
257 	int bid = uv_cpu_to_blade_id(cpu);
258 	struct uv_rtc_timer_head *head = blade_info[bid];
259 	int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
260 	u64 *t = &head->cpu[bcpu].expires;
261 	unsigned long flags;
262 	int rc = 0;
263 
264 	spin_lock_irqsave(&head->lock, flags);
265 
266 	if ((head->next_cpu == bcpu && uv_read_rtc(NULL) >= *t) || force)
267 		rc = 1;
268 
269 	if (rc) {
270 		*t = ULLONG_MAX;
271 		/* Was the hardware setup for this timer? */
272 		if (head->next_cpu == bcpu)
273 			uv_rtc_find_next_timer(head, pnode);
274 	}
275 
276 	spin_unlock_irqrestore(&head->lock, flags);
277 
278 	return rc;
279 }
280 
281 
282 /*
283  * Kernel interface routines.
284  */
285 
286 /*
287  * Read the RTC.
288  *
289  * Starting with HUB rev 2.0, the UV RTC register is replicated across all
290  * cachelines of it's own page.  This allows faster simultaneous reads
291  * from a given socket.
292  */
293 static cycle_t uv_read_rtc(struct clocksource *cs)
294 {
295 	unsigned long offset;
296 
297 	if (uv_get_min_hub_revision_id() == 1)
298 		offset = 0;
299 	else
300 		offset = (uv_blade_processor_id() * L1_CACHE_BYTES) % PAGE_SIZE;
301 
302 	return (cycle_t)uv_read_local_mmr(UVH_RTC | offset);
303 }
304 
305 /*
306  * Program the next event, relative to now
307  */
308 static int uv_rtc_next_event(unsigned long delta,
309 			     struct clock_event_device *ced)
310 {
311 	int ced_cpu = cpumask_first(ced->cpumask);
312 
313 	return uv_rtc_set_timer(ced_cpu, delta + uv_read_rtc(NULL));
314 }
315 
316 /*
317  * Setup the RTC timer in oneshot mode
318  */
319 static void uv_rtc_timer_setup(enum clock_event_mode mode,
320 			       struct clock_event_device *evt)
321 {
322 	int ced_cpu = cpumask_first(evt->cpumask);
323 
324 	switch (mode) {
325 	case CLOCK_EVT_MODE_PERIODIC:
326 	case CLOCK_EVT_MODE_ONESHOT:
327 	case CLOCK_EVT_MODE_RESUME:
328 		/* Nothing to do here yet */
329 		break;
330 	case CLOCK_EVT_MODE_UNUSED:
331 	case CLOCK_EVT_MODE_SHUTDOWN:
332 		uv_rtc_unset_timer(ced_cpu, 1);
333 		break;
334 	}
335 }
336 
337 static void uv_rtc_interrupt(void)
338 {
339 	int cpu = smp_processor_id();
340 	struct clock_event_device *ced = &per_cpu(cpu_ced, cpu);
341 
342 	if (!ced || !ced->event_handler)
343 		return;
344 
345 	if (uv_rtc_unset_timer(cpu, 0) != 1)
346 		return;
347 
348 	ced->event_handler(ced);
349 }
350 
351 static int __init uv_enable_evt_rtc(char *str)
352 {
353 	uv_rtc_evt_enable = 1;
354 
355 	return 1;
356 }
357 __setup("uvrtcevt", uv_enable_evt_rtc);
358 
359 static __init void uv_rtc_register_clockevents(struct work_struct *dummy)
360 {
361 	struct clock_event_device *ced = &__get_cpu_var(cpu_ced);
362 
363 	*ced = clock_event_device_uv;
364 	ced->cpumask = cpumask_of(smp_processor_id());
365 	clockevents_register_device(ced);
366 }
367 
368 static __init int uv_rtc_setup_clock(void)
369 {
370 	int rc;
371 
372 	if (!is_uv_system())
373 		return -ENODEV;
374 
375 	clocksource_uv.mult = clocksource_hz2mult(sn_rtc_cycles_per_second,
376 				clocksource_uv.shift);
377 
378 	/* If single blade, prefer tsc */
379 	if (uv_num_possible_blades() == 1)
380 		clocksource_uv.rating = 250;
381 
382 	rc = clocksource_register(&clocksource_uv);
383 	if (rc)
384 		printk(KERN_INFO "UV RTC clocksource failed rc %d\n", rc);
385 	else
386 		printk(KERN_INFO "UV RTC clocksource registered freq %lu MHz\n",
387 			sn_rtc_cycles_per_second/(unsigned long)1E6);
388 
389 	if (rc || !uv_rtc_evt_enable || x86_platform_ipi_callback)
390 		return rc;
391 
392 	/* Setup and register clockevents */
393 	rc = uv_rtc_allocate_timers();
394 	if (rc)
395 		goto error;
396 
397 	x86_platform_ipi_callback = uv_rtc_interrupt;
398 
399 	clock_event_device_uv.mult = div_sc(sn_rtc_cycles_per_second,
400 				NSEC_PER_SEC, clock_event_device_uv.shift);
401 
402 	clock_event_device_uv.min_delta_ns = NSEC_PER_SEC /
403 						sn_rtc_cycles_per_second;
404 
405 	clock_event_device_uv.max_delta_ns = clocksource_uv.mask *
406 				(NSEC_PER_SEC / sn_rtc_cycles_per_second);
407 
408 	rc = schedule_on_each_cpu(uv_rtc_register_clockevents);
409 	if (rc) {
410 		x86_platform_ipi_callback = NULL;
411 		uv_rtc_deallocate_timers();
412 		goto error;
413 	}
414 
415 	printk(KERN_INFO "UV RTC clockevents registered\n");
416 
417 	return 0;
418 
419 error:
420 	clocksource_unregister(&clocksource_uv);
421 	printk(KERN_INFO "UV RTC clockevents failed rc %d\n", rc);
422 
423 	return rc;
424 }
425 arch_initcall(uv_rtc_setup_clock);
426