xref: /openbmc/linux/arch/x86/platform/uv/uv_nmi.c (revision abfbd895)
1 /*
2  * SGI NMI support routines
3  *
4  *  This program is free software; you can redistribute it and/or modify
5  *  it under the terms of the GNU General Public License as published by
6  *  the Free Software Foundation; either version 2 of the License, or
7  *  (at your option) any later version.
8  *
9  *  This program is distributed in the hope that it will be useful,
10  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  *  GNU General Public License for more details.
13  *
14  *  You should have received a copy of the GNU General Public License
15  *  along with this program; if not, write to the Free Software
16  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
17  *
18  *  Copyright (c) 2009-2013 Silicon Graphics, Inc.  All Rights Reserved.
19  *  Copyright (c) Mike Travis
20  */
21 
22 #include <linux/cpu.h>
23 #include <linux/delay.h>
24 #include <linux/kdb.h>
25 #include <linux/kexec.h>
26 #include <linux/kgdb.h>
27 #include <linux/module.h>
28 #include <linux/nmi.h>
29 #include <linux/sched.h>
30 #include <linux/slab.h>
31 
32 #include <asm/apic.h>
33 #include <asm/current.h>
34 #include <asm/kdebug.h>
35 #include <asm/local64.h>
36 #include <asm/nmi.h>
37 #include <asm/traps.h>
38 #include <asm/uv/uv.h>
39 #include <asm/uv/uv_hub.h>
40 #include <asm/uv/uv_mmrs.h>
41 
42 /*
43  * UV handler for NMI
44  *
45  * Handle system-wide NMI events generated by the global 'power nmi' command.
46  *
47  * Basic operation is to field the NMI interrupt on each cpu and wait
48  * until all cpus have arrived into the nmi handler.  If some cpus do not
49  * make it into the handler, try and force them in with the IPI(NMI) signal.
50  *
51  * We also have to lessen UV Hub MMR accesses as much as possible as this
52  * disrupts the UV Hub's primary mission of directing NumaLink traffic and
53  * can cause system problems to occur.
54  *
55  * To do this we register our primary NMI notifier on the NMI_UNKNOWN
56  * chain.  This reduces the number of false NMI calls when the perf
57  * tools are running which generate an enormous number of NMIs per
58  * second (~4M/s for 1024 cpu threads).  Our secondary NMI handler is
59  * very short as it only checks that if it has been "pinged" with the
60  * IPI(NMI) signal as mentioned above, and does not read the UV Hub's MMR.
61  *
62  */
63 
64 static struct uv_hub_nmi_s **uv_hub_nmi_list;
65 
66 DEFINE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi);
67 EXPORT_PER_CPU_SYMBOL_GPL(uv_cpu_nmi);
68 
69 static unsigned long nmi_mmr;
70 static unsigned long nmi_mmr_clear;
71 static unsigned long nmi_mmr_pending;
72 
73 static atomic_t	uv_in_nmi;
74 static atomic_t uv_nmi_cpu = ATOMIC_INIT(-1);
75 static atomic_t uv_nmi_cpus_in_nmi = ATOMIC_INIT(-1);
76 static atomic_t uv_nmi_slave_continue;
77 static cpumask_var_t uv_nmi_cpu_mask;
78 
79 /* Values for uv_nmi_slave_continue */
80 #define SLAVE_CLEAR	0
81 #define SLAVE_CONTINUE	1
82 #define SLAVE_EXIT	2
83 
84 /*
85  * Default is all stack dumps go to the console and buffer.
86  * Lower level to send to log buffer only.
87  */
88 static int uv_nmi_loglevel = CONSOLE_LOGLEVEL_DEFAULT;
89 module_param_named(dump_loglevel, uv_nmi_loglevel, int, 0644);
90 
91 /*
92  * The following values show statistics on how perf events are affecting
93  * this system.
94  */
95 static int param_get_local64(char *buffer, const struct kernel_param *kp)
96 {
97 	return sprintf(buffer, "%lu\n", local64_read((local64_t *)kp->arg));
98 }
99 
100 static int param_set_local64(const char *val, const struct kernel_param *kp)
101 {
102 	/* clear on any write */
103 	local64_set((local64_t *)kp->arg, 0);
104 	return 0;
105 }
106 
107 static const struct kernel_param_ops param_ops_local64 = {
108 	.get = param_get_local64,
109 	.set = param_set_local64,
110 };
111 #define param_check_local64(name, p) __param_check(name, p, local64_t)
112 
113 static local64_t uv_nmi_count;
114 module_param_named(nmi_count, uv_nmi_count, local64, 0644);
115 
116 static local64_t uv_nmi_misses;
117 module_param_named(nmi_misses, uv_nmi_misses, local64, 0644);
118 
119 static local64_t uv_nmi_ping_count;
120 module_param_named(ping_count, uv_nmi_ping_count, local64, 0644);
121 
122 static local64_t uv_nmi_ping_misses;
123 module_param_named(ping_misses, uv_nmi_ping_misses, local64, 0644);
124 
125 /*
126  * Following values allow tuning for large systems under heavy loading
127  */
128 static int uv_nmi_initial_delay = 100;
129 module_param_named(initial_delay, uv_nmi_initial_delay, int, 0644);
130 
131 static int uv_nmi_slave_delay = 100;
132 module_param_named(slave_delay, uv_nmi_slave_delay, int, 0644);
133 
134 static int uv_nmi_loop_delay = 100;
135 module_param_named(loop_delay, uv_nmi_loop_delay, int, 0644);
136 
137 static int uv_nmi_trigger_delay = 10000;
138 module_param_named(trigger_delay, uv_nmi_trigger_delay, int, 0644);
139 
140 static int uv_nmi_wait_count = 100;
141 module_param_named(wait_count, uv_nmi_wait_count, int, 0644);
142 
143 static int uv_nmi_retry_count = 500;
144 module_param_named(retry_count, uv_nmi_retry_count, int, 0644);
145 
146 /*
147  * Valid NMI Actions:
148  *  "dump"	- dump process stack for each cpu
149  *  "ips"	- dump IP info for each cpu
150  *  "kdump"	- do crash dump
151  *  "kdb"	- enter KDB (default)
152  *  "kgdb"	- enter KGDB
153  */
154 static char uv_nmi_action[8] = "kdb";
155 module_param_string(action, uv_nmi_action, sizeof(uv_nmi_action), 0644);
156 
157 static inline bool uv_nmi_action_is(const char *action)
158 {
159 	return (strncmp(uv_nmi_action, action, strlen(action)) == 0);
160 }
161 
162 /* Setup which NMI support is present in system */
163 static void uv_nmi_setup_mmrs(void)
164 {
165 	if (uv_read_local_mmr(UVH_NMI_MMRX_SUPPORTED)) {
166 		uv_write_local_mmr(UVH_NMI_MMRX_REQ,
167 					1UL << UVH_NMI_MMRX_REQ_SHIFT);
168 		nmi_mmr = UVH_NMI_MMRX;
169 		nmi_mmr_clear = UVH_NMI_MMRX_CLEAR;
170 		nmi_mmr_pending = 1UL << UVH_NMI_MMRX_SHIFT;
171 		pr_info("UV: SMI NMI support: %s\n", UVH_NMI_MMRX_TYPE);
172 	} else {
173 		nmi_mmr = UVH_NMI_MMR;
174 		nmi_mmr_clear = UVH_NMI_MMR_CLEAR;
175 		nmi_mmr_pending = 1UL << UVH_NMI_MMR_SHIFT;
176 		pr_info("UV: SMI NMI support: %s\n", UVH_NMI_MMR_TYPE);
177 	}
178 }
179 
180 /* Read NMI MMR and check if NMI flag was set by BMC. */
181 static inline int uv_nmi_test_mmr(struct uv_hub_nmi_s *hub_nmi)
182 {
183 	hub_nmi->nmi_value = uv_read_local_mmr(nmi_mmr);
184 	atomic_inc(&hub_nmi->read_mmr_count);
185 	return !!(hub_nmi->nmi_value & nmi_mmr_pending);
186 }
187 
188 static inline void uv_local_mmr_clear_nmi(void)
189 {
190 	uv_write_local_mmr(nmi_mmr_clear, nmi_mmr_pending);
191 }
192 
193 /*
194  * If first cpu in on this hub, set hub_nmi "in_nmi" and "owner" values and
195  * return true.  If first cpu in on the system, set global "in_nmi" flag.
196  */
197 static int uv_set_in_nmi(int cpu, struct uv_hub_nmi_s *hub_nmi)
198 {
199 	int first = atomic_add_unless(&hub_nmi->in_nmi, 1, 1);
200 
201 	if (first) {
202 		atomic_set(&hub_nmi->cpu_owner, cpu);
203 		if (atomic_add_unless(&uv_in_nmi, 1, 1))
204 			atomic_set(&uv_nmi_cpu, cpu);
205 
206 		atomic_inc(&hub_nmi->nmi_count);
207 	}
208 	return first;
209 }
210 
211 /* Check if this is a system NMI event */
212 static int uv_check_nmi(struct uv_hub_nmi_s *hub_nmi)
213 {
214 	int cpu = smp_processor_id();
215 	int nmi = 0;
216 
217 	local64_inc(&uv_nmi_count);
218 	this_cpu_inc(uv_cpu_nmi.queries);
219 
220 	do {
221 		nmi = atomic_read(&hub_nmi->in_nmi);
222 		if (nmi)
223 			break;
224 
225 		if (raw_spin_trylock(&hub_nmi->nmi_lock)) {
226 
227 			/* check hub MMR NMI flag */
228 			if (uv_nmi_test_mmr(hub_nmi)) {
229 				uv_set_in_nmi(cpu, hub_nmi);
230 				nmi = 1;
231 				break;
232 			}
233 
234 			/* MMR NMI flag is clear */
235 			raw_spin_unlock(&hub_nmi->nmi_lock);
236 
237 		} else {
238 			/* wait a moment for the hub nmi locker to set flag */
239 			cpu_relax();
240 			udelay(uv_nmi_slave_delay);
241 
242 			/* re-check hub in_nmi flag */
243 			nmi = atomic_read(&hub_nmi->in_nmi);
244 			if (nmi)
245 				break;
246 		}
247 
248 		/* check if this BMC missed setting the MMR NMI flag */
249 		if (!nmi) {
250 			nmi = atomic_read(&uv_in_nmi);
251 			if (nmi)
252 				uv_set_in_nmi(cpu, hub_nmi);
253 		}
254 
255 	} while (0);
256 
257 	if (!nmi)
258 		local64_inc(&uv_nmi_misses);
259 
260 	return nmi;
261 }
262 
263 /* Need to reset the NMI MMR register, but only once per hub. */
264 static inline void uv_clear_nmi(int cpu)
265 {
266 	struct uv_hub_nmi_s *hub_nmi = uv_hub_nmi;
267 
268 	if (cpu == atomic_read(&hub_nmi->cpu_owner)) {
269 		atomic_set(&hub_nmi->cpu_owner, -1);
270 		atomic_set(&hub_nmi->in_nmi, 0);
271 		uv_local_mmr_clear_nmi();
272 		raw_spin_unlock(&hub_nmi->nmi_lock);
273 	}
274 }
275 
276 /* Ping non-responding cpus attemping to force them into the NMI handler */
277 static void uv_nmi_nr_cpus_ping(void)
278 {
279 	int cpu;
280 
281 	for_each_cpu(cpu, uv_nmi_cpu_mask)
282 		uv_cpu_nmi_per(cpu).pinging = 1;
283 
284 	apic->send_IPI_mask(uv_nmi_cpu_mask, APIC_DM_NMI);
285 }
286 
287 /* Clean up flags for cpus that ignored both NMI and ping */
288 static void uv_nmi_cleanup_mask(void)
289 {
290 	int cpu;
291 
292 	for_each_cpu(cpu, uv_nmi_cpu_mask) {
293 		uv_cpu_nmi_per(cpu).pinging =  0;
294 		uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_OUT;
295 		cpumask_clear_cpu(cpu, uv_nmi_cpu_mask);
296 	}
297 }
298 
299 /* Loop waiting as cpus enter nmi handler */
300 static int uv_nmi_wait_cpus(int first)
301 {
302 	int i, j, k, n = num_online_cpus();
303 	int last_k = 0, waiting = 0;
304 
305 	if (first) {
306 		cpumask_copy(uv_nmi_cpu_mask, cpu_online_mask);
307 		k = 0;
308 	} else {
309 		k = n - cpumask_weight(uv_nmi_cpu_mask);
310 	}
311 
312 	udelay(uv_nmi_initial_delay);
313 	for (i = 0; i < uv_nmi_retry_count; i++) {
314 		int loop_delay = uv_nmi_loop_delay;
315 
316 		for_each_cpu(j, uv_nmi_cpu_mask) {
317 			if (uv_cpu_nmi_per(j).state) {
318 				cpumask_clear_cpu(j, uv_nmi_cpu_mask);
319 				if (++k >= n)
320 					break;
321 			}
322 		}
323 		if (k >= n) {		/* all in? */
324 			k = n;
325 			break;
326 		}
327 		if (last_k != k) {	/* abort if no new cpus coming in */
328 			last_k = k;
329 			waiting = 0;
330 		} else if (++waiting > uv_nmi_wait_count)
331 			break;
332 
333 		/* extend delay if waiting only for cpu 0 */
334 		if (waiting && (n - k) == 1 &&
335 		    cpumask_test_cpu(0, uv_nmi_cpu_mask))
336 			loop_delay *= 100;
337 
338 		udelay(loop_delay);
339 	}
340 	atomic_set(&uv_nmi_cpus_in_nmi, k);
341 	return n - k;
342 }
343 
344 /* Wait until all slave cpus have entered UV NMI handler */
345 static void uv_nmi_wait(int master)
346 {
347 	/* indicate this cpu is in */
348 	this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_IN);
349 
350 	/* if not the first cpu in (the master), then we are a slave cpu */
351 	if (!master)
352 		return;
353 
354 	do {
355 		/* wait for all other cpus to gather here */
356 		if (!uv_nmi_wait_cpus(1))
357 			break;
358 
359 		/* if not all made it in, send IPI NMI to them */
360 		pr_alert("UV: Sending NMI IPI to %d non-responding CPUs: %*pbl\n",
361 			 cpumask_weight(uv_nmi_cpu_mask),
362 			 cpumask_pr_args(uv_nmi_cpu_mask));
363 
364 		uv_nmi_nr_cpus_ping();
365 
366 		/* if all cpus are in, then done */
367 		if (!uv_nmi_wait_cpus(0))
368 			break;
369 
370 		pr_alert("UV: %d CPUs not in NMI loop: %*pbl\n",
371 			 cpumask_weight(uv_nmi_cpu_mask),
372 			 cpumask_pr_args(uv_nmi_cpu_mask));
373 	} while (0);
374 
375 	pr_alert("UV: %d of %d CPUs in NMI\n",
376 		atomic_read(&uv_nmi_cpus_in_nmi), num_online_cpus());
377 }
378 
379 /* Dump Instruction Pointer header */
380 static void uv_nmi_dump_cpu_ip_hdr(void)
381 {
382 	pr_info("\nUV: %4s %6s %-32s %s   (Note: PID 0 not listed)\n",
383 		"CPU", "PID", "COMMAND", "IP");
384 }
385 
386 /* Dump Instruction Pointer info */
387 static void uv_nmi_dump_cpu_ip(int cpu, struct pt_regs *regs)
388 {
389 	pr_info("UV: %4d %6d %-32.32s ", cpu, current->pid, current->comm);
390 	printk_address(regs->ip);
391 }
392 
393 /*
394  * Dump this CPU's state.  If action was set to "kdump" and the crash_kexec
395  * failed, then we provide "dump" as an alternate action.  Action "dump" now
396  * also includes the show "ips" (instruction pointers) action whereas the
397  * action "ips" only displays instruction pointers for the non-idle CPU's.
398  * This is an abbreviated form of the "ps" command.
399  */
400 static void uv_nmi_dump_state_cpu(int cpu, struct pt_regs *regs)
401 {
402 	const char *dots = " ................................. ";
403 
404 	if (cpu == 0)
405 		uv_nmi_dump_cpu_ip_hdr();
406 
407 	if (current->pid != 0 || !uv_nmi_action_is("ips"))
408 		uv_nmi_dump_cpu_ip(cpu, regs);
409 
410 	if (uv_nmi_action_is("dump")) {
411 		pr_info("UV:%sNMI process trace for CPU %d\n", dots, cpu);
412 		show_regs(regs);
413 	}
414 
415 	this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_DUMP_DONE);
416 }
417 
418 /* Trigger a slave cpu to dump it's state */
419 static void uv_nmi_trigger_dump(int cpu)
420 {
421 	int retry = uv_nmi_trigger_delay;
422 
423 	if (uv_cpu_nmi_per(cpu).state != UV_NMI_STATE_IN)
424 		return;
425 
426 	uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_DUMP;
427 	do {
428 		cpu_relax();
429 		udelay(10);
430 		if (uv_cpu_nmi_per(cpu).state
431 				!= UV_NMI_STATE_DUMP)
432 			return;
433 	} while (--retry > 0);
434 
435 	pr_crit("UV: CPU %d stuck in process dump function\n", cpu);
436 	uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_DUMP_DONE;
437 }
438 
439 /* Wait until all cpus ready to exit */
440 static void uv_nmi_sync_exit(int master)
441 {
442 	atomic_dec(&uv_nmi_cpus_in_nmi);
443 	if (master) {
444 		while (atomic_read(&uv_nmi_cpus_in_nmi) > 0)
445 			cpu_relax();
446 		atomic_set(&uv_nmi_slave_continue, SLAVE_CLEAR);
447 	} else {
448 		while (atomic_read(&uv_nmi_slave_continue))
449 			cpu_relax();
450 	}
451 }
452 
453 /* Walk through cpu list and dump state of each */
454 static void uv_nmi_dump_state(int cpu, struct pt_regs *regs, int master)
455 {
456 	if (master) {
457 		int tcpu;
458 		int ignored = 0;
459 		int saved_console_loglevel = console_loglevel;
460 
461 		pr_alert("UV: tracing %s for %d CPUs from CPU %d\n",
462 			uv_nmi_action_is("ips") ? "IPs" : "processes",
463 			atomic_read(&uv_nmi_cpus_in_nmi), cpu);
464 
465 		console_loglevel = uv_nmi_loglevel;
466 		atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT);
467 		for_each_online_cpu(tcpu) {
468 			if (cpumask_test_cpu(tcpu, uv_nmi_cpu_mask))
469 				ignored++;
470 			else if (tcpu == cpu)
471 				uv_nmi_dump_state_cpu(tcpu, regs);
472 			else
473 				uv_nmi_trigger_dump(tcpu);
474 		}
475 		if (ignored)
476 			pr_alert("UV: %d CPUs ignored NMI\n", ignored);
477 
478 		console_loglevel = saved_console_loglevel;
479 		pr_alert("UV: process trace complete\n");
480 	} else {
481 		while (!atomic_read(&uv_nmi_slave_continue))
482 			cpu_relax();
483 		while (this_cpu_read(uv_cpu_nmi.state) != UV_NMI_STATE_DUMP)
484 			cpu_relax();
485 		uv_nmi_dump_state_cpu(cpu, regs);
486 	}
487 	uv_nmi_sync_exit(master);
488 }
489 
490 static void uv_nmi_touch_watchdogs(void)
491 {
492 	touch_softlockup_watchdog_sync();
493 	clocksource_touch_watchdog();
494 	rcu_cpu_stall_reset();
495 	touch_nmi_watchdog();
496 }
497 
498 static atomic_t uv_nmi_kexec_failed;
499 
500 #if defined(CONFIG_KEXEC_CORE)
501 static void uv_nmi_kdump(int cpu, int master, struct pt_regs *regs)
502 {
503 	/* Call crash to dump system state */
504 	if (master) {
505 		pr_emerg("UV: NMI executing crash_kexec on CPU%d\n", cpu);
506 		crash_kexec(regs);
507 
508 		pr_emerg("UV: crash_kexec unexpectedly returned, ");
509 		atomic_set(&uv_nmi_kexec_failed, 1);
510 		if (!kexec_crash_image) {
511 			pr_cont("crash kernel not loaded\n");
512 			return;
513 		}
514 		pr_cont("kexec busy, stalling cpus while waiting\n");
515 	}
516 
517 	/* If crash exec fails the slaves should return, otherwise stall */
518 	while (atomic_read(&uv_nmi_kexec_failed) == 0)
519 		mdelay(10);
520 }
521 
522 #else /* !CONFIG_KEXEC_CORE */
523 static inline void uv_nmi_kdump(int cpu, int master, struct pt_regs *regs)
524 {
525 	if (master)
526 		pr_err("UV: NMI kdump: KEXEC not supported in this kernel\n");
527 	atomic_set(&uv_nmi_kexec_failed, 1);
528 }
529 #endif /* !CONFIG_KEXEC_CORE */
530 
531 #ifdef CONFIG_KGDB
532 #ifdef CONFIG_KGDB_KDB
533 static inline int uv_nmi_kdb_reason(void)
534 {
535 	return KDB_REASON_SYSTEM_NMI;
536 }
537 #else /* !CONFIG_KGDB_KDB */
538 static inline int uv_nmi_kdb_reason(void)
539 {
540 	/* Insure user is expecting to attach gdb remote */
541 	if (uv_nmi_action_is("kgdb"))
542 		return 0;
543 
544 	pr_err("UV: NMI error: KDB is not enabled in this kernel\n");
545 	return -1;
546 }
547 #endif /* CONFIG_KGDB_KDB */
548 
549 /*
550  * Call KGDB/KDB from NMI handler
551  *
552  * Note that if both KGDB and KDB are configured, then the action of 'kgdb' or
553  * 'kdb' has no affect on which is used.  See the KGDB documention for further
554  * information.
555  */
556 static void uv_call_kgdb_kdb(int cpu, struct pt_regs *regs, int master)
557 {
558 	if (master) {
559 		int reason = uv_nmi_kdb_reason();
560 		int ret;
561 
562 		if (reason < 0)
563 			return;
564 
565 		/* call KGDB NMI handler as MASTER */
566 		ret = kgdb_nmicallin(cpu, X86_TRAP_NMI, regs, reason,
567 				&uv_nmi_slave_continue);
568 		if (ret) {
569 			pr_alert("KGDB returned error, is kgdboc set?\n");
570 			atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT);
571 		}
572 	} else {
573 		/* wait for KGDB signal that it's ready for slaves to enter */
574 		int sig;
575 
576 		do {
577 			cpu_relax();
578 			sig = atomic_read(&uv_nmi_slave_continue);
579 		} while (!sig);
580 
581 		/* call KGDB as slave */
582 		if (sig == SLAVE_CONTINUE)
583 			kgdb_nmicallback(cpu, regs);
584 	}
585 	uv_nmi_sync_exit(master);
586 }
587 
588 #else /* !CONFIG_KGDB */
589 static inline void uv_call_kgdb_kdb(int cpu, struct pt_regs *regs, int master)
590 {
591 	pr_err("UV: NMI error: KGDB is not enabled in this kernel\n");
592 }
593 #endif /* !CONFIG_KGDB */
594 
595 /*
596  * UV NMI handler
597  */
598 int uv_handle_nmi(unsigned int reason, struct pt_regs *regs)
599 {
600 	struct uv_hub_nmi_s *hub_nmi = uv_hub_nmi;
601 	int cpu = smp_processor_id();
602 	int master = 0;
603 	unsigned long flags;
604 
605 	local_irq_save(flags);
606 
607 	/* If not a UV System NMI, ignore */
608 	if (!this_cpu_read(uv_cpu_nmi.pinging) && !uv_check_nmi(hub_nmi)) {
609 		local_irq_restore(flags);
610 		return NMI_DONE;
611 	}
612 
613 	/* Indicate we are the first CPU into the NMI handler */
614 	master = (atomic_read(&uv_nmi_cpu) == cpu);
615 
616 	/* If NMI action is "kdump", then attempt to do it */
617 	if (uv_nmi_action_is("kdump")) {
618 		uv_nmi_kdump(cpu, master, regs);
619 
620 		/* Unexpected return, revert action to "dump" */
621 		if (master)
622 			strncpy(uv_nmi_action, "dump", strlen(uv_nmi_action));
623 	}
624 
625 	/* Pause as all cpus enter the NMI handler */
626 	uv_nmi_wait(master);
627 
628 	/* Dump state of each cpu */
629 	if (uv_nmi_action_is("ips") || uv_nmi_action_is("dump"))
630 		uv_nmi_dump_state(cpu, regs, master);
631 
632 	/* Call KGDB/KDB if enabled */
633 	else if (uv_nmi_action_is("kdb") || uv_nmi_action_is("kgdb"))
634 		uv_call_kgdb_kdb(cpu, regs, master);
635 
636 	/* Clear per_cpu "in nmi" flag */
637 	this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_OUT);
638 
639 	/* Clear MMR NMI flag on each hub */
640 	uv_clear_nmi(cpu);
641 
642 	/* Clear global flags */
643 	if (master) {
644 		if (cpumask_weight(uv_nmi_cpu_mask))
645 			uv_nmi_cleanup_mask();
646 		atomic_set(&uv_nmi_cpus_in_nmi, -1);
647 		atomic_set(&uv_nmi_cpu, -1);
648 		atomic_set(&uv_in_nmi, 0);
649 		atomic_set(&uv_nmi_kexec_failed, 0);
650 	}
651 
652 	uv_nmi_touch_watchdogs();
653 	local_irq_restore(flags);
654 
655 	return NMI_HANDLED;
656 }
657 
658 /*
659  * NMI handler for pulling in CPUs when perf events are grabbing our NMI
660  */
661 static int uv_handle_nmi_ping(unsigned int reason, struct pt_regs *regs)
662 {
663 	int ret;
664 
665 	this_cpu_inc(uv_cpu_nmi.queries);
666 	if (!this_cpu_read(uv_cpu_nmi.pinging)) {
667 		local64_inc(&uv_nmi_ping_misses);
668 		return NMI_DONE;
669 	}
670 
671 	this_cpu_inc(uv_cpu_nmi.pings);
672 	local64_inc(&uv_nmi_ping_count);
673 	ret = uv_handle_nmi(reason, regs);
674 	this_cpu_write(uv_cpu_nmi.pinging, 0);
675 	return ret;
676 }
677 
678 static void uv_register_nmi_notifier(void)
679 {
680 	if (register_nmi_handler(NMI_UNKNOWN, uv_handle_nmi, 0, "uv"))
681 		pr_warn("UV: NMI handler failed to register\n");
682 
683 	if (register_nmi_handler(NMI_LOCAL, uv_handle_nmi_ping, 0, "uvping"))
684 		pr_warn("UV: PING NMI handler failed to register\n");
685 }
686 
687 void uv_nmi_init(void)
688 {
689 	unsigned int value;
690 
691 	/*
692 	 * Unmask NMI on all cpus
693 	 */
694 	value = apic_read(APIC_LVT1) | APIC_DM_NMI;
695 	value &= ~APIC_LVT_MASKED;
696 	apic_write(APIC_LVT1, value);
697 }
698 
699 void uv_nmi_setup(void)
700 {
701 	int size = sizeof(void *) * (1 << NODES_SHIFT);
702 	int cpu, nid;
703 
704 	/* Setup hub nmi info */
705 	uv_nmi_setup_mmrs();
706 	uv_hub_nmi_list = kzalloc(size, GFP_KERNEL);
707 	pr_info("UV: NMI hub list @ 0x%p (%d)\n", uv_hub_nmi_list, size);
708 	BUG_ON(!uv_hub_nmi_list);
709 	size = sizeof(struct uv_hub_nmi_s);
710 	for_each_present_cpu(cpu) {
711 		nid = cpu_to_node(cpu);
712 		if (uv_hub_nmi_list[nid] == NULL) {
713 			uv_hub_nmi_list[nid] = kzalloc_node(size,
714 							    GFP_KERNEL, nid);
715 			BUG_ON(!uv_hub_nmi_list[nid]);
716 			raw_spin_lock_init(&(uv_hub_nmi_list[nid]->nmi_lock));
717 			atomic_set(&uv_hub_nmi_list[nid]->cpu_owner, -1);
718 		}
719 		uv_hub_nmi_per(cpu) = uv_hub_nmi_list[nid];
720 	}
721 	BUG_ON(!alloc_cpumask_var(&uv_nmi_cpu_mask, GFP_KERNEL));
722 	uv_register_nmi_notifier();
723 }
724