1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * SGI NMI support routines 4 * 5 * (C) Copyright 2020 Hewlett Packard Enterprise Development LP 6 * Copyright (C) 2007-2017 Silicon Graphics, Inc. All rights reserved. 7 * Copyright (c) Mike Travis 8 */ 9 10 #include <linux/cpu.h> 11 #include <linux/delay.h> 12 #include <linux/kdb.h> 13 #include <linux/kexec.h> 14 #include <linux/kgdb.h> 15 #include <linux/moduleparam.h> 16 #include <linux/nmi.h> 17 #include <linux/sched.h> 18 #include <linux/sched/debug.h> 19 #include <linux/slab.h> 20 #include <linux/clocksource.h> 21 22 #include <asm/apic.h> 23 #include <asm/current.h> 24 #include <asm/kdebug.h> 25 #include <asm/local64.h> 26 #include <asm/nmi.h> 27 #include <asm/reboot.h> 28 #include <asm/traps.h> 29 #include <asm/uv/uv.h> 30 #include <asm/uv/uv_hub.h> 31 #include <asm/uv/uv_mmrs.h> 32 33 /* 34 * UV handler for NMI 35 * 36 * Handle system-wide NMI events generated by the global 'power nmi' command. 37 * 38 * Basic operation is to field the NMI interrupt on each CPU and wait 39 * until all CPU's have arrived into the nmi handler. If some CPU's do not 40 * make it into the handler, try and force them in with the IPI(NMI) signal. 41 * 42 * We also have to lessen UV Hub MMR accesses as much as possible as this 43 * disrupts the UV Hub's primary mission of directing NumaLink traffic and 44 * can cause system problems to occur. 45 * 46 * To do this we register our primary NMI notifier on the NMI_UNKNOWN 47 * chain. This reduces the number of false NMI calls when the perf 48 * tools are running which generate an enormous number of NMIs per 49 * second (~4M/s for 1024 CPU threads). Our secondary NMI handler is 50 * very short as it only checks that if it has been "pinged" with the 51 * IPI(NMI) signal as mentioned above, and does not read the UV Hub's MMR. 52 * 53 */ 54 55 static struct uv_hub_nmi_s **uv_hub_nmi_list; 56 57 DEFINE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi); 58 59 /* Newer SMM NMI handler, not present in all systems */ 60 static unsigned long uvh_nmi_mmrx; /* UVH_EVENT_OCCURRED0/1 */ 61 static unsigned long uvh_nmi_mmrx_clear; /* UVH_EVENT_OCCURRED0/1_ALIAS */ 62 static int uvh_nmi_mmrx_shift; /* UVH_EVENT_OCCURRED0/1_EXTIO_INT0_SHFT */ 63 static char *uvh_nmi_mmrx_type; /* "EXTIO_INT0" */ 64 65 /* Non-zero indicates newer SMM NMI handler present */ 66 static unsigned long uvh_nmi_mmrx_supported; /* UVH_EXTIO_INT0_BROADCAST */ 67 68 /* Indicates to BIOS that we want to use the newer SMM NMI handler */ 69 static unsigned long uvh_nmi_mmrx_req; /* UVH_BIOS_KERNEL_MMR_ALIAS_2 */ 70 static int uvh_nmi_mmrx_req_shift; /* 62 */ 71 72 /* UV hubless values */ 73 #define NMI_CONTROL_PORT 0x70 74 #define NMI_DUMMY_PORT 0x71 75 #define PAD_OWN_GPP_D_0 0x2c 76 #define GPI_NMI_STS_GPP_D_0 0x164 77 #define GPI_NMI_ENA_GPP_D_0 0x174 78 #define STS_GPP_D_0_MASK 0x1 79 #define PAD_CFG_DW0_GPP_D_0 0x4c0 80 #define GPIROUTNMI (1ul << 17) 81 #define PCH_PCR_GPIO_1_BASE 0xfdae0000ul 82 #define PCH_PCR_GPIO_ADDRESS(offset) (int *)((u64)(pch_base) | (u64)(offset)) 83 84 static u64 *pch_base; 85 static unsigned long nmi_mmr; 86 static unsigned long nmi_mmr_clear; 87 static unsigned long nmi_mmr_pending; 88 89 static atomic_t uv_in_nmi; 90 static atomic_t uv_nmi_cpu = ATOMIC_INIT(-1); 91 static atomic_t uv_nmi_cpus_in_nmi = ATOMIC_INIT(-1); 92 static atomic_t uv_nmi_slave_continue; 93 static cpumask_var_t uv_nmi_cpu_mask; 94 95 static atomic_t uv_nmi_kexec_failed; 96 97 /* Values for uv_nmi_slave_continue */ 98 #define SLAVE_CLEAR 0 99 #define SLAVE_CONTINUE 1 100 #define SLAVE_EXIT 2 101 102 /* 103 * Default is all stack dumps go to the console and buffer. 104 * Lower level to send to log buffer only. 105 */ 106 static int uv_nmi_loglevel = CONSOLE_LOGLEVEL_DEFAULT; 107 module_param_named(dump_loglevel, uv_nmi_loglevel, int, 0644); 108 109 /* 110 * The following values show statistics on how perf events are affecting 111 * this system. 112 */ 113 static int param_get_local64(char *buffer, const struct kernel_param *kp) 114 { 115 return sprintf(buffer, "%lu\n", local64_read((local64_t *)kp->arg)); 116 } 117 118 static int param_set_local64(const char *val, const struct kernel_param *kp) 119 { 120 /* Clear on any write */ 121 local64_set((local64_t *)kp->arg, 0); 122 return 0; 123 } 124 125 static const struct kernel_param_ops param_ops_local64 = { 126 .get = param_get_local64, 127 .set = param_set_local64, 128 }; 129 #define param_check_local64(name, p) __param_check(name, p, local64_t) 130 131 static local64_t uv_nmi_count; 132 module_param_named(nmi_count, uv_nmi_count, local64, 0644); 133 134 static local64_t uv_nmi_misses; 135 module_param_named(nmi_misses, uv_nmi_misses, local64, 0644); 136 137 static local64_t uv_nmi_ping_count; 138 module_param_named(ping_count, uv_nmi_ping_count, local64, 0644); 139 140 static local64_t uv_nmi_ping_misses; 141 module_param_named(ping_misses, uv_nmi_ping_misses, local64, 0644); 142 143 /* 144 * Following values allow tuning for large systems under heavy loading 145 */ 146 static int uv_nmi_initial_delay = 100; 147 module_param_named(initial_delay, uv_nmi_initial_delay, int, 0644); 148 149 static int uv_nmi_slave_delay = 100; 150 module_param_named(slave_delay, uv_nmi_slave_delay, int, 0644); 151 152 static int uv_nmi_loop_delay = 100; 153 module_param_named(loop_delay, uv_nmi_loop_delay, int, 0644); 154 155 static int uv_nmi_trigger_delay = 10000; 156 module_param_named(trigger_delay, uv_nmi_trigger_delay, int, 0644); 157 158 static int uv_nmi_wait_count = 100; 159 module_param_named(wait_count, uv_nmi_wait_count, int, 0644); 160 161 static int uv_nmi_retry_count = 500; 162 module_param_named(retry_count, uv_nmi_retry_count, int, 0644); 163 164 static bool uv_pch_intr_enable = true; 165 static bool uv_pch_intr_now_enabled; 166 module_param_named(pch_intr_enable, uv_pch_intr_enable, bool, 0644); 167 168 static bool uv_pch_init_enable = true; 169 module_param_named(pch_init_enable, uv_pch_init_enable, bool, 0644); 170 171 static int uv_nmi_debug; 172 module_param_named(debug, uv_nmi_debug, int, 0644); 173 174 #define nmi_debug(fmt, ...) \ 175 do { \ 176 if (uv_nmi_debug) \ 177 pr_info(fmt, ##__VA_ARGS__); \ 178 } while (0) 179 180 /* Valid NMI Actions */ 181 #define ACTION_LEN 16 182 static struct nmi_action { 183 char *action; 184 char *desc; 185 } valid_acts[] = { 186 { "kdump", "do kernel crash dump" }, 187 { "dump", "dump process stack for each cpu" }, 188 { "ips", "dump Inst Ptr info for each cpu" }, 189 { "kdb", "enter KDB (needs kgdboc= assignment)" }, 190 { "kgdb", "enter KGDB (needs gdb target remote)" }, 191 { "health", "check if CPUs respond to NMI" }, 192 }; 193 typedef char action_t[ACTION_LEN]; 194 static action_t uv_nmi_action = { "dump" }; 195 196 static int param_get_action(char *buffer, const struct kernel_param *kp) 197 { 198 return sprintf(buffer, "%s\n", uv_nmi_action); 199 } 200 201 static int param_set_action(const char *val, const struct kernel_param *kp) 202 { 203 int i; 204 int n = ARRAY_SIZE(valid_acts); 205 char arg[ACTION_LEN]; 206 207 /* (remove possible '\n') */ 208 strscpy(arg, val, strnchrnul(val, sizeof(arg)-1, '\n') - val + 1); 209 210 for (i = 0; i < n; i++) 211 if (!strcmp(arg, valid_acts[i].action)) 212 break; 213 214 if (i < n) { 215 strscpy(uv_nmi_action, arg, sizeof(uv_nmi_action)); 216 pr_info("UV: New NMI action:%s\n", uv_nmi_action); 217 return 0; 218 } 219 220 pr_err("UV: Invalid NMI action:%s, valid actions are:\n", arg); 221 for (i = 0; i < n; i++) 222 pr_err("UV: %-8s - %s\n", 223 valid_acts[i].action, valid_acts[i].desc); 224 return -EINVAL; 225 } 226 227 static const struct kernel_param_ops param_ops_action = { 228 .get = param_get_action, 229 .set = param_set_action, 230 }; 231 #define param_check_action(name, p) __param_check(name, p, action_t) 232 233 module_param_named(action, uv_nmi_action, action, 0644); 234 235 static inline bool uv_nmi_action_is(const char *action) 236 { 237 return (strncmp(uv_nmi_action, action, strlen(action)) == 0); 238 } 239 240 /* Setup which NMI support is present in system */ 241 static void uv_nmi_setup_mmrs(void) 242 { 243 bool new_nmi_method_only = false; 244 245 /* First determine arch specific MMRs to handshake with BIOS */ 246 if (UVH_EVENT_OCCURRED0_EXTIO_INT0_MASK) { /* UV2,3,4 setup */ 247 uvh_nmi_mmrx = UVH_EVENT_OCCURRED0; 248 uvh_nmi_mmrx_clear = UVH_EVENT_OCCURRED0_ALIAS; 249 uvh_nmi_mmrx_shift = UVH_EVENT_OCCURRED0_EXTIO_INT0_SHFT; 250 uvh_nmi_mmrx_type = "OCRD0-EXTIO_INT0"; 251 252 uvh_nmi_mmrx_supported = UVH_EXTIO_INT0_BROADCAST; 253 uvh_nmi_mmrx_req = UVH_BIOS_KERNEL_MMR_ALIAS_2; 254 uvh_nmi_mmrx_req_shift = 62; 255 256 } else if (UVH_EVENT_OCCURRED1_EXTIO_INT0_MASK) { /* UV5+ setup */ 257 uvh_nmi_mmrx = UVH_EVENT_OCCURRED1; 258 uvh_nmi_mmrx_clear = UVH_EVENT_OCCURRED1_ALIAS; 259 uvh_nmi_mmrx_shift = UVH_EVENT_OCCURRED1_EXTIO_INT0_SHFT; 260 uvh_nmi_mmrx_type = "OCRD1-EXTIO_INT0"; 261 262 new_nmi_method_only = true; /* Newer nmi always valid on UV5+ */ 263 uvh_nmi_mmrx_req = 0; /* no request bit to clear */ 264 265 } else { 266 pr_err("UV:%s:NMI support not available on this system\n", __func__); 267 return; 268 } 269 270 /* Then find out if new NMI is supported */ 271 if (new_nmi_method_only || uv_read_local_mmr(uvh_nmi_mmrx_supported)) { 272 if (uvh_nmi_mmrx_req) 273 uv_write_local_mmr(uvh_nmi_mmrx_req, 274 1UL << uvh_nmi_mmrx_req_shift); 275 nmi_mmr = uvh_nmi_mmrx; 276 nmi_mmr_clear = uvh_nmi_mmrx_clear; 277 nmi_mmr_pending = 1UL << uvh_nmi_mmrx_shift; 278 pr_info("UV: SMI NMI support: %s\n", uvh_nmi_mmrx_type); 279 } else { 280 nmi_mmr = UVH_NMI_MMR; 281 nmi_mmr_clear = UVH_NMI_MMR_CLEAR; 282 nmi_mmr_pending = 1UL << UVH_NMI_MMR_SHIFT; 283 pr_info("UV: SMI NMI support: %s\n", UVH_NMI_MMR_TYPE); 284 } 285 } 286 287 /* Read NMI MMR and check if NMI flag was set by BMC. */ 288 static inline int uv_nmi_test_mmr(struct uv_hub_nmi_s *hub_nmi) 289 { 290 hub_nmi->nmi_value = uv_read_local_mmr(nmi_mmr); 291 atomic_inc(&hub_nmi->read_mmr_count); 292 return !!(hub_nmi->nmi_value & nmi_mmr_pending); 293 } 294 295 static inline void uv_local_mmr_clear_nmi(void) 296 { 297 uv_write_local_mmr(nmi_mmr_clear, nmi_mmr_pending); 298 } 299 300 /* 301 * UV hubless NMI handler functions 302 */ 303 static inline void uv_reassert_nmi(void) 304 { 305 /* (from arch/x86/include/asm/mach_traps.h) */ 306 outb(0x8f, NMI_CONTROL_PORT); 307 inb(NMI_DUMMY_PORT); /* dummy read */ 308 outb(0x0f, NMI_CONTROL_PORT); 309 inb(NMI_DUMMY_PORT); /* dummy read */ 310 } 311 312 static void uv_init_hubless_pch_io(int offset, int mask, int data) 313 { 314 int *addr = PCH_PCR_GPIO_ADDRESS(offset); 315 int readd = readl(addr); 316 317 if (mask) { /* OR in new data */ 318 int writed = (readd & ~mask) | data; 319 320 nmi_debug("UV:PCH: %p = %x & %x | %x (%x)\n", 321 addr, readd, ~mask, data, writed); 322 writel(writed, addr); 323 } else if (readd & data) { /* clear status bit */ 324 nmi_debug("UV:PCH: %p = %x\n", addr, data); 325 writel(data, addr); 326 } 327 328 (void)readl(addr); /* flush write data */ 329 } 330 331 static void uv_nmi_setup_hubless_intr(void) 332 { 333 uv_pch_intr_now_enabled = uv_pch_intr_enable; 334 335 uv_init_hubless_pch_io( 336 PAD_CFG_DW0_GPP_D_0, GPIROUTNMI, 337 uv_pch_intr_now_enabled ? GPIROUTNMI : 0); 338 339 nmi_debug("UV:NMI: GPP_D_0 interrupt %s\n", 340 uv_pch_intr_now_enabled ? "enabled" : "disabled"); 341 } 342 343 static struct init_nmi { 344 unsigned int offset; 345 unsigned int mask; 346 unsigned int data; 347 } init_nmi[] = { 348 { /* HOSTSW_OWN_GPP_D_0 */ 349 .offset = 0x84, 350 .mask = 0x1, 351 .data = 0x0, /* ACPI Mode */ 352 }, 353 354 /* Clear status: */ 355 { /* GPI_INT_STS_GPP_D_0 */ 356 .offset = 0x104, 357 .mask = 0x0, 358 .data = 0x1, /* Clear Status */ 359 }, 360 { /* GPI_GPE_STS_GPP_D_0 */ 361 .offset = 0x124, 362 .mask = 0x0, 363 .data = 0x1, /* Clear Status */ 364 }, 365 { /* GPI_SMI_STS_GPP_D_0 */ 366 .offset = 0x144, 367 .mask = 0x0, 368 .data = 0x1, /* Clear Status */ 369 }, 370 { /* GPI_NMI_STS_GPP_D_0 */ 371 .offset = 0x164, 372 .mask = 0x0, 373 .data = 0x1, /* Clear Status */ 374 }, 375 376 /* Disable interrupts: */ 377 { /* GPI_INT_EN_GPP_D_0 */ 378 .offset = 0x114, 379 .mask = 0x1, 380 .data = 0x0, /* Disable interrupt generation */ 381 }, 382 { /* GPI_GPE_EN_GPP_D_0 */ 383 .offset = 0x134, 384 .mask = 0x1, 385 .data = 0x0, /* Disable interrupt generation */ 386 }, 387 { /* GPI_SMI_EN_GPP_D_0 */ 388 .offset = 0x154, 389 .mask = 0x1, 390 .data = 0x0, /* Disable interrupt generation */ 391 }, 392 { /* GPI_NMI_EN_GPP_D_0 */ 393 .offset = 0x174, 394 .mask = 0x1, 395 .data = 0x0, /* Disable interrupt generation */ 396 }, 397 398 /* Setup GPP_D_0 Pad Config: */ 399 { /* PAD_CFG_DW0_GPP_D_0 */ 400 .offset = 0x4c0, 401 .mask = 0xffffffff, 402 .data = 0x82020100, 403 /* 404 * 31:30 Pad Reset Config (PADRSTCFG): = 2h # PLTRST# (default) 405 * 406 * 29 RX Pad State Select (RXPADSTSEL): = 0 # Raw RX pad state directly 407 * from RX buffer (default) 408 * 409 * 28 RX Raw Override to '1' (RXRAW1): = 0 # No Override 410 * 411 * 26:25 RX Level/Edge Configuration (RXEVCFG): 412 * = 0h # Level 413 * = 1h # Edge 414 * 415 * 23 RX Invert (RXINV): = 0 # No Inversion (signal active high) 416 * 417 * 20 GPIO Input Route IOxAPIC (GPIROUTIOXAPIC): 418 * = 0 # Routing does not cause peripheral IRQ... 419 * # (we want an NMI not an IRQ) 420 * 421 * 19 GPIO Input Route SCI (GPIROUTSCI): = 0 # Routing does not cause SCI. 422 * 18 GPIO Input Route SMI (GPIROUTSMI): = 0 # Routing does not cause SMI. 423 * 17 GPIO Input Route NMI (GPIROUTNMI): = 1 # Routing can cause NMI. 424 * 425 * 11:10 Pad Mode (PMODE1/0): = 0h = GPIO control the Pad. 426 * 9 GPIO RX Disable (GPIORXDIS): 427 * = 0 # Enable the input buffer (active low enable) 428 * 429 * 8 GPIO TX Disable (GPIOTXDIS): 430 * = 1 # Disable the output buffer; i.e. Hi-Z 431 * 432 * 1 GPIO RX State (GPIORXSTATE): This is the current internal RX pad state.. 433 * 0 GPIO TX State (GPIOTXSTATE): 434 * = 0 # (Leave at default) 435 */ 436 }, 437 438 /* Pad Config DW1 */ 439 { /* PAD_CFG_DW1_GPP_D_0 */ 440 .offset = 0x4c4, 441 .mask = 0x3c00, 442 .data = 0, /* Termination = none (default) */ 443 }, 444 }; 445 446 static void uv_init_hubless_pch_d0(void) 447 { 448 int i, read; 449 450 read = *PCH_PCR_GPIO_ADDRESS(PAD_OWN_GPP_D_0); 451 if (read != 0) { 452 pr_info("UV: Hubless NMI already configured\n"); 453 return; 454 } 455 456 nmi_debug("UV: Initializing UV Hubless NMI on PCH\n"); 457 for (i = 0; i < ARRAY_SIZE(init_nmi); i++) { 458 uv_init_hubless_pch_io(init_nmi[i].offset, 459 init_nmi[i].mask, 460 init_nmi[i].data); 461 } 462 } 463 464 static int uv_nmi_test_hubless(struct uv_hub_nmi_s *hub_nmi) 465 { 466 int *pstat = PCH_PCR_GPIO_ADDRESS(GPI_NMI_STS_GPP_D_0); 467 int status = *pstat; 468 469 hub_nmi->nmi_value = status; 470 atomic_inc(&hub_nmi->read_mmr_count); 471 472 if (!(status & STS_GPP_D_0_MASK)) /* Not a UV external NMI */ 473 return 0; 474 475 *pstat = STS_GPP_D_0_MASK; /* Is a UV NMI: clear GPP_D_0 status */ 476 (void)*pstat; /* Flush write */ 477 478 return 1; 479 } 480 481 static int uv_test_nmi(struct uv_hub_nmi_s *hub_nmi) 482 { 483 if (hub_nmi->hub_present) 484 return uv_nmi_test_mmr(hub_nmi); 485 486 if (hub_nmi->pch_owner) /* Only PCH owner can check status */ 487 return uv_nmi_test_hubless(hub_nmi); 488 489 return -1; 490 } 491 492 /* 493 * If first CPU in on this hub, set hub_nmi "in_nmi" and "owner" values and 494 * return true. If first CPU in on the system, set global "in_nmi" flag. 495 */ 496 static int uv_set_in_nmi(int cpu, struct uv_hub_nmi_s *hub_nmi) 497 { 498 int first = atomic_add_unless(&hub_nmi->in_nmi, 1, 1); 499 500 if (first) { 501 atomic_set(&hub_nmi->cpu_owner, cpu); 502 if (atomic_add_unless(&uv_in_nmi, 1, 1)) 503 atomic_set(&uv_nmi_cpu, cpu); 504 505 atomic_inc(&hub_nmi->nmi_count); 506 } 507 return first; 508 } 509 510 /* Check if this is a system NMI event */ 511 static int uv_check_nmi(struct uv_hub_nmi_s *hub_nmi) 512 { 513 int cpu = smp_processor_id(); 514 int nmi = 0; 515 int nmi_detected = 0; 516 517 local64_inc(&uv_nmi_count); 518 this_cpu_inc(uv_cpu_nmi.queries); 519 520 do { 521 nmi = atomic_read(&hub_nmi->in_nmi); 522 if (nmi) 523 break; 524 525 if (raw_spin_trylock(&hub_nmi->nmi_lock)) { 526 nmi_detected = uv_test_nmi(hub_nmi); 527 528 /* Check flag for UV external NMI */ 529 if (nmi_detected > 0) { 530 uv_set_in_nmi(cpu, hub_nmi); 531 nmi = 1; 532 break; 533 } 534 535 /* A non-PCH node in a hubless system waits for NMI */ 536 else if (nmi_detected < 0) 537 goto slave_wait; 538 539 /* MMR/PCH NMI flag is clear */ 540 raw_spin_unlock(&hub_nmi->nmi_lock); 541 542 } else { 543 544 /* Wait a moment for the HUB NMI locker to set flag */ 545 slave_wait: cpu_relax(); 546 udelay(uv_nmi_slave_delay); 547 548 /* Re-check hub in_nmi flag */ 549 nmi = atomic_read(&hub_nmi->in_nmi); 550 if (nmi) 551 break; 552 } 553 554 /* 555 * Check if this BMC missed setting the MMR NMI flag (or) 556 * UV hubless system where only PCH owner can check flag 557 */ 558 if (!nmi) { 559 nmi = atomic_read(&uv_in_nmi); 560 if (nmi) 561 uv_set_in_nmi(cpu, hub_nmi); 562 } 563 564 /* If we're holding the hub lock, release it now */ 565 if (nmi_detected < 0) 566 raw_spin_unlock(&hub_nmi->nmi_lock); 567 568 } while (0); 569 570 if (!nmi) 571 local64_inc(&uv_nmi_misses); 572 573 return nmi; 574 } 575 576 /* Need to reset the NMI MMR register, but only once per hub. */ 577 static inline void uv_clear_nmi(int cpu) 578 { 579 struct uv_hub_nmi_s *hub_nmi = uv_hub_nmi; 580 581 if (cpu == atomic_read(&hub_nmi->cpu_owner)) { 582 atomic_set(&hub_nmi->cpu_owner, -1); 583 atomic_set(&hub_nmi->in_nmi, 0); 584 if (hub_nmi->hub_present) 585 uv_local_mmr_clear_nmi(); 586 else 587 uv_reassert_nmi(); 588 raw_spin_unlock(&hub_nmi->nmi_lock); 589 } 590 } 591 592 /* Ping non-responding CPU's attempting to force them into the NMI handler */ 593 static void uv_nmi_nr_cpus_ping(void) 594 { 595 int cpu; 596 597 for_each_cpu(cpu, uv_nmi_cpu_mask) 598 uv_cpu_nmi_per(cpu).pinging = 1; 599 600 __apic_send_IPI_mask(uv_nmi_cpu_mask, APIC_DM_NMI); 601 } 602 603 /* Clean up flags for CPU's that ignored both NMI and ping */ 604 static void uv_nmi_cleanup_mask(void) 605 { 606 int cpu; 607 608 for_each_cpu(cpu, uv_nmi_cpu_mask) { 609 uv_cpu_nmi_per(cpu).pinging = 0; 610 uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_OUT; 611 cpumask_clear_cpu(cpu, uv_nmi_cpu_mask); 612 } 613 } 614 615 /* Loop waiting as CPU's enter NMI handler */ 616 static int uv_nmi_wait_cpus(int first) 617 { 618 int i, j, k, n = num_online_cpus(); 619 int last_k = 0, waiting = 0; 620 int cpu = smp_processor_id(); 621 622 if (first) { 623 cpumask_copy(uv_nmi_cpu_mask, cpu_online_mask); 624 k = 0; 625 } else { 626 k = n - cpumask_weight(uv_nmi_cpu_mask); 627 } 628 629 /* PCH NMI causes only one CPU to respond */ 630 if (first && uv_pch_intr_now_enabled) { 631 cpumask_clear_cpu(cpu, uv_nmi_cpu_mask); 632 return n - k - 1; 633 } 634 635 udelay(uv_nmi_initial_delay); 636 for (i = 0; i < uv_nmi_retry_count; i++) { 637 int loop_delay = uv_nmi_loop_delay; 638 639 for_each_cpu(j, uv_nmi_cpu_mask) { 640 if (uv_cpu_nmi_per(j).state) { 641 cpumask_clear_cpu(j, uv_nmi_cpu_mask); 642 if (++k >= n) 643 break; 644 } 645 } 646 if (k >= n) { /* all in? */ 647 k = n; 648 break; 649 } 650 if (last_k != k) { /* abort if no new CPU's coming in */ 651 last_k = k; 652 waiting = 0; 653 } else if (++waiting > uv_nmi_wait_count) 654 break; 655 656 /* Extend delay if waiting only for CPU 0: */ 657 if (waiting && (n - k) == 1 && 658 cpumask_test_cpu(0, uv_nmi_cpu_mask)) 659 loop_delay *= 100; 660 661 udelay(loop_delay); 662 } 663 atomic_set(&uv_nmi_cpus_in_nmi, k); 664 return n - k; 665 } 666 667 /* Wait until all slave CPU's have entered UV NMI handler */ 668 static void uv_nmi_wait(int master) 669 { 670 /* Indicate this CPU is in: */ 671 this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_IN); 672 673 /* If not the first CPU in (the master), then we are a slave CPU */ 674 if (!master) 675 return; 676 677 do { 678 /* Wait for all other CPU's to gather here */ 679 if (!uv_nmi_wait_cpus(1)) 680 break; 681 682 /* If not all made it in, send IPI NMI to them */ 683 pr_alert("UV: Sending NMI IPI to %d CPUs: %*pbl\n", 684 cpumask_weight(uv_nmi_cpu_mask), 685 cpumask_pr_args(uv_nmi_cpu_mask)); 686 687 uv_nmi_nr_cpus_ping(); 688 689 /* If all CPU's are in, then done */ 690 if (!uv_nmi_wait_cpus(0)) 691 break; 692 693 pr_alert("UV: %d CPUs not in NMI loop: %*pbl\n", 694 cpumask_weight(uv_nmi_cpu_mask), 695 cpumask_pr_args(uv_nmi_cpu_mask)); 696 } while (0); 697 698 pr_alert("UV: %d of %d CPUs in NMI\n", 699 atomic_read(&uv_nmi_cpus_in_nmi), num_online_cpus()); 700 } 701 702 /* Dump Instruction Pointer header */ 703 static void uv_nmi_dump_cpu_ip_hdr(void) 704 { 705 pr_info("\nUV: %4s %6s %-32s %s (Note: PID 0 not listed)\n", 706 "CPU", "PID", "COMMAND", "IP"); 707 } 708 709 /* Dump Instruction Pointer info */ 710 static void uv_nmi_dump_cpu_ip(int cpu, struct pt_regs *regs) 711 { 712 pr_info("UV: %4d %6d %-32.32s %pS", 713 cpu, current->pid, current->comm, (void *)regs->ip); 714 } 715 716 /* 717 * Dump this CPU's state. If action was set to "kdump" and the crash_kexec 718 * failed, then we provide "dump" as an alternate action. Action "dump" now 719 * also includes the show "ips" (instruction pointers) action whereas the 720 * action "ips" only displays instruction pointers for the non-idle CPU's. 721 * This is an abbreviated form of the "ps" command. 722 */ 723 static void uv_nmi_dump_state_cpu(int cpu, struct pt_regs *regs) 724 { 725 const char *dots = " ................................. "; 726 727 if (cpu == 0) 728 uv_nmi_dump_cpu_ip_hdr(); 729 730 if (current->pid != 0 || !uv_nmi_action_is("ips")) 731 uv_nmi_dump_cpu_ip(cpu, regs); 732 733 if (uv_nmi_action_is("dump")) { 734 pr_info("UV:%sNMI process trace for CPU %d\n", dots, cpu); 735 show_regs(regs); 736 } 737 738 this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_DUMP_DONE); 739 } 740 741 /* Trigger a slave CPU to dump it's state */ 742 static void uv_nmi_trigger_dump(int cpu) 743 { 744 int retry = uv_nmi_trigger_delay; 745 746 if (uv_cpu_nmi_per(cpu).state != UV_NMI_STATE_IN) 747 return; 748 749 uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_DUMP; 750 do { 751 cpu_relax(); 752 udelay(10); 753 if (uv_cpu_nmi_per(cpu).state 754 != UV_NMI_STATE_DUMP) 755 return; 756 } while (--retry > 0); 757 758 pr_crit("UV: CPU %d stuck in process dump function\n", cpu); 759 uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_DUMP_DONE; 760 } 761 762 /* Wait until all CPU's ready to exit */ 763 static void uv_nmi_sync_exit(int master) 764 { 765 atomic_dec(&uv_nmi_cpus_in_nmi); 766 if (master) { 767 while (atomic_read(&uv_nmi_cpus_in_nmi) > 0) 768 cpu_relax(); 769 atomic_set(&uv_nmi_slave_continue, SLAVE_CLEAR); 770 } else { 771 while (atomic_read(&uv_nmi_slave_continue)) 772 cpu_relax(); 773 } 774 } 775 776 /* Current "health" check is to check which CPU's are responsive */ 777 static void uv_nmi_action_health(int cpu, struct pt_regs *regs, int master) 778 { 779 if (master) { 780 int in = atomic_read(&uv_nmi_cpus_in_nmi); 781 int out = num_online_cpus() - in; 782 783 pr_alert("UV: NMI CPU health check (non-responding:%d)\n", out); 784 atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT); 785 } else { 786 while (!atomic_read(&uv_nmi_slave_continue)) 787 cpu_relax(); 788 } 789 uv_nmi_sync_exit(master); 790 } 791 792 /* Walk through CPU list and dump state of each */ 793 static void uv_nmi_dump_state(int cpu, struct pt_regs *regs, int master) 794 { 795 if (master) { 796 int tcpu; 797 int ignored = 0; 798 int saved_console_loglevel = console_loglevel; 799 800 pr_alert("UV: tracing %s for %d CPUs from CPU %d\n", 801 uv_nmi_action_is("ips") ? "IPs" : "processes", 802 atomic_read(&uv_nmi_cpus_in_nmi), cpu); 803 804 console_loglevel = uv_nmi_loglevel; 805 atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT); 806 for_each_online_cpu(tcpu) { 807 if (cpumask_test_cpu(tcpu, uv_nmi_cpu_mask)) 808 ignored++; 809 else if (tcpu == cpu) 810 uv_nmi_dump_state_cpu(tcpu, regs); 811 else 812 uv_nmi_trigger_dump(tcpu); 813 } 814 if (ignored) 815 pr_alert("UV: %d CPUs ignored NMI\n", ignored); 816 817 console_loglevel = saved_console_loglevel; 818 pr_alert("UV: process trace complete\n"); 819 } else { 820 while (!atomic_read(&uv_nmi_slave_continue)) 821 cpu_relax(); 822 while (this_cpu_read(uv_cpu_nmi.state) != UV_NMI_STATE_DUMP) 823 cpu_relax(); 824 uv_nmi_dump_state_cpu(cpu, regs); 825 } 826 uv_nmi_sync_exit(master); 827 } 828 829 static void uv_nmi_touch_watchdogs(void) 830 { 831 touch_softlockup_watchdog_sync(); 832 clocksource_touch_watchdog(); 833 rcu_cpu_stall_reset(); 834 touch_nmi_watchdog(); 835 } 836 837 static void uv_nmi_kdump(int cpu, int main, struct pt_regs *regs) 838 { 839 /* Check if kdump kernel loaded for both main and secondary CPUs */ 840 if (!kexec_crash_image) { 841 if (main) 842 pr_err("UV: NMI error: kdump kernel not loaded\n"); 843 return; 844 } 845 846 /* Call crash to dump system state */ 847 if (main) { 848 pr_emerg("UV: NMI executing crash_kexec on CPU%d\n", cpu); 849 crash_kexec(regs); 850 851 pr_emerg("UV: crash_kexec unexpectedly returned\n"); 852 atomic_set(&uv_nmi_kexec_failed, 1); 853 854 } else { /* secondary */ 855 856 /* If kdump kernel fails, secondaries will exit this loop */ 857 while (atomic_read(&uv_nmi_kexec_failed) == 0) { 858 859 /* Once shootdown cpus starts, they do not return */ 860 run_crash_ipi_callback(regs); 861 862 mdelay(10); 863 } 864 } 865 } 866 867 #ifdef CONFIG_KGDB 868 #ifdef CONFIG_KGDB_KDB 869 static inline int uv_nmi_kdb_reason(void) 870 { 871 return KDB_REASON_SYSTEM_NMI; 872 } 873 #else /* !CONFIG_KGDB_KDB */ 874 static inline int uv_nmi_kdb_reason(void) 875 { 876 /* Ensure user is expecting to attach gdb remote */ 877 if (uv_nmi_action_is("kgdb")) 878 return 0; 879 880 pr_err("UV: NMI error: KDB is not enabled in this kernel\n"); 881 return -1; 882 } 883 #endif /* CONFIG_KGDB_KDB */ 884 885 /* 886 * Call KGDB/KDB from NMI handler 887 * 888 * Note that if both KGDB and KDB are configured, then the action of 'kgdb' or 889 * 'kdb' has no affect on which is used. See the KGDB documentation for further 890 * information. 891 */ 892 static void uv_call_kgdb_kdb(int cpu, struct pt_regs *regs, int master) 893 { 894 if (master) { 895 int reason = uv_nmi_kdb_reason(); 896 int ret; 897 898 if (reason < 0) 899 return; 900 901 /* Call KGDB NMI handler as MASTER */ 902 ret = kgdb_nmicallin(cpu, X86_TRAP_NMI, regs, reason, 903 &uv_nmi_slave_continue); 904 if (ret) { 905 pr_alert("KGDB returned error, is kgdboc set?\n"); 906 atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT); 907 } 908 } else { 909 /* Wait for KGDB signal that it's ready for slaves to enter */ 910 int sig; 911 912 do { 913 cpu_relax(); 914 sig = atomic_read(&uv_nmi_slave_continue); 915 } while (!sig); 916 917 /* Call KGDB as slave */ 918 if (sig == SLAVE_CONTINUE) 919 kgdb_nmicallback(cpu, regs); 920 } 921 uv_nmi_sync_exit(master); 922 } 923 924 #else /* !CONFIG_KGDB */ 925 static inline void uv_call_kgdb_kdb(int cpu, struct pt_regs *regs, int master) 926 { 927 pr_err("UV: NMI error: KGDB is not enabled in this kernel\n"); 928 } 929 #endif /* !CONFIG_KGDB */ 930 931 /* 932 * UV NMI handler 933 */ 934 static int uv_handle_nmi(unsigned int reason, struct pt_regs *regs) 935 { 936 struct uv_hub_nmi_s *hub_nmi = uv_hub_nmi; 937 int cpu = smp_processor_id(); 938 int master = 0; 939 unsigned long flags; 940 941 local_irq_save(flags); 942 943 /* If not a UV System NMI, ignore */ 944 if (!this_cpu_read(uv_cpu_nmi.pinging) && !uv_check_nmi(hub_nmi)) { 945 local_irq_restore(flags); 946 return NMI_DONE; 947 } 948 949 /* Indicate we are the first CPU into the NMI handler */ 950 master = (atomic_read(&uv_nmi_cpu) == cpu); 951 952 /* If NMI action is "kdump", then attempt to do it */ 953 if (uv_nmi_action_is("kdump")) { 954 uv_nmi_kdump(cpu, master, regs); 955 956 /* Unexpected return, revert action to "dump" */ 957 if (master) 958 strscpy(uv_nmi_action, "dump", sizeof(uv_nmi_action)); 959 } 960 961 /* Pause as all CPU's enter the NMI handler */ 962 uv_nmi_wait(master); 963 964 /* Process actions other than "kdump": */ 965 if (uv_nmi_action_is("health")) { 966 uv_nmi_action_health(cpu, regs, master); 967 } else if (uv_nmi_action_is("ips") || uv_nmi_action_is("dump")) { 968 uv_nmi_dump_state(cpu, regs, master); 969 } else if (uv_nmi_action_is("kdb") || uv_nmi_action_is("kgdb")) { 970 uv_call_kgdb_kdb(cpu, regs, master); 971 } else { 972 if (master) 973 pr_alert("UV: unknown NMI action: %s\n", uv_nmi_action); 974 uv_nmi_sync_exit(master); 975 } 976 977 /* Clear per_cpu "in_nmi" flag */ 978 this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_OUT); 979 980 /* Clear MMR NMI flag on each hub */ 981 uv_clear_nmi(cpu); 982 983 /* Clear global flags */ 984 if (master) { 985 if (!cpumask_empty(uv_nmi_cpu_mask)) 986 uv_nmi_cleanup_mask(); 987 atomic_set(&uv_nmi_cpus_in_nmi, -1); 988 atomic_set(&uv_nmi_cpu, -1); 989 atomic_set(&uv_in_nmi, 0); 990 atomic_set(&uv_nmi_kexec_failed, 0); 991 atomic_set(&uv_nmi_slave_continue, SLAVE_CLEAR); 992 } 993 994 uv_nmi_touch_watchdogs(); 995 local_irq_restore(flags); 996 997 return NMI_HANDLED; 998 } 999 1000 /* 1001 * NMI handler for pulling in CPU's when perf events are grabbing our NMI 1002 */ 1003 static int uv_handle_nmi_ping(unsigned int reason, struct pt_regs *regs) 1004 { 1005 int ret; 1006 1007 this_cpu_inc(uv_cpu_nmi.queries); 1008 if (!this_cpu_read(uv_cpu_nmi.pinging)) { 1009 local64_inc(&uv_nmi_ping_misses); 1010 return NMI_DONE; 1011 } 1012 1013 this_cpu_inc(uv_cpu_nmi.pings); 1014 local64_inc(&uv_nmi_ping_count); 1015 ret = uv_handle_nmi(reason, regs); 1016 this_cpu_write(uv_cpu_nmi.pinging, 0); 1017 return ret; 1018 } 1019 1020 static void uv_register_nmi_notifier(void) 1021 { 1022 if (register_nmi_handler(NMI_UNKNOWN, uv_handle_nmi, 0, "uv")) 1023 pr_warn("UV: NMI handler failed to register\n"); 1024 1025 if (register_nmi_handler(NMI_LOCAL, uv_handle_nmi_ping, 0, "uvping")) 1026 pr_warn("UV: PING NMI handler failed to register\n"); 1027 } 1028 1029 void uv_nmi_init(void) 1030 { 1031 unsigned int value; 1032 1033 /* 1034 * Unmask NMI on all CPU's 1035 */ 1036 value = apic_read(APIC_LVT1) | APIC_DM_NMI; 1037 value &= ~APIC_LVT_MASKED; 1038 apic_write(APIC_LVT1, value); 1039 } 1040 1041 /* Setup HUB NMI info */ 1042 static void __init uv_nmi_setup_common(bool hubbed) 1043 { 1044 int size = sizeof(void *) * (1 << NODES_SHIFT); 1045 int cpu; 1046 1047 uv_hub_nmi_list = kzalloc(size, GFP_KERNEL); 1048 nmi_debug("UV: NMI hub list @ 0x%p (%d)\n", uv_hub_nmi_list, size); 1049 BUG_ON(!uv_hub_nmi_list); 1050 size = sizeof(struct uv_hub_nmi_s); 1051 for_each_present_cpu(cpu) { 1052 int nid = cpu_to_node(cpu); 1053 if (uv_hub_nmi_list[nid] == NULL) { 1054 uv_hub_nmi_list[nid] = kzalloc_node(size, 1055 GFP_KERNEL, nid); 1056 BUG_ON(!uv_hub_nmi_list[nid]); 1057 raw_spin_lock_init(&(uv_hub_nmi_list[nid]->nmi_lock)); 1058 atomic_set(&uv_hub_nmi_list[nid]->cpu_owner, -1); 1059 uv_hub_nmi_list[nid]->hub_present = hubbed; 1060 uv_hub_nmi_list[nid]->pch_owner = (nid == 0); 1061 } 1062 uv_hub_nmi_per(cpu) = uv_hub_nmi_list[nid]; 1063 } 1064 BUG_ON(!alloc_cpumask_var(&uv_nmi_cpu_mask, GFP_KERNEL)); 1065 } 1066 1067 /* Setup for UV Hub systems */ 1068 void __init uv_nmi_setup(void) 1069 { 1070 uv_nmi_setup_mmrs(); 1071 uv_nmi_setup_common(true); 1072 uv_register_nmi_notifier(); 1073 pr_info("UV: Hub NMI enabled\n"); 1074 } 1075 1076 /* Setup for UV Hubless systems */ 1077 void __init uv_nmi_setup_hubless(void) 1078 { 1079 uv_nmi_setup_common(false); 1080 pch_base = xlate_dev_mem_ptr(PCH_PCR_GPIO_1_BASE); 1081 nmi_debug("UV: PCH base:%p from 0x%lx, GPP_D_0\n", 1082 pch_base, PCH_PCR_GPIO_1_BASE); 1083 if (uv_pch_init_enable) 1084 uv_init_hubless_pch_d0(); 1085 uv_init_hubless_pch_io(GPI_NMI_ENA_GPP_D_0, 1086 STS_GPP_D_0_MASK, STS_GPP_D_0_MASK); 1087 uv_nmi_setup_hubless_intr(); 1088 /* Ensure NMI enabled in Processor Interface Reg: */ 1089 uv_reassert_nmi(); 1090 uv_register_nmi_notifier(); 1091 pr_info("UV: PCH NMI enabled\n"); 1092 } 1093