xref: /openbmc/linux/arch/x86/platform/uv/uv_nmi.c (revision 174cd4b1)
1 /*
2  * SGI NMI support routines
3  *
4  *  This program is free software; you can redistribute it and/or modify
5  *  it under the terms of the GNU General Public License as published by
6  *  the Free Software Foundation; either version 2 of the License, or
7  *  (at your option) any later version.
8  *
9  *  This program is distributed in the hope that it will be useful,
10  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  *  GNU General Public License for more details.
13  *
14  *  You should have received a copy of the GNU General Public License
15  *  along with this program; if not, write to the Free Software
16  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
17  *
18  *  Copyright (c) 2009-2013 Silicon Graphics, Inc.  All Rights Reserved.
19  *  Copyright (c) Mike Travis
20  */
21 
22 #include <linux/cpu.h>
23 #include <linux/delay.h>
24 #include <linux/kdb.h>
25 #include <linux/kexec.h>
26 #include <linux/kgdb.h>
27 #include <linux/moduleparam.h>
28 #include <linux/nmi.h>
29 #include <linux/sched.h>
30 #include <linux/slab.h>
31 #include <linux/clocksource.h>
32 
33 #include <asm/apic.h>
34 #include <asm/current.h>
35 #include <asm/kdebug.h>
36 #include <asm/local64.h>
37 #include <asm/nmi.h>
38 #include <asm/traps.h>
39 #include <asm/uv/uv.h>
40 #include <asm/uv/uv_hub.h>
41 #include <asm/uv/uv_mmrs.h>
42 
43 /*
44  * UV handler for NMI
45  *
46  * Handle system-wide NMI events generated by the global 'power nmi' command.
47  *
48  * Basic operation is to field the NMI interrupt on each CPU and wait
49  * until all CPU's have arrived into the nmi handler.  If some CPU's do not
50  * make it into the handler, try and force them in with the IPI(NMI) signal.
51  *
52  * We also have to lessen UV Hub MMR accesses as much as possible as this
53  * disrupts the UV Hub's primary mission of directing NumaLink traffic and
54  * can cause system problems to occur.
55  *
56  * To do this we register our primary NMI notifier on the NMI_UNKNOWN
57  * chain.  This reduces the number of false NMI calls when the perf
58  * tools are running which generate an enormous number of NMIs per
59  * second (~4M/s for 1024 CPU threads).  Our secondary NMI handler is
60  * very short as it only checks that if it has been "pinged" with the
61  * IPI(NMI) signal as mentioned above, and does not read the UV Hub's MMR.
62  *
63  */
64 
65 static struct uv_hub_nmi_s **uv_hub_nmi_list;
66 
67 DEFINE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi);
68 
69 /* UV hubless values */
70 #define NMI_CONTROL_PORT	0x70
71 #define NMI_DUMMY_PORT		0x71
72 #define PAD_OWN_GPP_D_0		0x2c
73 #define GPI_NMI_STS_GPP_D_0	0x164
74 #define GPI_NMI_ENA_GPP_D_0	0x174
75 #define STS_GPP_D_0_MASK	0x1
76 #define PAD_CFG_DW0_GPP_D_0	0x4c0
77 #define GPIROUTNMI		(1ul << 17)
78 #define PCH_PCR_GPIO_1_BASE	0xfdae0000ul
79 #define PCH_PCR_GPIO_ADDRESS(offset) (int *)((u64)(pch_base) | (u64)(offset))
80 
81 static u64 *pch_base;
82 static unsigned long nmi_mmr;
83 static unsigned long nmi_mmr_clear;
84 static unsigned long nmi_mmr_pending;
85 
86 static atomic_t	uv_in_nmi;
87 static atomic_t uv_nmi_cpu = ATOMIC_INIT(-1);
88 static atomic_t uv_nmi_cpus_in_nmi = ATOMIC_INIT(-1);
89 static atomic_t uv_nmi_slave_continue;
90 static cpumask_var_t uv_nmi_cpu_mask;
91 
92 /* Values for uv_nmi_slave_continue */
93 #define SLAVE_CLEAR	0
94 #define SLAVE_CONTINUE	1
95 #define SLAVE_EXIT	2
96 
97 /*
98  * Default is all stack dumps go to the console and buffer.
99  * Lower level to send to log buffer only.
100  */
101 static int uv_nmi_loglevel = CONSOLE_LOGLEVEL_DEFAULT;
102 module_param_named(dump_loglevel, uv_nmi_loglevel, int, 0644);
103 
104 /*
105  * The following values show statistics on how perf events are affecting
106  * this system.
107  */
108 static int param_get_local64(char *buffer, const struct kernel_param *kp)
109 {
110 	return sprintf(buffer, "%lu\n", local64_read((local64_t *)kp->arg));
111 }
112 
113 static int param_set_local64(const char *val, const struct kernel_param *kp)
114 {
115 	/* Clear on any write */
116 	local64_set((local64_t *)kp->arg, 0);
117 	return 0;
118 }
119 
120 static const struct kernel_param_ops param_ops_local64 = {
121 	.get = param_get_local64,
122 	.set = param_set_local64,
123 };
124 #define param_check_local64(name, p) __param_check(name, p, local64_t)
125 
126 static local64_t uv_nmi_count;
127 module_param_named(nmi_count, uv_nmi_count, local64, 0644);
128 
129 static local64_t uv_nmi_misses;
130 module_param_named(nmi_misses, uv_nmi_misses, local64, 0644);
131 
132 static local64_t uv_nmi_ping_count;
133 module_param_named(ping_count, uv_nmi_ping_count, local64, 0644);
134 
135 static local64_t uv_nmi_ping_misses;
136 module_param_named(ping_misses, uv_nmi_ping_misses, local64, 0644);
137 
138 /*
139  * Following values allow tuning for large systems under heavy loading
140  */
141 static int uv_nmi_initial_delay = 100;
142 module_param_named(initial_delay, uv_nmi_initial_delay, int, 0644);
143 
144 static int uv_nmi_slave_delay = 100;
145 module_param_named(slave_delay, uv_nmi_slave_delay, int, 0644);
146 
147 static int uv_nmi_loop_delay = 100;
148 module_param_named(loop_delay, uv_nmi_loop_delay, int, 0644);
149 
150 static int uv_nmi_trigger_delay = 10000;
151 module_param_named(trigger_delay, uv_nmi_trigger_delay, int, 0644);
152 
153 static int uv_nmi_wait_count = 100;
154 module_param_named(wait_count, uv_nmi_wait_count, int, 0644);
155 
156 static int uv_nmi_retry_count = 500;
157 module_param_named(retry_count, uv_nmi_retry_count, int, 0644);
158 
159 static bool uv_pch_intr_enable = true;
160 static bool uv_pch_intr_now_enabled;
161 module_param_named(pch_intr_enable, uv_pch_intr_enable, bool, 0644);
162 
163 static bool uv_pch_init_enable = true;
164 module_param_named(pch_init_enable, uv_pch_init_enable, bool, 0644);
165 
166 static int uv_nmi_debug;
167 module_param_named(debug, uv_nmi_debug, int, 0644);
168 
169 #define nmi_debug(fmt, ...)				\
170 	do {						\
171 		if (uv_nmi_debug)			\
172 			pr_info(fmt, ##__VA_ARGS__);	\
173 	} while (0)
174 
175 /* Valid NMI Actions */
176 #define	ACTION_LEN	16
177 static struct nmi_action {
178 	char	*action;
179 	char	*desc;
180 } valid_acts[] = {
181 	{	"kdump",	"do kernel crash dump"			},
182 	{	"dump",		"dump process stack for each cpu"	},
183 	{	"ips",		"dump Inst Ptr info for each cpu"	},
184 	{	"kdb",		"enter KDB (needs kgdboc= assignment)"	},
185 	{	"kgdb",		"enter KGDB (needs gdb target remote)"	},
186 	{	"health",	"check if CPUs respond to NMI"		},
187 };
188 typedef char action_t[ACTION_LEN];
189 static action_t uv_nmi_action = { "dump" };
190 
191 static int param_get_action(char *buffer, const struct kernel_param *kp)
192 {
193 	return sprintf(buffer, "%s\n", uv_nmi_action);
194 }
195 
196 static int param_set_action(const char *val, const struct kernel_param *kp)
197 {
198 	int i;
199 	int n = ARRAY_SIZE(valid_acts);
200 	char arg[ACTION_LEN], *p;
201 
202 	/* (remove possible '\n') */
203 	strncpy(arg, val, ACTION_LEN - 1);
204 	arg[ACTION_LEN - 1] = '\0';
205 	p = strchr(arg, '\n');
206 	if (p)
207 		*p = '\0';
208 
209 	for (i = 0; i < n; i++)
210 		if (!strcmp(arg, valid_acts[i].action))
211 			break;
212 
213 	if (i < n) {
214 		strcpy(uv_nmi_action, arg);
215 		pr_info("UV: New NMI action:%s\n", uv_nmi_action);
216 		return 0;
217 	}
218 
219 	pr_err("UV: Invalid NMI action:%s, valid actions are:\n", arg);
220 	for (i = 0; i < n; i++)
221 		pr_err("UV: %-8s - %s\n",
222 			valid_acts[i].action, valid_acts[i].desc);
223 	return -EINVAL;
224 }
225 
226 static const struct kernel_param_ops param_ops_action = {
227 	.get = param_get_action,
228 	.set = param_set_action,
229 };
230 #define param_check_action(name, p) __param_check(name, p, action_t)
231 
232 module_param_named(action, uv_nmi_action, action, 0644);
233 
234 static inline bool uv_nmi_action_is(const char *action)
235 {
236 	return (strncmp(uv_nmi_action, action, strlen(action)) == 0);
237 }
238 
239 /* Setup which NMI support is present in system */
240 static void uv_nmi_setup_mmrs(void)
241 {
242 	if (uv_read_local_mmr(UVH_NMI_MMRX_SUPPORTED)) {
243 		uv_write_local_mmr(UVH_NMI_MMRX_REQ,
244 					1UL << UVH_NMI_MMRX_REQ_SHIFT);
245 		nmi_mmr = UVH_NMI_MMRX;
246 		nmi_mmr_clear = UVH_NMI_MMRX_CLEAR;
247 		nmi_mmr_pending = 1UL << UVH_NMI_MMRX_SHIFT;
248 		pr_info("UV: SMI NMI support: %s\n", UVH_NMI_MMRX_TYPE);
249 	} else {
250 		nmi_mmr = UVH_NMI_MMR;
251 		nmi_mmr_clear = UVH_NMI_MMR_CLEAR;
252 		nmi_mmr_pending = 1UL << UVH_NMI_MMR_SHIFT;
253 		pr_info("UV: SMI NMI support: %s\n", UVH_NMI_MMR_TYPE);
254 	}
255 }
256 
257 /* Read NMI MMR and check if NMI flag was set by BMC. */
258 static inline int uv_nmi_test_mmr(struct uv_hub_nmi_s *hub_nmi)
259 {
260 	hub_nmi->nmi_value = uv_read_local_mmr(nmi_mmr);
261 	atomic_inc(&hub_nmi->read_mmr_count);
262 	return !!(hub_nmi->nmi_value & nmi_mmr_pending);
263 }
264 
265 static inline void uv_local_mmr_clear_nmi(void)
266 {
267 	uv_write_local_mmr(nmi_mmr_clear, nmi_mmr_pending);
268 }
269 
270 /*
271  * UV hubless NMI handler functions
272  */
273 static inline void uv_reassert_nmi(void)
274 {
275 	/* (from arch/x86/include/asm/mach_traps.h) */
276 	outb(0x8f, NMI_CONTROL_PORT);
277 	inb(NMI_DUMMY_PORT);		/* dummy read */
278 	outb(0x0f, NMI_CONTROL_PORT);
279 	inb(NMI_DUMMY_PORT);		/* dummy read */
280 }
281 
282 static void uv_init_hubless_pch_io(int offset, int mask, int data)
283 {
284 	int *addr = PCH_PCR_GPIO_ADDRESS(offset);
285 	int readd = readl(addr);
286 
287 	if (mask) {			/* OR in new data */
288 		int writed = (readd & ~mask) | data;
289 
290 		nmi_debug("UV:PCH: %p = %x & %x | %x (%x)\n",
291 			addr, readd, ~mask, data, writed);
292 		writel(writed, addr);
293 	} else if (readd & data) {	/* clear status bit */
294 		nmi_debug("UV:PCH: %p = %x\n", addr, data);
295 		writel(data, addr);
296 	}
297 
298 	(void)readl(addr);		/* flush write data */
299 }
300 
301 static void uv_nmi_setup_hubless_intr(void)
302 {
303 	uv_pch_intr_now_enabled = uv_pch_intr_enable;
304 
305 	uv_init_hubless_pch_io(
306 		PAD_CFG_DW0_GPP_D_0, GPIROUTNMI,
307 		uv_pch_intr_now_enabled ? GPIROUTNMI : 0);
308 
309 	nmi_debug("UV:NMI: GPP_D_0 interrupt %s\n",
310 		uv_pch_intr_now_enabled ? "enabled" : "disabled");
311 }
312 
313 static struct init_nmi {
314 	unsigned int	offset;
315 	unsigned int	mask;
316 	unsigned int	data;
317 } init_nmi[] = {
318 	{	/* HOSTSW_OWN_GPP_D_0 */
319 	.offset = 0x84,
320 	.mask = 0x1,
321 	.data = 0x0,	/* ACPI Mode */
322 	},
323 
324 /* Clear status: */
325 	{	/* GPI_INT_STS_GPP_D_0 */
326 	.offset = 0x104,
327 	.mask = 0x0,
328 	.data = 0x1,	/* Clear Status */
329 	},
330 	{	/* GPI_GPE_STS_GPP_D_0 */
331 	.offset = 0x124,
332 	.mask = 0x0,
333 	.data = 0x1,	/* Clear Status */
334 	},
335 	{	/* GPI_SMI_STS_GPP_D_0 */
336 	.offset = 0x144,
337 	.mask = 0x0,
338 	.data = 0x1,	/* Clear Status */
339 	},
340 	{	/* GPI_NMI_STS_GPP_D_0 */
341 	.offset = 0x164,
342 	.mask = 0x0,
343 	.data = 0x1,	/* Clear Status */
344 	},
345 
346 /* Disable interrupts: */
347 	{	/* GPI_INT_EN_GPP_D_0 */
348 	.offset = 0x114,
349 	.mask = 0x1,
350 	.data = 0x0,	/* Disable interrupt generation */
351 	},
352 	{	/* GPI_GPE_EN_GPP_D_0 */
353 	.offset = 0x134,
354 	.mask = 0x1,
355 	.data = 0x0,	/* Disable interrupt generation */
356 	},
357 	{	/* GPI_SMI_EN_GPP_D_0 */
358 	.offset = 0x154,
359 	.mask = 0x1,
360 	.data = 0x0,	/* Disable interrupt generation */
361 	},
362 	{	/* GPI_NMI_EN_GPP_D_0 */
363 	.offset = 0x174,
364 	.mask = 0x1,
365 	.data = 0x0,	/* Disable interrupt generation */
366 	},
367 
368 /* Setup GPP_D_0 Pad Config: */
369 	{	/* PAD_CFG_DW0_GPP_D_0 */
370 	.offset = 0x4c0,
371 	.mask = 0xffffffff,
372 	.data = 0x82020100,
373 /*
374  *  31:30 Pad Reset Config (PADRSTCFG): = 2h  # PLTRST# (default)
375  *
376  *  29    RX Pad State Select (RXPADSTSEL): = 0 # Raw RX pad state directly
377  *                                                from RX buffer (default)
378  *
379  *  28    RX Raw Override to '1' (RXRAW1): = 0 # No Override
380  *
381  *  26:25 RX Level/Edge Configuration (RXEVCFG):
382  *      = 0h # Level
383  *      = 1h # Edge
384  *
385  *  23    RX Invert (RXINV): = 0 # No Inversion (signal active high)
386  *
387  *  20    GPIO Input Route IOxAPIC (GPIROUTIOXAPIC):
388  * = 0 # Routing does not cause peripheral IRQ...
389  *     # (we want an NMI not an IRQ)
390  *
391  *  19    GPIO Input Route SCI (GPIROUTSCI): = 0 # Routing does not cause SCI.
392  *  18    GPIO Input Route SMI (GPIROUTSMI): = 0 # Routing does not cause SMI.
393  *  17    GPIO Input Route NMI (GPIROUTNMI): = 1 # Routing can cause NMI.
394  *
395  *  11:10 Pad Mode (PMODE1/0): = 0h = GPIO control the Pad.
396  *   9    GPIO RX Disable (GPIORXDIS):
397  * = 0 # Enable the input buffer (active low enable)
398  *
399  *   8    GPIO TX Disable (GPIOTXDIS):
400  * = 1 # Disable the output buffer; i.e. Hi-Z
401  *
402  *   1 GPIO RX State (GPIORXSTATE): This is the current internal RX pad state..
403  *   0 GPIO TX State (GPIOTXSTATE):
404  * = 0 # (Leave at default)
405  */
406 	},
407 
408 /* Pad Config DW1 */
409 	{	/* PAD_CFG_DW1_GPP_D_0 */
410 	.offset = 0x4c4,
411 	.mask = 0x3c00,
412 	.data = 0,	/* Termination = none (default) */
413 	},
414 };
415 
416 static void uv_init_hubless_pch_d0(void)
417 {
418 	int i, read;
419 
420 	read = *PCH_PCR_GPIO_ADDRESS(PAD_OWN_GPP_D_0);
421 	if (read != 0) {
422 		pr_info("UV: Hubless NMI already configured\n");
423 		return;
424 	}
425 
426 	nmi_debug("UV: Initializing UV Hubless NMI on PCH\n");
427 	for (i = 0; i < ARRAY_SIZE(init_nmi); i++) {
428 		uv_init_hubless_pch_io(init_nmi[i].offset,
429 					init_nmi[i].mask,
430 					init_nmi[i].data);
431 	}
432 }
433 
434 static int uv_nmi_test_hubless(struct uv_hub_nmi_s *hub_nmi)
435 {
436 	int *pstat = PCH_PCR_GPIO_ADDRESS(GPI_NMI_STS_GPP_D_0);
437 	int status = *pstat;
438 
439 	hub_nmi->nmi_value = status;
440 	atomic_inc(&hub_nmi->read_mmr_count);
441 
442 	if (!(status & STS_GPP_D_0_MASK))	/* Not a UV external NMI */
443 		return 0;
444 
445 	*pstat = STS_GPP_D_0_MASK;	/* Is a UV NMI: clear GPP_D_0 status */
446 	(void)*pstat;			/* Flush write */
447 
448 	return 1;
449 }
450 
451 static int uv_test_nmi(struct uv_hub_nmi_s *hub_nmi)
452 {
453 	if (hub_nmi->hub_present)
454 		return uv_nmi_test_mmr(hub_nmi);
455 
456 	if (hub_nmi->pch_owner)		/* Only PCH owner can check status */
457 		return uv_nmi_test_hubless(hub_nmi);
458 
459 	return -1;
460 }
461 
462 /*
463  * If first CPU in on this hub, set hub_nmi "in_nmi" and "owner" values and
464  * return true.  If first CPU in on the system, set global "in_nmi" flag.
465  */
466 static int uv_set_in_nmi(int cpu, struct uv_hub_nmi_s *hub_nmi)
467 {
468 	int first = atomic_add_unless(&hub_nmi->in_nmi, 1, 1);
469 
470 	if (first) {
471 		atomic_set(&hub_nmi->cpu_owner, cpu);
472 		if (atomic_add_unless(&uv_in_nmi, 1, 1))
473 			atomic_set(&uv_nmi_cpu, cpu);
474 
475 		atomic_inc(&hub_nmi->nmi_count);
476 	}
477 	return first;
478 }
479 
480 /* Check if this is a system NMI event */
481 static int uv_check_nmi(struct uv_hub_nmi_s *hub_nmi)
482 {
483 	int cpu = smp_processor_id();
484 	int nmi = 0;
485 	int nmi_detected = 0;
486 
487 	local64_inc(&uv_nmi_count);
488 	this_cpu_inc(uv_cpu_nmi.queries);
489 
490 	do {
491 		nmi = atomic_read(&hub_nmi->in_nmi);
492 		if (nmi)
493 			break;
494 
495 		if (raw_spin_trylock(&hub_nmi->nmi_lock)) {
496 			nmi_detected = uv_test_nmi(hub_nmi);
497 
498 			/* Check flag for UV external NMI */
499 			if (nmi_detected > 0) {
500 				uv_set_in_nmi(cpu, hub_nmi);
501 				nmi = 1;
502 				break;
503 			}
504 
505 			/* A non-PCH node in a hubless system waits for NMI */
506 			else if (nmi_detected < 0)
507 				goto slave_wait;
508 
509 			/* MMR/PCH NMI flag is clear */
510 			raw_spin_unlock(&hub_nmi->nmi_lock);
511 
512 		} else {
513 
514 			/* Wait a moment for the HUB NMI locker to set flag */
515 slave_wait:		cpu_relax();
516 			udelay(uv_nmi_slave_delay);
517 
518 			/* Re-check hub in_nmi flag */
519 			nmi = atomic_read(&hub_nmi->in_nmi);
520 			if (nmi)
521 				break;
522 		}
523 
524 		/*
525 		 * Check if this BMC missed setting the MMR NMI flag (or)
526 		 * UV hubless system where only PCH owner can check flag
527 		 */
528 		if (!nmi) {
529 			nmi = atomic_read(&uv_in_nmi);
530 			if (nmi)
531 				uv_set_in_nmi(cpu, hub_nmi);
532 		}
533 
534 		/* If we're holding the hub lock, release it now */
535 		if (nmi_detected < 0)
536 			raw_spin_unlock(&hub_nmi->nmi_lock);
537 
538 	} while (0);
539 
540 	if (!nmi)
541 		local64_inc(&uv_nmi_misses);
542 
543 	return nmi;
544 }
545 
546 /* Need to reset the NMI MMR register, but only once per hub. */
547 static inline void uv_clear_nmi(int cpu)
548 {
549 	struct uv_hub_nmi_s *hub_nmi = uv_hub_nmi;
550 
551 	if (cpu == atomic_read(&hub_nmi->cpu_owner)) {
552 		atomic_set(&hub_nmi->cpu_owner, -1);
553 		atomic_set(&hub_nmi->in_nmi, 0);
554 		if (hub_nmi->hub_present)
555 			uv_local_mmr_clear_nmi();
556 		else
557 			uv_reassert_nmi();
558 		raw_spin_unlock(&hub_nmi->nmi_lock);
559 	}
560 }
561 
562 /* Ping non-responding CPU's attemping to force them into the NMI handler */
563 static void uv_nmi_nr_cpus_ping(void)
564 {
565 	int cpu;
566 
567 	for_each_cpu(cpu, uv_nmi_cpu_mask)
568 		uv_cpu_nmi_per(cpu).pinging = 1;
569 
570 	apic->send_IPI_mask(uv_nmi_cpu_mask, APIC_DM_NMI);
571 }
572 
573 /* Clean up flags for CPU's that ignored both NMI and ping */
574 static void uv_nmi_cleanup_mask(void)
575 {
576 	int cpu;
577 
578 	for_each_cpu(cpu, uv_nmi_cpu_mask) {
579 		uv_cpu_nmi_per(cpu).pinging =  0;
580 		uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_OUT;
581 		cpumask_clear_cpu(cpu, uv_nmi_cpu_mask);
582 	}
583 }
584 
585 /* Loop waiting as CPU's enter NMI handler */
586 static int uv_nmi_wait_cpus(int first)
587 {
588 	int i, j, k, n = num_online_cpus();
589 	int last_k = 0, waiting = 0;
590 	int cpu = smp_processor_id();
591 
592 	if (first) {
593 		cpumask_copy(uv_nmi_cpu_mask, cpu_online_mask);
594 		k = 0;
595 	} else {
596 		k = n - cpumask_weight(uv_nmi_cpu_mask);
597 	}
598 
599 	/* PCH NMI causes only one CPU to respond */
600 	if (first && uv_pch_intr_now_enabled) {
601 		cpumask_clear_cpu(cpu, uv_nmi_cpu_mask);
602 		return n - k - 1;
603 	}
604 
605 	udelay(uv_nmi_initial_delay);
606 	for (i = 0; i < uv_nmi_retry_count; i++) {
607 		int loop_delay = uv_nmi_loop_delay;
608 
609 		for_each_cpu(j, uv_nmi_cpu_mask) {
610 			if (uv_cpu_nmi_per(j).state) {
611 				cpumask_clear_cpu(j, uv_nmi_cpu_mask);
612 				if (++k >= n)
613 					break;
614 			}
615 		}
616 		if (k >= n) {		/* all in? */
617 			k = n;
618 			break;
619 		}
620 		if (last_k != k) {	/* abort if no new CPU's coming in */
621 			last_k = k;
622 			waiting = 0;
623 		} else if (++waiting > uv_nmi_wait_count)
624 			break;
625 
626 		/* Extend delay if waiting only for CPU 0: */
627 		if (waiting && (n - k) == 1 &&
628 		    cpumask_test_cpu(0, uv_nmi_cpu_mask))
629 			loop_delay *= 100;
630 
631 		udelay(loop_delay);
632 	}
633 	atomic_set(&uv_nmi_cpus_in_nmi, k);
634 	return n - k;
635 }
636 
637 /* Wait until all slave CPU's have entered UV NMI handler */
638 static void uv_nmi_wait(int master)
639 {
640 	/* Indicate this CPU is in: */
641 	this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_IN);
642 
643 	/* If not the first CPU in (the master), then we are a slave CPU */
644 	if (!master)
645 		return;
646 
647 	do {
648 		/* Wait for all other CPU's to gather here */
649 		if (!uv_nmi_wait_cpus(1))
650 			break;
651 
652 		/* If not all made it in, send IPI NMI to them */
653 		pr_alert("UV: Sending NMI IPI to %d CPUs: %*pbl\n",
654 			 cpumask_weight(uv_nmi_cpu_mask),
655 			 cpumask_pr_args(uv_nmi_cpu_mask));
656 
657 		uv_nmi_nr_cpus_ping();
658 
659 		/* If all CPU's are in, then done */
660 		if (!uv_nmi_wait_cpus(0))
661 			break;
662 
663 		pr_alert("UV: %d CPUs not in NMI loop: %*pbl\n",
664 			 cpumask_weight(uv_nmi_cpu_mask),
665 			 cpumask_pr_args(uv_nmi_cpu_mask));
666 	} while (0);
667 
668 	pr_alert("UV: %d of %d CPUs in NMI\n",
669 		atomic_read(&uv_nmi_cpus_in_nmi), num_online_cpus());
670 }
671 
672 /* Dump Instruction Pointer header */
673 static void uv_nmi_dump_cpu_ip_hdr(void)
674 {
675 	pr_info("\nUV: %4s %6s %-32s %s   (Note: PID 0 not listed)\n",
676 		"CPU", "PID", "COMMAND", "IP");
677 }
678 
679 /* Dump Instruction Pointer info */
680 static void uv_nmi_dump_cpu_ip(int cpu, struct pt_regs *regs)
681 {
682 	pr_info("UV: %4d %6d %-32.32s %pS",
683 		cpu, current->pid, current->comm, (void *)regs->ip);
684 }
685 
686 /*
687  * Dump this CPU's state.  If action was set to "kdump" and the crash_kexec
688  * failed, then we provide "dump" as an alternate action.  Action "dump" now
689  * also includes the show "ips" (instruction pointers) action whereas the
690  * action "ips" only displays instruction pointers for the non-idle CPU's.
691  * This is an abbreviated form of the "ps" command.
692  */
693 static void uv_nmi_dump_state_cpu(int cpu, struct pt_regs *regs)
694 {
695 	const char *dots = " ................................. ";
696 
697 	if (cpu == 0)
698 		uv_nmi_dump_cpu_ip_hdr();
699 
700 	if (current->pid != 0 || !uv_nmi_action_is("ips"))
701 		uv_nmi_dump_cpu_ip(cpu, regs);
702 
703 	if (uv_nmi_action_is("dump")) {
704 		pr_info("UV:%sNMI process trace for CPU %d\n", dots, cpu);
705 		show_regs(regs);
706 	}
707 
708 	this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_DUMP_DONE);
709 }
710 
711 /* Trigger a slave CPU to dump it's state */
712 static void uv_nmi_trigger_dump(int cpu)
713 {
714 	int retry = uv_nmi_trigger_delay;
715 
716 	if (uv_cpu_nmi_per(cpu).state != UV_NMI_STATE_IN)
717 		return;
718 
719 	uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_DUMP;
720 	do {
721 		cpu_relax();
722 		udelay(10);
723 		if (uv_cpu_nmi_per(cpu).state
724 				!= UV_NMI_STATE_DUMP)
725 			return;
726 	} while (--retry > 0);
727 
728 	pr_crit("UV: CPU %d stuck in process dump function\n", cpu);
729 	uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_DUMP_DONE;
730 }
731 
732 /* Wait until all CPU's ready to exit */
733 static void uv_nmi_sync_exit(int master)
734 {
735 	atomic_dec(&uv_nmi_cpus_in_nmi);
736 	if (master) {
737 		while (atomic_read(&uv_nmi_cpus_in_nmi) > 0)
738 			cpu_relax();
739 		atomic_set(&uv_nmi_slave_continue, SLAVE_CLEAR);
740 	} else {
741 		while (atomic_read(&uv_nmi_slave_continue))
742 			cpu_relax();
743 	}
744 }
745 
746 /* Current "health" check is to check which CPU's are responsive */
747 static void uv_nmi_action_health(int cpu, struct pt_regs *regs, int master)
748 {
749 	if (master) {
750 		int in = atomic_read(&uv_nmi_cpus_in_nmi);
751 		int out = num_online_cpus() - in;
752 
753 		pr_alert("UV: NMI CPU health check (non-responding:%d)\n", out);
754 		atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT);
755 	} else {
756 		while (!atomic_read(&uv_nmi_slave_continue))
757 			cpu_relax();
758 	}
759 	uv_nmi_sync_exit(master);
760 }
761 
762 /* Walk through CPU list and dump state of each */
763 static void uv_nmi_dump_state(int cpu, struct pt_regs *regs, int master)
764 {
765 	if (master) {
766 		int tcpu;
767 		int ignored = 0;
768 		int saved_console_loglevel = console_loglevel;
769 
770 		pr_alert("UV: tracing %s for %d CPUs from CPU %d\n",
771 			uv_nmi_action_is("ips") ? "IPs" : "processes",
772 			atomic_read(&uv_nmi_cpus_in_nmi), cpu);
773 
774 		console_loglevel = uv_nmi_loglevel;
775 		atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT);
776 		for_each_online_cpu(tcpu) {
777 			if (cpumask_test_cpu(tcpu, uv_nmi_cpu_mask))
778 				ignored++;
779 			else if (tcpu == cpu)
780 				uv_nmi_dump_state_cpu(tcpu, regs);
781 			else
782 				uv_nmi_trigger_dump(tcpu);
783 		}
784 		if (ignored)
785 			pr_alert("UV: %d CPUs ignored NMI\n", ignored);
786 
787 		console_loglevel = saved_console_loglevel;
788 		pr_alert("UV: process trace complete\n");
789 	} else {
790 		while (!atomic_read(&uv_nmi_slave_continue))
791 			cpu_relax();
792 		while (this_cpu_read(uv_cpu_nmi.state) != UV_NMI_STATE_DUMP)
793 			cpu_relax();
794 		uv_nmi_dump_state_cpu(cpu, regs);
795 	}
796 	uv_nmi_sync_exit(master);
797 }
798 
799 static void uv_nmi_touch_watchdogs(void)
800 {
801 	touch_softlockup_watchdog_sync();
802 	clocksource_touch_watchdog();
803 	rcu_cpu_stall_reset();
804 	touch_nmi_watchdog();
805 }
806 
807 static atomic_t uv_nmi_kexec_failed;
808 
809 #if defined(CONFIG_KEXEC_CORE)
810 static void uv_nmi_kdump(int cpu, int master, struct pt_regs *regs)
811 {
812 	/* Call crash to dump system state */
813 	if (master) {
814 		pr_emerg("UV: NMI executing crash_kexec on CPU%d\n", cpu);
815 		crash_kexec(regs);
816 
817 		pr_emerg("UV: crash_kexec unexpectedly returned, ");
818 		atomic_set(&uv_nmi_kexec_failed, 1);
819 		if (!kexec_crash_image) {
820 			pr_cont("crash kernel not loaded\n");
821 			return;
822 		}
823 		pr_cont("kexec busy, stalling cpus while waiting\n");
824 	}
825 
826 	/* If crash exec fails the slaves should return, otherwise stall */
827 	while (atomic_read(&uv_nmi_kexec_failed) == 0)
828 		mdelay(10);
829 }
830 
831 #else /* !CONFIG_KEXEC_CORE */
832 static inline void uv_nmi_kdump(int cpu, int master, struct pt_regs *regs)
833 {
834 	if (master)
835 		pr_err("UV: NMI kdump: KEXEC not supported in this kernel\n");
836 	atomic_set(&uv_nmi_kexec_failed, 1);
837 }
838 #endif /* !CONFIG_KEXEC_CORE */
839 
840 #ifdef CONFIG_KGDB
841 #ifdef CONFIG_KGDB_KDB
842 static inline int uv_nmi_kdb_reason(void)
843 {
844 	return KDB_REASON_SYSTEM_NMI;
845 }
846 #else /* !CONFIG_KGDB_KDB */
847 static inline int uv_nmi_kdb_reason(void)
848 {
849 	/* Ensure user is expecting to attach gdb remote */
850 	if (uv_nmi_action_is("kgdb"))
851 		return 0;
852 
853 	pr_err("UV: NMI error: KDB is not enabled in this kernel\n");
854 	return -1;
855 }
856 #endif /* CONFIG_KGDB_KDB */
857 
858 /*
859  * Call KGDB/KDB from NMI handler
860  *
861  * Note that if both KGDB and KDB are configured, then the action of 'kgdb' or
862  * 'kdb' has no affect on which is used.  See the KGDB documention for further
863  * information.
864  */
865 static void uv_call_kgdb_kdb(int cpu, struct pt_regs *regs, int master)
866 {
867 	if (master) {
868 		int reason = uv_nmi_kdb_reason();
869 		int ret;
870 
871 		if (reason < 0)
872 			return;
873 
874 		/* Call KGDB NMI handler as MASTER */
875 		ret = kgdb_nmicallin(cpu, X86_TRAP_NMI, regs, reason,
876 				&uv_nmi_slave_continue);
877 		if (ret) {
878 			pr_alert("KGDB returned error, is kgdboc set?\n");
879 			atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT);
880 		}
881 	} else {
882 		/* Wait for KGDB signal that it's ready for slaves to enter */
883 		int sig;
884 
885 		do {
886 			cpu_relax();
887 			sig = atomic_read(&uv_nmi_slave_continue);
888 		} while (!sig);
889 
890 		/* Call KGDB as slave */
891 		if (sig == SLAVE_CONTINUE)
892 			kgdb_nmicallback(cpu, regs);
893 	}
894 	uv_nmi_sync_exit(master);
895 }
896 
897 #else /* !CONFIG_KGDB */
898 static inline void uv_call_kgdb_kdb(int cpu, struct pt_regs *regs, int master)
899 {
900 	pr_err("UV: NMI error: KGDB is not enabled in this kernel\n");
901 }
902 #endif /* !CONFIG_KGDB */
903 
904 /*
905  * UV NMI handler
906  */
907 int uv_handle_nmi(unsigned int reason, struct pt_regs *regs)
908 {
909 	struct uv_hub_nmi_s *hub_nmi = uv_hub_nmi;
910 	int cpu = smp_processor_id();
911 	int master = 0;
912 	unsigned long flags;
913 
914 	local_irq_save(flags);
915 
916 	/* If not a UV System NMI, ignore */
917 	if (!this_cpu_read(uv_cpu_nmi.pinging) && !uv_check_nmi(hub_nmi)) {
918 		local_irq_restore(flags);
919 		return NMI_DONE;
920 	}
921 
922 	/* Indicate we are the first CPU into the NMI handler */
923 	master = (atomic_read(&uv_nmi_cpu) == cpu);
924 
925 	/* If NMI action is "kdump", then attempt to do it */
926 	if (uv_nmi_action_is("kdump")) {
927 		uv_nmi_kdump(cpu, master, regs);
928 
929 		/* Unexpected return, revert action to "dump" */
930 		if (master)
931 			strncpy(uv_nmi_action, "dump", strlen(uv_nmi_action));
932 	}
933 
934 	/* Pause as all CPU's enter the NMI handler */
935 	uv_nmi_wait(master);
936 
937 	/* Process actions other than "kdump": */
938 	if (uv_nmi_action_is("health")) {
939 		uv_nmi_action_health(cpu, regs, master);
940 	} else if (uv_nmi_action_is("ips") || uv_nmi_action_is("dump")) {
941 		uv_nmi_dump_state(cpu, regs, master);
942 	} else if (uv_nmi_action_is("kdb") || uv_nmi_action_is("kgdb")) {
943 		uv_call_kgdb_kdb(cpu, regs, master);
944 	} else {
945 		if (master)
946 			pr_alert("UV: unknown NMI action: %s\n", uv_nmi_action);
947 		uv_nmi_sync_exit(master);
948 	}
949 
950 	/* Clear per_cpu "in_nmi" flag */
951 	this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_OUT);
952 
953 	/* Clear MMR NMI flag on each hub */
954 	uv_clear_nmi(cpu);
955 
956 	/* Clear global flags */
957 	if (master) {
958 		if (cpumask_weight(uv_nmi_cpu_mask))
959 			uv_nmi_cleanup_mask();
960 		atomic_set(&uv_nmi_cpus_in_nmi, -1);
961 		atomic_set(&uv_nmi_cpu, -1);
962 		atomic_set(&uv_in_nmi, 0);
963 		atomic_set(&uv_nmi_kexec_failed, 0);
964 		atomic_set(&uv_nmi_slave_continue, SLAVE_CLEAR);
965 	}
966 
967 	uv_nmi_touch_watchdogs();
968 	local_irq_restore(flags);
969 
970 	return NMI_HANDLED;
971 }
972 
973 /*
974  * NMI handler for pulling in CPU's when perf events are grabbing our NMI
975  */
976 static int uv_handle_nmi_ping(unsigned int reason, struct pt_regs *regs)
977 {
978 	int ret;
979 
980 	this_cpu_inc(uv_cpu_nmi.queries);
981 	if (!this_cpu_read(uv_cpu_nmi.pinging)) {
982 		local64_inc(&uv_nmi_ping_misses);
983 		return NMI_DONE;
984 	}
985 
986 	this_cpu_inc(uv_cpu_nmi.pings);
987 	local64_inc(&uv_nmi_ping_count);
988 	ret = uv_handle_nmi(reason, regs);
989 	this_cpu_write(uv_cpu_nmi.pinging, 0);
990 	return ret;
991 }
992 
993 static void uv_register_nmi_notifier(void)
994 {
995 	if (register_nmi_handler(NMI_UNKNOWN, uv_handle_nmi, 0, "uv"))
996 		pr_warn("UV: NMI handler failed to register\n");
997 
998 	if (register_nmi_handler(NMI_LOCAL, uv_handle_nmi_ping, 0, "uvping"))
999 		pr_warn("UV: PING NMI handler failed to register\n");
1000 }
1001 
1002 void uv_nmi_init(void)
1003 {
1004 	unsigned int value;
1005 
1006 	/*
1007 	 * Unmask NMI on all CPU's
1008 	 */
1009 	value = apic_read(APIC_LVT1) | APIC_DM_NMI;
1010 	value &= ~APIC_LVT_MASKED;
1011 	apic_write(APIC_LVT1, value);
1012 }
1013 
1014 /* Setup HUB NMI info */
1015 void __init uv_nmi_setup_common(bool hubbed)
1016 {
1017 	int size = sizeof(void *) * (1 << NODES_SHIFT);
1018 	int cpu;
1019 
1020 	uv_hub_nmi_list = kzalloc(size, GFP_KERNEL);
1021 	nmi_debug("UV: NMI hub list @ 0x%p (%d)\n", uv_hub_nmi_list, size);
1022 	BUG_ON(!uv_hub_nmi_list);
1023 	size = sizeof(struct uv_hub_nmi_s);
1024 	for_each_present_cpu(cpu) {
1025 		int nid = cpu_to_node(cpu);
1026 		if (uv_hub_nmi_list[nid] == NULL) {
1027 			uv_hub_nmi_list[nid] = kzalloc_node(size,
1028 							    GFP_KERNEL, nid);
1029 			BUG_ON(!uv_hub_nmi_list[nid]);
1030 			raw_spin_lock_init(&(uv_hub_nmi_list[nid]->nmi_lock));
1031 			atomic_set(&uv_hub_nmi_list[nid]->cpu_owner, -1);
1032 			uv_hub_nmi_list[nid]->hub_present = hubbed;
1033 			uv_hub_nmi_list[nid]->pch_owner = (nid == 0);
1034 		}
1035 		uv_hub_nmi_per(cpu) = uv_hub_nmi_list[nid];
1036 	}
1037 	BUG_ON(!alloc_cpumask_var(&uv_nmi_cpu_mask, GFP_KERNEL));
1038 }
1039 
1040 /* Setup for UV Hub systems */
1041 void __init uv_nmi_setup(void)
1042 {
1043 	uv_nmi_setup_mmrs();
1044 	uv_nmi_setup_common(true);
1045 	uv_register_nmi_notifier();
1046 	pr_info("UV: Hub NMI enabled\n");
1047 }
1048 
1049 /* Setup for UV Hubless systems */
1050 void __init uv_nmi_setup_hubless(void)
1051 {
1052 	uv_nmi_setup_common(false);
1053 	pch_base = xlate_dev_mem_ptr(PCH_PCR_GPIO_1_BASE);
1054 	nmi_debug("UV: PCH base:%p from 0x%lx, GPP_D_0\n",
1055 		pch_base, PCH_PCR_GPIO_1_BASE);
1056 	if (uv_pch_init_enable)
1057 		uv_init_hubless_pch_d0();
1058 	uv_init_hubless_pch_io(GPI_NMI_ENA_GPP_D_0,
1059 				STS_GPP_D_0_MASK, STS_GPP_D_0_MASK);
1060 	uv_nmi_setup_hubless_intr();
1061 	/* Ensure NMI enabled in Processor Interface Reg: */
1062 	uv_reassert_nmi();
1063 	uv_register_nmi_notifier();
1064 	pr_info("UV: Hubless NMI enabled\n");
1065 }
1066