xref: /openbmc/linux/arch/x86/platform/intel-quark/imr.c (revision e65e175b07bef5974045cc42238de99057669ca7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * imr.c -- Intel Isolated Memory Region driver
4  *
5  * Copyright(c) 2013 Intel Corporation.
6  * Copyright(c) 2015 Bryan O'Donoghue <pure.logic@nexus-software.ie>
7  *
8  * IMR registers define an isolated region of memory that can
9  * be masked to prohibit certain system agents from accessing memory.
10  * When a device behind a masked port performs an access - snooped or
11  * not, an IMR may optionally prevent that transaction from changing
12  * the state of memory or from getting correct data in response to the
13  * operation.
14  *
15  * Write data will be dropped and reads will return 0xFFFFFFFF, the
16  * system will reset and system BIOS will print out an error message to
17  * inform the user that an IMR has been violated.
18  *
19  * This code is based on the Linux MTRR code and reference code from
20  * Intel's Quark BSP EFI, Linux and grub code.
21  *
22  * See quark-x1000-datasheet.pdf for register definitions.
23  * http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/quark-x1000-datasheet.pdf
24  */
25 
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27 
28 #include <asm-generic/sections.h>
29 #include <asm/cpu_device_id.h>
30 #include <asm/imr.h>
31 #include <asm/iosf_mbi.h>
32 #include <asm/io.h>
33 
34 #include <linux/debugfs.h>
35 #include <linux/init.h>
36 #include <linux/mm.h>
37 #include <linux/types.h>
38 
39 struct imr_device {
40 	bool		init;
41 	struct mutex	lock;
42 	int		max_imr;
43 	int		reg_base;
44 };
45 
46 static struct imr_device imr_dev;
47 
48 /*
49  * IMR read/write mask control registers.
50  * See quark-x1000-datasheet.pdf sections 12.7.4.5 and 12.7.4.6 for
51  * bit definitions.
52  *
53  * addr_hi
54  * 31		Lock bit
55  * 30:24	Reserved
56  * 23:2		1 KiB aligned lo address
57  * 1:0		Reserved
58  *
59  * addr_hi
60  * 31:24	Reserved
61  * 23:2		1 KiB aligned hi address
62  * 1:0		Reserved
63  */
64 #define IMR_LOCK	BIT(31)
65 
66 struct imr_regs {
67 	u32 addr_lo;
68 	u32 addr_hi;
69 	u32 rmask;
70 	u32 wmask;
71 };
72 
73 #define IMR_NUM_REGS	(sizeof(struct imr_regs)/sizeof(u32))
74 #define IMR_SHIFT	8
75 #define imr_to_phys(x)	((x) << IMR_SHIFT)
76 #define phys_to_imr(x)	((x) >> IMR_SHIFT)
77 
78 /**
79  * imr_is_enabled - true if an IMR is enabled false otherwise.
80  *
81  * Determines if an IMR is enabled based on address range and read/write
82  * mask. An IMR set with an address range set to zero and a read/write
83  * access mask set to all is considered to be disabled. An IMR in any
84  * other state - for example set to zero but without read/write access
85  * all is considered to be enabled. This definition of disabled is how
86  * firmware switches off an IMR and is maintained in kernel for
87  * consistency.
88  *
89  * @imr:	pointer to IMR descriptor.
90  * @return:	true if IMR enabled false if disabled.
91  */
92 static inline int imr_is_enabled(struct imr_regs *imr)
93 {
94 	return !(imr->rmask == IMR_READ_ACCESS_ALL &&
95 		 imr->wmask == IMR_WRITE_ACCESS_ALL &&
96 		 imr_to_phys(imr->addr_lo) == 0 &&
97 		 imr_to_phys(imr->addr_hi) == 0);
98 }
99 
100 /**
101  * imr_read - read an IMR at a given index.
102  *
103  * Requires caller to hold imr mutex.
104  *
105  * @idev:	pointer to imr_device structure.
106  * @imr_id:	IMR entry to read.
107  * @imr:	IMR structure representing address and access masks.
108  * @return:	0 on success or error code passed from mbi_iosf on failure.
109  */
110 static int imr_read(struct imr_device *idev, u32 imr_id, struct imr_regs *imr)
111 {
112 	u32 reg = imr_id * IMR_NUM_REGS + idev->reg_base;
113 	int ret;
114 
115 	ret = iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->addr_lo);
116 	if (ret)
117 		return ret;
118 
119 	ret = iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->addr_hi);
120 	if (ret)
121 		return ret;
122 
123 	ret = iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->rmask);
124 	if (ret)
125 		return ret;
126 
127 	return iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->wmask);
128 }
129 
130 /**
131  * imr_write - write an IMR at a given index.
132  *
133  * Requires caller to hold imr mutex.
134  * Note lock bits need to be written independently of address bits.
135  *
136  * @idev:	pointer to imr_device structure.
137  * @imr_id:	IMR entry to write.
138  * @imr:	IMR structure representing address and access masks.
139  * @return:	0 on success or error code passed from mbi_iosf on failure.
140  */
141 static int imr_write(struct imr_device *idev, u32 imr_id, struct imr_regs *imr)
142 {
143 	unsigned long flags;
144 	u32 reg = imr_id * IMR_NUM_REGS + idev->reg_base;
145 	int ret;
146 
147 	local_irq_save(flags);
148 
149 	ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->addr_lo);
150 	if (ret)
151 		goto failed;
152 
153 	ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->addr_hi);
154 	if (ret)
155 		goto failed;
156 
157 	ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->rmask);
158 	if (ret)
159 		goto failed;
160 
161 	ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->wmask);
162 	if (ret)
163 		goto failed;
164 
165 	local_irq_restore(flags);
166 	return 0;
167 failed:
168 	/*
169 	 * If writing to the IOSF failed then we're in an unknown state,
170 	 * likely a very bad state. An IMR in an invalid state will almost
171 	 * certainly lead to a memory access violation.
172 	 */
173 	local_irq_restore(flags);
174 	WARN(ret, "IOSF-MBI write fail range 0x%08x-0x%08x unreliable\n",
175 	     imr_to_phys(imr->addr_lo), imr_to_phys(imr->addr_hi) + IMR_MASK);
176 
177 	return ret;
178 }
179 
180 /**
181  * imr_dbgfs_state_show - print state of IMR registers.
182  *
183  * @s:		pointer to seq_file for output.
184  * @unused:	unused parameter.
185  * @return:	0 on success or error code passed from mbi_iosf on failure.
186  */
187 static int imr_dbgfs_state_show(struct seq_file *s, void *unused)
188 {
189 	phys_addr_t base;
190 	phys_addr_t end;
191 	int i;
192 	struct imr_device *idev = s->private;
193 	struct imr_regs imr;
194 	size_t size;
195 	int ret = -ENODEV;
196 
197 	mutex_lock(&idev->lock);
198 
199 	for (i = 0; i < idev->max_imr; i++) {
200 
201 		ret = imr_read(idev, i, &imr);
202 		if (ret)
203 			break;
204 
205 		/*
206 		 * Remember to add IMR_ALIGN bytes to size to indicate the
207 		 * inherent IMR_ALIGN size bytes contained in the masked away
208 		 * lower ten bits.
209 		 */
210 		if (imr_is_enabled(&imr)) {
211 			base = imr_to_phys(imr.addr_lo);
212 			end = imr_to_phys(imr.addr_hi) + IMR_MASK;
213 			size = end - base + 1;
214 		} else {
215 			base = 0;
216 			end = 0;
217 			size = 0;
218 		}
219 		seq_printf(s, "imr%02i: base=%pa, end=%pa, size=0x%08zx "
220 			   "rmask=0x%08x, wmask=0x%08x, %s, %s\n", i,
221 			   &base, &end, size, imr.rmask, imr.wmask,
222 			   imr_is_enabled(&imr) ? "enabled " : "disabled",
223 			   imr.addr_lo & IMR_LOCK ? "locked" : "unlocked");
224 	}
225 
226 	mutex_unlock(&idev->lock);
227 	return ret;
228 }
229 DEFINE_SHOW_ATTRIBUTE(imr_dbgfs_state);
230 
231 /**
232  * imr_debugfs_register - register debugfs hooks.
233  *
234  * @idev:	pointer to imr_device structure.
235  */
236 static void imr_debugfs_register(struct imr_device *idev)
237 {
238 	debugfs_create_file("imr_state", 0444, NULL, idev,
239 			    &imr_dbgfs_state_fops);
240 }
241 
242 /**
243  * imr_check_params - check passed address range IMR alignment and non-zero size
244  *
245  * @base:	base address of intended IMR.
246  * @size:	size of intended IMR.
247  * @return:	zero on valid range -EINVAL on unaligned base/size.
248  */
249 static int imr_check_params(phys_addr_t base, size_t size)
250 {
251 	if ((base & IMR_MASK) || (size & IMR_MASK)) {
252 		pr_err("base %pa size 0x%08zx must align to 1KiB\n",
253 			&base, size);
254 		return -EINVAL;
255 	}
256 	if (size == 0)
257 		return -EINVAL;
258 
259 	return 0;
260 }
261 
262 /**
263  * imr_raw_size - account for the IMR_ALIGN bytes that addr_hi appends.
264  *
265  * IMR addr_hi has a built in offset of plus IMR_ALIGN (0x400) bytes from the
266  * value in the register. We need to subtract IMR_ALIGN bytes from input sizes
267  * as a result.
268  *
269  * @size:	input size bytes.
270  * @return:	reduced size.
271  */
272 static inline size_t imr_raw_size(size_t size)
273 {
274 	return size - IMR_ALIGN;
275 }
276 
277 /**
278  * imr_address_overlap - detects an address overlap.
279  *
280  * @addr:	address to check against an existing IMR.
281  * @imr:	imr being checked.
282  * @return:	true for overlap false for no overlap.
283  */
284 static inline int imr_address_overlap(phys_addr_t addr, struct imr_regs *imr)
285 {
286 	return addr >= imr_to_phys(imr->addr_lo) && addr <= imr_to_phys(imr->addr_hi);
287 }
288 
289 /**
290  * imr_add_range - add an Isolated Memory Region.
291  *
292  * @base:	physical base address of region aligned to 1KiB.
293  * @size:	physical size of region in bytes must be aligned to 1KiB.
294  * @read_mask:	read access mask.
295  * @write_mask:	write access mask.
296  * @return:	zero on success or negative value indicating error.
297  */
298 int imr_add_range(phys_addr_t base, size_t size,
299 		  unsigned int rmask, unsigned int wmask)
300 {
301 	phys_addr_t end;
302 	unsigned int i;
303 	struct imr_device *idev = &imr_dev;
304 	struct imr_regs imr;
305 	size_t raw_size;
306 	int reg;
307 	int ret;
308 
309 	if (WARN_ONCE(idev->init == false, "driver not initialized"))
310 		return -ENODEV;
311 
312 	ret = imr_check_params(base, size);
313 	if (ret)
314 		return ret;
315 
316 	/* Tweak the size value. */
317 	raw_size = imr_raw_size(size);
318 	end = base + raw_size;
319 
320 	/*
321 	 * Check for reserved IMR value common to firmware, kernel and grub
322 	 * indicating a disabled IMR.
323 	 */
324 	imr.addr_lo = phys_to_imr(base);
325 	imr.addr_hi = phys_to_imr(end);
326 	imr.rmask = rmask;
327 	imr.wmask = wmask;
328 	if (!imr_is_enabled(&imr))
329 		return -ENOTSUPP;
330 
331 	mutex_lock(&idev->lock);
332 
333 	/*
334 	 * Find a free IMR while checking for an existing overlapping range.
335 	 * Note there's no restriction in silicon to prevent IMR overlaps.
336 	 * For the sake of simplicity and ease in defining/debugging an IMR
337 	 * memory map we exclude IMR overlaps.
338 	 */
339 	reg = -1;
340 	for (i = 0; i < idev->max_imr; i++) {
341 		ret = imr_read(idev, i, &imr);
342 		if (ret)
343 			goto failed;
344 
345 		/* Find overlap @ base or end of requested range. */
346 		ret = -EINVAL;
347 		if (imr_is_enabled(&imr)) {
348 			if (imr_address_overlap(base, &imr))
349 				goto failed;
350 			if (imr_address_overlap(end, &imr))
351 				goto failed;
352 		} else {
353 			reg = i;
354 		}
355 	}
356 
357 	/* Error out if we have no free IMR entries. */
358 	if (reg == -1) {
359 		ret = -ENOMEM;
360 		goto failed;
361 	}
362 
363 	pr_debug("add %d phys %pa-%pa size %zx mask 0x%08x wmask 0x%08x\n",
364 		 reg, &base, &end, raw_size, rmask, wmask);
365 
366 	/* Enable IMR at specified range and access mask. */
367 	imr.addr_lo = phys_to_imr(base);
368 	imr.addr_hi = phys_to_imr(end);
369 	imr.rmask = rmask;
370 	imr.wmask = wmask;
371 
372 	ret = imr_write(idev, reg, &imr);
373 	if (ret < 0) {
374 		/*
375 		 * In the highly unlikely event iosf_mbi_write failed
376 		 * attempt to rollback the IMR setup skipping the trapping
377 		 * of further IOSF write failures.
378 		 */
379 		imr.addr_lo = 0;
380 		imr.addr_hi = 0;
381 		imr.rmask = IMR_READ_ACCESS_ALL;
382 		imr.wmask = IMR_WRITE_ACCESS_ALL;
383 		imr_write(idev, reg, &imr);
384 	}
385 failed:
386 	mutex_unlock(&idev->lock);
387 	return ret;
388 }
389 EXPORT_SYMBOL_GPL(imr_add_range);
390 
391 /**
392  * __imr_remove_range - delete an Isolated Memory Region.
393  *
394  * This function allows you to delete an IMR by its index specified by reg or
395  * by address range specified by base and size respectively. If you specify an
396  * index on its own the base and size parameters are ignored.
397  * imr_remove_range(0, base, size); delete IMR at index 0 base/size ignored.
398  * imr_remove_range(-1, base, size); delete IMR from base to base+size.
399  *
400  * @reg:	imr index to remove.
401  * @base:	physical base address of region aligned to 1 KiB.
402  * @size:	physical size of region in bytes aligned to 1 KiB.
403  * @return:	-EINVAL on invalid range or out or range id
404  *		-ENODEV if reg is valid but no IMR exists or is locked
405  *		0 on success.
406  */
407 static int __imr_remove_range(int reg, phys_addr_t base, size_t size)
408 {
409 	phys_addr_t end;
410 	bool found = false;
411 	unsigned int i;
412 	struct imr_device *idev = &imr_dev;
413 	struct imr_regs imr;
414 	size_t raw_size;
415 	int ret = 0;
416 
417 	if (WARN_ONCE(idev->init == false, "driver not initialized"))
418 		return -ENODEV;
419 
420 	/*
421 	 * Validate address range if deleting by address, else we are
422 	 * deleting by index where base and size will be ignored.
423 	 */
424 	if (reg == -1) {
425 		ret = imr_check_params(base, size);
426 		if (ret)
427 			return ret;
428 	}
429 
430 	/* Tweak the size value. */
431 	raw_size = imr_raw_size(size);
432 	end = base + raw_size;
433 
434 	mutex_lock(&idev->lock);
435 
436 	if (reg >= 0) {
437 		/* If a specific IMR is given try to use it. */
438 		ret = imr_read(idev, reg, &imr);
439 		if (ret)
440 			goto failed;
441 
442 		if (!imr_is_enabled(&imr) || imr.addr_lo & IMR_LOCK) {
443 			ret = -ENODEV;
444 			goto failed;
445 		}
446 		found = true;
447 	} else {
448 		/* Search for match based on address range. */
449 		for (i = 0; i < idev->max_imr; i++) {
450 			ret = imr_read(idev, i, &imr);
451 			if (ret)
452 				goto failed;
453 
454 			if (!imr_is_enabled(&imr) || imr.addr_lo & IMR_LOCK)
455 				continue;
456 
457 			if ((imr_to_phys(imr.addr_lo) == base) &&
458 			    (imr_to_phys(imr.addr_hi) == end)) {
459 				found = true;
460 				reg = i;
461 				break;
462 			}
463 		}
464 	}
465 
466 	if (!found) {
467 		ret = -ENODEV;
468 		goto failed;
469 	}
470 
471 	pr_debug("remove %d phys %pa-%pa size %zx\n", reg, &base, &end, raw_size);
472 
473 	/* Tear down the IMR. */
474 	imr.addr_lo = 0;
475 	imr.addr_hi = 0;
476 	imr.rmask = IMR_READ_ACCESS_ALL;
477 	imr.wmask = IMR_WRITE_ACCESS_ALL;
478 
479 	ret = imr_write(idev, reg, &imr);
480 
481 failed:
482 	mutex_unlock(&idev->lock);
483 	return ret;
484 }
485 
486 /**
487  * imr_remove_range - delete an Isolated Memory Region by address
488  *
489  * This function allows you to delete an IMR by an address range specified
490  * by base and size respectively.
491  * imr_remove_range(base, size); delete IMR from base to base+size.
492  *
493  * @base:	physical base address of region aligned to 1 KiB.
494  * @size:	physical size of region in bytes aligned to 1 KiB.
495  * @return:	-EINVAL on invalid range or out or range id
496  *		-ENODEV if reg is valid but no IMR exists or is locked
497  *		0 on success.
498  */
499 int imr_remove_range(phys_addr_t base, size_t size)
500 {
501 	return __imr_remove_range(-1, base, size);
502 }
503 EXPORT_SYMBOL_GPL(imr_remove_range);
504 
505 /**
506  * imr_clear - delete an Isolated Memory Region by index
507  *
508  * This function allows you to delete an IMR by an address range specified
509  * by the index of the IMR. Useful for initial sanitization of the IMR
510  * address map.
511  * imr_ge(base, size); delete IMR from base to base+size.
512  *
513  * @reg:	imr index to remove.
514  * @return:	-EINVAL on invalid range or out or range id
515  *		-ENODEV if reg is valid but no IMR exists or is locked
516  *		0 on success.
517  */
518 static inline int imr_clear(int reg)
519 {
520 	return __imr_remove_range(reg, 0, 0);
521 }
522 
523 /**
524  * imr_fixup_memmap - Tear down IMRs used during bootup.
525  *
526  * BIOS and Grub both setup IMRs around compressed kernel, initrd memory
527  * that need to be removed before the kernel hands out one of the IMR
528  * encased addresses to a downstream DMA agent such as the SD or Ethernet.
529  * IMRs on Galileo are setup to immediately reset the system on violation.
530  * As a result if you're running a root filesystem from SD - you'll need
531  * the boot-time IMRs torn down or you'll find seemingly random resets when
532  * using your filesystem.
533  *
534  * @idev:	pointer to imr_device structure.
535  * @return:
536  */
537 static void __init imr_fixup_memmap(struct imr_device *idev)
538 {
539 	phys_addr_t base = virt_to_phys(&_text);
540 	size_t size = virt_to_phys(&__end_rodata) - base;
541 	unsigned long start, end;
542 	int i;
543 	int ret;
544 
545 	/* Tear down all existing unlocked IMRs. */
546 	for (i = 0; i < idev->max_imr; i++)
547 		imr_clear(i);
548 
549 	start = (unsigned long)_text;
550 	end = (unsigned long)__end_rodata - 1;
551 
552 	/*
553 	 * Setup an unlocked IMR around the physical extent of the kernel
554 	 * from the beginning of the .text section to the end of the
555 	 * .rodata section as one physically contiguous block.
556 	 *
557 	 * We don't round up @size since it is already PAGE_SIZE aligned.
558 	 * See vmlinux.lds.S for details.
559 	 */
560 	ret = imr_add_range(base, size, IMR_CPU, IMR_CPU);
561 	if (ret < 0) {
562 		pr_err("unable to setup IMR for kernel: %zu KiB (%lx - %lx)\n",
563 			size / 1024, start, end);
564 	} else {
565 		pr_info("protecting kernel .text - .rodata: %zu KiB (%lx - %lx)\n",
566 			size / 1024, start, end);
567 	}
568 
569 }
570 
571 static const struct x86_cpu_id imr_ids[] __initconst = {
572 	X86_MATCH_VENDOR_FAM_MODEL(INTEL, 5, INTEL_FAM5_QUARK_X1000, NULL),
573 	{}
574 };
575 
576 /**
577  * imr_init - entry point for IMR driver.
578  *
579  * return: -ENODEV for no IMR support 0 if good to go.
580  */
581 static int __init imr_init(void)
582 {
583 	struct imr_device *idev = &imr_dev;
584 
585 	if (!x86_match_cpu(imr_ids) || !iosf_mbi_available())
586 		return -ENODEV;
587 
588 	idev->max_imr = QUARK_X1000_IMR_MAX;
589 	idev->reg_base = QUARK_X1000_IMR_REGBASE;
590 	idev->init = true;
591 
592 	mutex_init(&idev->lock);
593 	imr_debugfs_register(idev);
594 	imr_fixup_memmap(idev);
595 	return 0;
596 }
597 device_initcall(imr_init);
598