1 /**
2  * imr.c -- Intel Isolated Memory Region driver
3  *
4  * Copyright(c) 2013 Intel Corporation.
5  * Copyright(c) 2015 Bryan O'Donoghue <pure.logic@nexus-software.ie>
6  *
7  * IMR registers define an isolated region of memory that can
8  * be masked to prohibit certain system agents from accessing memory.
9  * When a device behind a masked port performs an access - snooped or
10  * not, an IMR may optionally prevent that transaction from changing
11  * the state of memory or from getting correct data in response to the
12  * operation.
13  *
14  * Write data will be dropped and reads will return 0xFFFFFFFF, the
15  * system will reset and system BIOS will print out an error message to
16  * inform the user that an IMR has been violated.
17  *
18  * This code is based on the Linux MTRR code and reference code from
19  * Intel's Quark BSP EFI, Linux and grub code.
20  *
21  * See quark-x1000-datasheet.pdf for register definitions.
22  * http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/quark-x1000-datasheet.pdf
23  */
24 
25 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26 
27 #include <asm-generic/sections.h>
28 #include <asm/cpu_device_id.h>
29 #include <asm/imr.h>
30 #include <asm/iosf_mbi.h>
31 #include <linux/debugfs.h>
32 #include <linux/init.h>
33 #include <linux/mm.h>
34 #include <linux/types.h>
35 
36 struct imr_device {
37 	struct dentry	*file;
38 	bool		init;
39 	struct mutex	lock;
40 	int		max_imr;
41 	int		reg_base;
42 };
43 
44 static struct imr_device imr_dev;
45 
46 /*
47  * IMR read/write mask control registers.
48  * See quark-x1000-datasheet.pdf sections 12.7.4.5 and 12.7.4.6 for
49  * bit definitions.
50  *
51  * addr_hi
52  * 31		Lock bit
53  * 30:24	Reserved
54  * 23:2		1 KiB aligned lo address
55  * 1:0		Reserved
56  *
57  * addr_hi
58  * 31:24	Reserved
59  * 23:2		1 KiB aligned hi address
60  * 1:0		Reserved
61  */
62 #define IMR_LOCK	BIT(31)
63 
64 struct imr_regs {
65 	u32 addr_lo;
66 	u32 addr_hi;
67 	u32 rmask;
68 	u32 wmask;
69 };
70 
71 #define IMR_NUM_REGS	(sizeof(struct imr_regs)/sizeof(u32))
72 #define IMR_SHIFT	8
73 #define imr_to_phys(x)	((x) << IMR_SHIFT)
74 #define phys_to_imr(x)	((x) >> IMR_SHIFT)
75 
76 /**
77  * imr_is_enabled - true if an IMR is enabled false otherwise.
78  *
79  * Determines if an IMR is enabled based on address range and read/write
80  * mask. An IMR set with an address range set to zero and a read/write
81  * access mask set to all is considered to be disabled. An IMR in any
82  * other state - for example set to zero but without read/write access
83  * all is considered to be enabled. This definition of disabled is how
84  * firmware switches off an IMR and is maintained in kernel for
85  * consistency.
86  *
87  * @imr:	pointer to IMR descriptor.
88  * @return:	true if IMR enabled false if disabled.
89  */
90 static inline int imr_is_enabled(struct imr_regs *imr)
91 {
92 	return !(imr->rmask == IMR_READ_ACCESS_ALL &&
93 		 imr->wmask == IMR_WRITE_ACCESS_ALL &&
94 		 imr_to_phys(imr->addr_lo) == 0 &&
95 		 imr_to_phys(imr->addr_hi) == 0);
96 }
97 
98 /**
99  * imr_read - read an IMR at a given index.
100  *
101  * Requires caller to hold imr mutex.
102  *
103  * @idev:	pointer to imr_device structure.
104  * @imr_id:	IMR entry to read.
105  * @imr:	IMR structure representing address and access masks.
106  * @return:	0 on success or error code passed from mbi_iosf on failure.
107  */
108 static int imr_read(struct imr_device *idev, u32 imr_id, struct imr_regs *imr)
109 {
110 	u32 reg = imr_id * IMR_NUM_REGS + idev->reg_base;
111 	int ret;
112 
113 	ret = iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->addr_lo);
114 	if (ret)
115 		return ret;
116 
117 	ret = iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->addr_hi);
118 	if (ret)
119 		return ret;
120 
121 	ret = iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->rmask);
122 	if (ret)
123 		return ret;
124 
125 	return iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->wmask);
126 }
127 
128 /**
129  * imr_write - write an IMR at a given index.
130  *
131  * Requires caller to hold imr mutex.
132  * Note lock bits need to be written independently of address bits.
133  *
134  * @idev:	pointer to imr_device structure.
135  * @imr_id:	IMR entry to write.
136  * @imr:	IMR structure representing address and access masks.
137  * @return:	0 on success or error code passed from mbi_iosf on failure.
138  */
139 static int imr_write(struct imr_device *idev, u32 imr_id, struct imr_regs *imr)
140 {
141 	unsigned long flags;
142 	u32 reg = imr_id * IMR_NUM_REGS + idev->reg_base;
143 	int ret;
144 
145 	local_irq_save(flags);
146 
147 	ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->addr_lo);
148 	if (ret)
149 		goto failed;
150 
151 	ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->addr_hi);
152 	if (ret)
153 		goto failed;
154 
155 	ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->rmask);
156 	if (ret)
157 		goto failed;
158 
159 	ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->wmask);
160 	if (ret)
161 		goto failed;
162 
163 	local_irq_restore(flags);
164 	return 0;
165 failed:
166 	/*
167 	 * If writing to the IOSF failed then we're in an unknown state,
168 	 * likely a very bad state. An IMR in an invalid state will almost
169 	 * certainly lead to a memory access violation.
170 	 */
171 	local_irq_restore(flags);
172 	WARN(ret, "IOSF-MBI write fail range 0x%08x-0x%08x unreliable\n",
173 	     imr_to_phys(imr->addr_lo), imr_to_phys(imr->addr_hi) + IMR_MASK);
174 
175 	return ret;
176 }
177 
178 /**
179  * imr_dbgfs_state_show - print state of IMR registers.
180  *
181  * @s:		pointer to seq_file for output.
182  * @unused:	unused parameter.
183  * @return:	0 on success or error code passed from mbi_iosf on failure.
184  */
185 static int imr_dbgfs_state_show(struct seq_file *s, void *unused)
186 {
187 	phys_addr_t base;
188 	phys_addr_t end;
189 	int i;
190 	struct imr_device *idev = s->private;
191 	struct imr_regs imr;
192 	size_t size;
193 	int ret = -ENODEV;
194 
195 	mutex_lock(&idev->lock);
196 
197 	for (i = 0; i < idev->max_imr; i++) {
198 
199 		ret = imr_read(idev, i, &imr);
200 		if (ret)
201 			break;
202 
203 		/*
204 		 * Remember to add IMR_ALIGN bytes to size to indicate the
205 		 * inherent IMR_ALIGN size bytes contained in the masked away
206 		 * lower ten bits.
207 		 */
208 		if (imr_is_enabled(&imr)) {
209 			base = imr_to_phys(imr.addr_lo);
210 			end = imr_to_phys(imr.addr_hi) + IMR_MASK;
211 			size = end - base + 1;
212 		} else {
213 			base = 0;
214 			end = 0;
215 			size = 0;
216 		}
217 		seq_printf(s, "imr%02i: base=%pa, end=%pa, size=0x%08zx "
218 			   "rmask=0x%08x, wmask=0x%08x, %s, %s\n", i,
219 			   &base, &end, size, imr.rmask, imr.wmask,
220 			   imr_is_enabled(&imr) ? "enabled " : "disabled",
221 			   imr.addr_lo & IMR_LOCK ? "locked" : "unlocked");
222 	}
223 
224 	mutex_unlock(&idev->lock);
225 	return ret;
226 }
227 
228 /**
229  * imr_state_open - debugfs open callback.
230  *
231  * @inode:	pointer to struct inode.
232  * @file:	pointer to struct file.
233  * @return:	result of single open.
234  */
235 static int imr_state_open(struct inode *inode, struct file *file)
236 {
237 	return single_open(file, imr_dbgfs_state_show, inode->i_private);
238 }
239 
240 static const struct file_operations imr_state_ops = {
241 	.open		= imr_state_open,
242 	.read		= seq_read,
243 	.llseek		= seq_lseek,
244 	.release	= single_release,
245 };
246 
247 /**
248  * imr_debugfs_register - register debugfs hooks.
249  *
250  * @idev:	pointer to imr_device structure.
251  * @return:	0 on success - errno on failure.
252  */
253 static int imr_debugfs_register(struct imr_device *idev)
254 {
255 	idev->file = debugfs_create_file("imr_state", S_IFREG | S_IRUGO, NULL,
256 					 idev, &imr_state_ops);
257 	return PTR_ERR_OR_ZERO(idev->file);
258 }
259 
260 /**
261  * imr_check_params - check passed address range IMR alignment and non-zero size
262  *
263  * @base:	base address of intended IMR.
264  * @size:	size of intended IMR.
265  * @return:	zero on valid range -EINVAL on unaligned base/size.
266  */
267 static int imr_check_params(phys_addr_t base, size_t size)
268 {
269 	if ((base & IMR_MASK) || (size & IMR_MASK)) {
270 		pr_err("base %pa size 0x%08zx must align to 1KiB\n",
271 			&base, size);
272 		return -EINVAL;
273 	}
274 	if (size == 0)
275 		return -EINVAL;
276 
277 	return 0;
278 }
279 
280 /**
281  * imr_raw_size - account for the IMR_ALIGN bytes that addr_hi appends.
282  *
283  * IMR addr_hi has a built in offset of plus IMR_ALIGN (0x400) bytes from the
284  * value in the register. We need to subtract IMR_ALIGN bytes from input sizes
285  * as a result.
286  *
287  * @size:	input size bytes.
288  * @return:	reduced size.
289  */
290 static inline size_t imr_raw_size(size_t size)
291 {
292 	return size - IMR_ALIGN;
293 }
294 
295 /**
296  * imr_address_overlap - detects an address overlap.
297  *
298  * @addr:	address to check against an existing IMR.
299  * @imr:	imr being checked.
300  * @return:	true for overlap false for no overlap.
301  */
302 static inline int imr_address_overlap(phys_addr_t addr, struct imr_regs *imr)
303 {
304 	return addr >= imr_to_phys(imr->addr_lo) && addr <= imr_to_phys(imr->addr_hi);
305 }
306 
307 /**
308  * imr_add_range - add an Isolated Memory Region.
309  *
310  * @base:	physical base address of region aligned to 1KiB.
311  * @size:	physical size of region in bytes must be aligned to 1KiB.
312  * @read_mask:	read access mask.
313  * @write_mask:	write access mask.
314  * @return:	zero on success or negative value indicating error.
315  */
316 int imr_add_range(phys_addr_t base, size_t size,
317 		  unsigned int rmask, unsigned int wmask)
318 {
319 	phys_addr_t end;
320 	unsigned int i;
321 	struct imr_device *idev = &imr_dev;
322 	struct imr_regs imr;
323 	size_t raw_size;
324 	int reg;
325 	int ret;
326 
327 	if (WARN_ONCE(idev->init == false, "driver not initialized"))
328 		return -ENODEV;
329 
330 	ret = imr_check_params(base, size);
331 	if (ret)
332 		return ret;
333 
334 	/* Tweak the size value. */
335 	raw_size = imr_raw_size(size);
336 	end = base + raw_size;
337 
338 	/*
339 	 * Check for reserved IMR value common to firmware, kernel and grub
340 	 * indicating a disabled IMR.
341 	 */
342 	imr.addr_lo = phys_to_imr(base);
343 	imr.addr_hi = phys_to_imr(end);
344 	imr.rmask = rmask;
345 	imr.wmask = wmask;
346 	if (!imr_is_enabled(&imr))
347 		return -ENOTSUPP;
348 
349 	mutex_lock(&idev->lock);
350 
351 	/*
352 	 * Find a free IMR while checking for an existing overlapping range.
353 	 * Note there's no restriction in silicon to prevent IMR overlaps.
354 	 * For the sake of simplicity and ease in defining/debugging an IMR
355 	 * memory map we exclude IMR overlaps.
356 	 */
357 	reg = -1;
358 	for (i = 0; i < idev->max_imr; i++) {
359 		ret = imr_read(idev, i, &imr);
360 		if (ret)
361 			goto failed;
362 
363 		/* Find overlap @ base or end of requested range. */
364 		ret = -EINVAL;
365 		if (imr_is_enabled(&imr)) {
366 			if (imr_address_overlap(base, &imr))
367 				goto failed;
368 			if (imr_address_overlap(end, &imr))
369 				goto failed;
370 		} else {
371 			reg = i;
372 		}
373 	}
374 
375 	/* Error out if we have no free IMR entries. */
376 	if (reg == -1) {
377 		ret = -ENOMEM;
378 		goto failed;
379 	}
380 
381 	pr_debug("add %d phys %pa-%pa size %zx mask 0x%08x wmask 0x%08x\n",
382 		 reg, &base, &end, raw_size, rmask, wmask);
383 
384 	/* Enable IMR at specified range and access mask. */
385 	imr.addr_lo = phys_to_imr(base);
386 	imr.addr_hi = phys_to_imr(end);
387 	imr.rmask = rmask;
388 	imr.wmask = wmask;
389 
390 	ret = imr_write(idev, reg, &imr);
391 	if (ret < 0) {
392 		/*
393 		 * In the highly unlikely event iosf_mbi_write failed
394 		 * attempt to rollback the IMR setup skipping the trapping
395 		 * of further IOSF write failures.
396 		 */
397 		imr.addr_lo = 0;
398 		imr.addr_hi = 0;
399 		imr.rmask = IMR_READ_ACCESS_ALL;
400 		imr.wmask = IMR_WRITE_ACCESS_ALL;
401 		imr_write(idev, reg, &imr);
402 	}
403 failed:
404 	mutex_unlock(&idev->lock);
405 	return ret;
406 }
407 EXPORT_SYMBOL_GPL(imr_add_range);
408 
409 /**
410  * __imr_remove_range - delete an Isolated Memory Region.
411  *
412  * This function allows you to delete an IMR by its index specified by reg or
413  * by address range specified by base and size respectively. If you specify an
414  * index on its own the base and size parameters are ignored.
415  * imr_remove_range(0, base, size); delete IMR at index 0 base/size ignored.
416  * imr_remove_range(-1, base, size); delete IMR from base to base+size.
417  *
418  * @reg:	imr index to remove.
419  * @base:	physical base address of region aligned to 1 KiB.
420  * @size:	physical size of region in bytes aligned to 1 KiB.
421  * @return:	-EINVAL on invalid range or out or range id
422  *		-ENODEV if reg is valid but no IMR exists or is locked
423  *		0 on success.
424  */
425 static int __imr_remove_range(int reg, phys_addr_t base, size_t size)
426 {
427 	phys_addr_t end;
428 	bool found = false;
429 	unsigned int i;
430 	struct imr_device *idev = &imr_dev;
431 	struct imr_regs imr;
432 	size_t raw_size;
433 	int ret = 0;
434 
435 	if (WARN_ONCE(idev->init == false, "driver not initialized"))
436 		return -ENODEV;
437 
438 	/*
439 	 * Validate address range if deleting by address, else we are
440 	 * deleting by index where base and size will be ignored.
441 	 */
442 	if (reg == -1) {
443 		ret = imr_check_params(base, size);
444 		if (ret)
445 			return ret;
446 	}
447 
448 	/* Tweak the size value. */
449 	raw_size = imr_raw_size(size);
450 	end = base + raw_size;
451 
452 	mutex_lock(&idev->lock);
453 
454 	if (reg >= 0) {
455 		/* If a specific IMR is given try to use it. */
456 		ret = imr_read(idev, reg, &imr);
457 		if (ret)
458 			goto failed;
459 
460 		if (!imr_is_enabled(&imr) || imr.addr_lo & IMR_LOCK) {
461 			ret = -ENODEV;
462 			goto failed;
463 		}
464 		found = true;
465 	} else {
466 		/* Search for match based on address range. */
467 		for (i = 0; i < idev->max_imr; i++) {
468 			ret = imr_read(idev, i, &imr);
469 			if (ret)
470 				goto failed;
471 
472 			if (!imr_is_enabled(&imr) || imr.addr_lo & IMR_LOCK)
473 				continue;
474 
475 			if ((imr_to_phys(imr.addr_lo) == base) &&
476 			    (imr_to_phys(imr.addr_hi) == end)) {
477 				found = true;
478 				reg = i;
479 				break;
480 			}
481 		}
482 	}
483 
484 	if (!found) {
485 		ret = -ENODEV;
486 		goto failed;
487 	}
488 
489 	pr_debug("remove %d phys %pa-%pa size %zx\n", reg, &base, &end, raw_size);
490 
491 	/* Tear down the IMR. */
492 	imr.addr_lo = 0;
493 	imr.addr_hi = 0;
494 	imr.rmask = IMR_READ_ACCESS_ALL;
495 	imr.wmask = IMR_WRITE_ACCESS_ALL;
496 
497 	ret = imr_write(idev, reg, &imr);
498 
499 failed:
500 	mutex_unlock(&idev->lock);
501 	return ret;
502 }
503 
504 /**
505  * imr_remove_range - delete an Isolated Memory Region by address
506  *
507  * This function allows you to delete an IMR by an address range specified
508  * by base and size respectively.
509  * imr_remove_range(base, size); delete IMR from base to base+size.
510  *
511  * @base:	physical base address of region aligned to 1 KiB.
512  * @size:	physical size of region in bytes aligned to 1 KiB.
513  * @return:	-EINVAL on invalid range or out or range id
514  *		-ENODEV if reg is valid but no IMR exists or is locked
515  *		0 on success.
516  */
517 int imr_remove_range(phys_addr_t base, size_t size)
518 {
519 	return __imr_remove_range(-1, base, size);
520 }
521 EXPORT_SYMBOL_GPL(imr_remove_range);
522 
523 /**
524  * imr_clear - delete an Isolated Memory Region by index
525  *
526  * This function allows you to delete an IMR by an address range specified
527  * by the index of the IMR. Useful for initial sanitization of the IMR
528  * address map.
529  * imr_ge(base, size); delete IMR from base to base+size.
530  *
531  * @reg:	imr index to remove.
532  * @return:	-EINVAL on invalid range or out or range id
533  *		-ENODEV if reg is valid but no IMR exists or is locked
534  *		0 on success.
535  */
536 static inline int imr_clear(int reg)
537 {
538 	return __imr_remove_range(reg, 0, 0);
539 }
540 
541 /**
542  * imr_fixup_memmap - Tear down IMRs used during bootup.
543  *
544  * BIOS and Grub both setup IMRs around compressed kernel, initrd memory
545  * that need to be removed before the kernel hands out one of the IMR
546  * encased addresses to a downstream DMA agent such as the SD or Ethernet.
547  * IMRs on Galileo are setup to immediately reset the system on violation.
548  * As a result if you're running a root filesystem from SD - you'll need
549  * the boot-time IMRs torn down or you'll find seemingly random resets when
550  * using your filesystem.
551  *
552  * @idev:	pointer to imr_device structure.
553  * @return:
554  */
555 static void __init imr_fixup_memmap(struct imr_device *idev)
556 {
557 	phys_addr_t base = virt_to_phys(&_text);
558 	size_t size = virt_to_phys(&__end_rodata) - base;
559 	unsigned long start, end;
560 	int i;
561 	int ret;
562 
563 	/* Tear down all existing unlocked IMRs. */
564 	for (i = 0; i < idev->max_imr; i++)
565 		imr_clear(i);
566 
567 	start = (unsigned long)_text;
568 	end = (unsigned long)__end_rodata - 1;
569 
570 	/*
571 	 * Setup an unlocked IMR around the physical extent of the kernel
572 	 * from the beginning of the .text secton to the end of the
573 	 * .rodata section as one physically contiguous block.
574 	 *
575 	 * We don't round up @size since it is already PAGE_SIZE aligned.
576 	 * See vmlinux.lds.S for details.
577 	 */
578 	ret = imr_add_range(base, size, IMR_CPU, IMR_CPU);
579 	if (ret < 0) {
580 		pr_err("unable to setup IMR for kernel: %zu KiB (%lx - %lx)\n",
581 			size / 1024, start, end);
582 	} else {
583 		pr_info("protecting kernel .text - .rodata: %zu KiB (%lx - %lx)\n",
584 			size / 1024, start, end);
585 	}
586 
587 }
588 
589 static const struct x86_cpu_id imr_ids[] __initconst = {
590 	{ X86_VENDOR_INTEL, 5, 9 },	/* Intel Quark SoC X1000. */
591 	{}
592 };
593 
594 /**
595  * imr_init - entry point for IMR driver.
596  *
597  * return: -ENODEV for no IMR support 0 if good to go.
598  */
599 static int __init imr_init(void)
600 {
601 	struct imr_device *idev = &imr_dev;
602 	int ret;
603 
604 	if (!x86_match_cpu(imr_ids) || !iosf_mbi_available())
605 		return -ENODEV;
606 
607 	idev->max_imr = QUARK_X1000_IMR_MAX;
608 	idev->reg_base = QUARK_X1000_IMR_REGBASE;
609 	idev->init = true;
610 
611 	mutex_init(&idev->lock);
612 	ret = imr_debugfs_register(idev);
613 	if (ret != 0)
614 		pr_warn("debugfs register failed!\n");
615 	imr_fixup_memmap(idev);
616 	return 0;
617 }
618 device_initcall(imr_init);
619