1 /**
2  * imr.c
3  *
4  * Copyright(c) 2013 Intel Corporation.
5  * Copyright(c) 2015 Bryan O'Donoghue <pure.logic@nexus-software.ie>
6  *
7  * IMR registers define an isolated region of memory that can
8  * be masked to prohibit certain system agents from accessing memory.
9  * When a device behind a masked port performs an access - snooped or
10  * not, an IMR may optionally prevent that transaction from changing
11  * the state of memory or from getting correct data in response to the
12  * operation.
13  *
14  * Write data will be dropped and reads will return 0xFFFFFFFF, the
15  * system will reset and system BIOS will print out an error message to
16  * inform the user that an IMR has been violated.
17  *
18  * This code is based on the Linux MTRR code and reference code from
19  * Intel's Quark BSP EFI, Linux and grub code.
20  *
21  * See quark-x1000-datasheet.pdf for register definitions.
22  * http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/quark-x1000-datasheet.pdf
23  */
24 
25 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26 
27 #include <asm-generic/sections.h>
28 #include <asm/cpu_device_id.h>
29 #include <asm/imr.h>
30 #include <asm/iosf_mbi.h>
31 #include <linux/debugfs.h>
32 #include <linux/init.h>
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/types.h>
36 
37 struct imr_device {
38 	struct dentry	*file;
39 	bool		init;
40 	struct mutex	lock;
41 	int		max_imr;
42 	int		reg_base;
43 };
44 
45 static struct imr_device imr_dev;
46 
47 /*
48  * IMR read/write mask control registers.
49  * See quark-x1000-datasheet.pdf sections 12.7.4.5 and 12.7.4.6 for
50  * bit definitions.
51  *
52  * addr_hi
53  * 31		Lock bit
54  * 30:24	Reserved
55  * 23:2		1 KiB aligned lo address
56  * 1:0		Reserved
57  *
58  * addr_hi
59  * 31:24	Reserved
60  * 23:2		1 KiB aligned hi address
61  * 1:0		Reserved
62  */
63 #define IMR_LOCK	BIT(31)
64 
65 struct imr_regs {
66 	u32 addr_lo;
67 	u32 addr_hi;
68 	u32 rmask;
69 	u32 wmask;
70 };
71 
72 #define IMR_NUM_REGS	(sizeof(struct imr_regs)/sizeof(u32))
73 #define IMR_SHIFT	8
74 #define imr_to_phys(x)	((x) << IMR_SHIFT)
75 #define phys_to_imr(x)	((x) >> IMR_SHIFT)
76 
77 /**
78  * imr_is_enabled - true if an IMR is enabled false otherwise.
79  *
80  * Determines if an IMR is enabled based on address range and read/write
81  * mask. An IMR set with an address range set to zero and a read/write
82  * access mask set to all is considered to be disabled. An IMR in any
83  * other state - for example set to zero but without read/write access
84  * all is considered to be enabled. This definition of disabled is how
85  * firmware switches off an IMR and is maintained in kernel for
86  * consistency.
87  *
88  * @imr:	pointer to IMR descriptor.
89  * @return:	true if IMR enabled false if disabled.
90  */
91 static inline int imr_is_enabled(struct imr_regs *imr)
92 {
93 	return !(imr->rmask == IMR_READ_ACCESS_ALL &&
94 		 imr->wmask == IMR_WRITE_ACCESS_ALL &&
95 		 imr_to_phys(imr->addr_lo) == 0 &&
96 		 imr_to_phys(imr->addr_hi) == 0);
97 }
98 
99 /**
100  * imr_read - read an IMR at a given index.
101  *
102  * Requires caller to hold imr mutex.
103  *
104  * @idev:	pointer to imr_device structure.
105  * @imr_id:	IMR entry to read.
106  * @imr:	IMR structure representing address and access masks.
107  * @return:	0 on success or error code passed from mbi_iosf on failure.
108  */
109 static int imr_read(struct imr_device *idev, u32 imr_id, struct imr_regs *imr)
110 {
111 	u32 reg = imr_id * IMR_NUM_REGS + idev->reg_base;
112 	int ret;
113 
114 	ret = iosf_mbi_read(QRK_MBI_UNIT_MM, QRK_MBI_MM_READ,
115 				reg++, &imr->addr_lo);
116 	if (ret)
117 		return ret;
118 
119 	ret = iosf_mbi_read(QRK_MBI_UNIT_MM, QRK_MBI_MM_READ,
120 				reg++, &imr->addr_hi);
121 	if (ret)
122 		return ret;
123 
124 	ret = iosf_mbi_read(QRK_MBI_UNIT_MM, QRK_MBI_MM_READ,
125 				reg++, &imr->rmask);
126 	if (ret)
127 		return ret;
128 
129 	return iosf_mbi_read(QRK_MBI_UNIT_MM, QRK_MBI_MM_READ,
130 				reg++, &imr->wmask);
131 }
132 
133 /**
134  * imr_write - write an IMR at a given index.
135  *
136  * Requires caller to hold imr mutex.
137  * Note lock bits need to be written independently of address bits.
138  *
139  * @idev:	pointer to imr_device structure.
140  * @imr_id:	IMR entry to write.
141  * @imr:	IMR structure representing address and access masks.
142  * @lock:	indicates if the IMR lock bit should be applied.
143  * @return:	0 on success or error code passed from mbi_iosf on failure.
144  */
145 static int imr_write(struct imr_device *idev, u32 imr_id,
146 		     struct imr_regs *imr, bool lock)
147 {
148 	unsigned long flags;
149 	u32 reg = imr_id * IMR_NUM_REGS + idev->reg_base;
150 	int ret;
151 
152 	local_irq_save(flags);
153 
154 	ret = iosf_mbi_write(QRK_MBI_UNIT_MM, QRK_MBI_MM_WRITE, reg++,
155 				imr->addr_lo);
156 	if (ret)
157 		goto failed;
158 
159 	ret = iosf_mbi_write(QRK_MBI_UNIT_MM, QRK_MBI_MM_WRITE,
160 				reg++, imr->addr_hi);
161 	if (ret)
162 		goto failed;
163 
164 	ret = iosf_mbi_write(QRK_MBI_UNIT_MM, QRK_MBI_MM_WRITE,
165 				reg++, imr->rmask);
166 	if (ret)
167 		goto failed;
168 
169 	ret = iosf_mbi_write(QRK_MBI_UNIT_MM, QRK_MBI_MM_WRITE,
170 				reg++, imr->wmask);
171 	if (ret)
172 		goto failed;
173 
174 	/* Lock bit must be set separately to addr_lo address bits. */
175 	if (lock) {
176 		imr->addr_lo |= IMR_LOCK;
177 		ret = iosf_mbi_write(QRK_MBI_UNIT_MM, QRK_MBI_MM_WRITE,
178 					reg - IMR_NUM_REGS, imr->addr_lo);
179 		if (ret)
180 			goto failed;
181 	}
182 
183 	local_irq_restore(flags);
184 	return 0;
185 failed:
186 	/*
187 	 * If writing to the IOSF failed then we're in an unknown state,
188 	 * likely a very bad state. An IMR in an invalid state will almost
189 	 * certainly lead to a memory access violation.
190 	 */
191 	local_irq_restore(flags);
192 	WARN(ret, "IOSF-MBI write fail range 0x%08x-0x%08x unreliable\n",
193 	     imr_to_phys(imr->addr_lo), imr_to_phys(imr->addr_hi) + IMR_MASK);
194 
195 	return ret;
196 }
197 
198 /**
199  * imr_dbgfs_state_show - print state of IMR registers.
200  *
201  * @s:		pointer to seq_file for output.
202  * @unused:	unused parameter.
203  * @return:	0 on success or error code passed from mbi_iosf on failure.
204  */
205 static int imr_dbgfs_state_show(struct seq_file *s, void *unused)
206 {
207 	phys_addr_t base;
208 	phys_addr_t end;
209 	int i;
210 	struct imr_device *idev = s->private;
211 	struct imr_regs imr;
212 	size_t size;
213 	int ret = -ENODEV;
214 
215 	mutex_lock(&idev->lock);
216 
217 	for (i = 0; i < idev->max_imr; i++) {
218 
219 		ret = imr_read(idev, i, &imr);
220 		if (ret)
221 			break;
222 
223 		/*
224 		 * Remember to add IMR_ALIGN bytes to size to indicate the
225 		 * inherent IMR_ALIGN size bytes contained in the masked away
226 		 * lower ten bits.
227 		 */
228 		if (imr_is_enabled(&imr)) {
229 			base = imr_to_phys(imr.addr_lo);
230 			end = imr_to_phys(imr.addr_hi) + IMR_MASK;
231 		} else {
232 			base = 0;
233 			end = 0;
234 		}
235 		size = end - base;
236 		seq_printf(s, "imr%02i: base=%pa, end=%pa, size=0x%08zx "
237 			   "rmask=0x%08x, wmask=0x%08x, %s, %s\n", i,
238 			   &base, &end, size, imr.rmask, imr.wmask,
239 			   imr_is_enabled(&imr) ? "enabled " : "disabled",
240 			   imr.addr_lo & IMR_LOCK ? "locked" : "unlocked");
241 	}
242 
243 	mutex_unlock(&idev->lock);
244 	return ret;
245 }
246 
247 /**
248  * imr_state_open - debugfs open callback.
249  *
250  * @inode:	pointer to struct inode.
251  * @file:	pointer to struct file.
252  * @return:	result of single open.
253  */
254 static int imr_state_open(struct inode *inode, struct file *file)
255 {
256 	return single_open(file, imr_dbgfs_state_show, inode->i_private);
257 }
258 
259 static const struct file_operations imr_state_ops = {
260 	.open		= imr_state_open,
261 	.read		= seq_read,
262 	.llseek		= seq_lseek,
263 	.release	= single_release,
264 };
265 
266 /**
267  * imr_debugfs_register - register debugfs hooks.
268  *
269  * @idev:	pointer to imr_device structure.
270  * @return:	0 on success - errno on failure.
271  */
272 static int imr_debugfs_register(struct imr_device *idev)
273 {
274 	idev->file = debugfs_create_file("imr_state", S_IFREG | S_IRUGO, NULL,
275 					 idev, &imr_state_ops);
276 	return PTR_ERR_OR_ZERO(idev->file);
277 }
278 
279 /**
280  * imr_debugfs_unregister - unregister debugfs hooks.
281  *
282  * @idev:	pointer to imr_device structure.
283  * @return:
284  */
285 static void imr_debugfs_unregister(struct imr_device *idev)
286 {
287 	debugfs_remove(idev->file);
288 }
289 
290 /**
291  * imr_check_params - check passed address range IMR alignment and non-zero size
292  *
293  * @base:	base address of intended IMR.
294  * @size:	size of intended IMR.
295  * @return:	zero on valid range -EINVAL on unaligned base/size.
296  */
297 static int imr_check_params(phys_addr_t base, size_t size)
298 {
299 	if ((base & IMR_MASK) || (size & IMR_MASK)) {
300 		pr_err("base %pa size 0x%08zx must align to 1KiB\n",
301 			&base, size);
302 		return -EINVAL;
303 	}
304 	if (size == 0)
305 		return -EINVAL;
306 
307 	return 0;
308 }
309 
310 /**
311  * imr_raw_size - account for the IMR_ALIGN bytes that addr_hi appends.
312  *
313  * IMR addr_hi has a built in offset of plus IMR_ALIGN (0x400) bytes from the
314  * value in the register. We need to subtract IMR_ALIGN bytes from input sizes
315  * as a result.
316  *
317  * @size:	input size bytes.
318  * @return:	reduced size.
319  */
320 static inline size_t imr_raw_size(size_t size)
321 {
322 	return size - IMR_ALIGN;
323 }
324 
325 /**
326  * imr_address_overlap - detects an address overlap.
327  *
328  * @addr:	address to check against an existing IMR.
329  * @imr:	imr being checked.
330  * @return:	true for overlap false for no overlap.
331  */
332 static inline int imr_address_overlap(phys_addr_t addr, struct imr_regs *imr)
333 {
334 	return addr >= imr_to_phys(imr->addr_lo) && addr <= imr_to_phys(imr->addr_hi);
335 }
336 
337 /**
338  * imr_add_range - add an Isolated Memory Region.
339  *
340  * @base:	physical base address of region aligned to 1KiB.
341  * @size:	physical size of region in bytes must be aligned to 1KiB.
342  * @read_mask:	read access mask.
343  * @write_mask:	write access mask.
344  * @lock:	indicates whether or not to permanently lock this region.
345  * @return:	zero on success or negative value indicating error.
346  */
347 int imr_add_range(phys_addr_t base, size_t size,
348 		  unsigned int rmask, unsigned int wmask, bool lock)
349 {
350 	phys_addr_t end;
351 	unsigned int i;
352 	struct imr_device *idev = &imr_dev;
353 	struct imr_regs imr;
354 	size_t raw_size;
355 	int reg;
356 	int ret;
357 
358 	if (WARN_ONCE(idev->init == false, "driver not initialized"))
359 		return -ENODEV;
360 
361 	ret = imr_check_params(base, size);
362 	if (ret)
363 		return ret;
364 
365 	/* Tweak the size value. */
366 	raw_size = imr_raw_size(size);
367 	end = base + raw_size;
368 
369 	/*
370 	 * Check for reserved IMR value common to firmware, kernel and grub
371 	 * indicating a disabled IMR.
372 	 */
373 	imr.addr_lo = phys_to_imr(base);
374 	imr.addr_hi = phys_to_imr(end);
375 	imr.rmask = rmask;
376 	imr.wmask = wmask;
377 	if (!imr_is_enabled(&imr))
378 		return -ENOTSUPP;
379 
380 	mutex_lock(&idev->lock);
381 
382 	/*
383 	 * Find a free IMR while checking for an existing overlapping range.
384 	 * Note there's no restriction in silicon to prevent IMR overlaps.
385 	 * For the sake of simplicity and ease in defining/debugging an IMR
386 	 * memory map we exclude IMR overlaps.
387 	 */
388 	reg = -1;
389 	for (i = 0; i < idev->max_imr; i++) {
390 		ret = imr_read(idev, i, &imr);
391 		if (ret)
392 			goto failed;
393 
394 		/* Find overlap @ base or end of requested range. */
395 		ret = -EINVAL;
396 		if (imr_is_enabled(&imr)) {
397 			if (imr_address_overlap(base, &imr))
398 				goto failed;
399 			if (imr_address_overlap(end, &imr))
400 				goto failed;
401 		} else {
402 			reg = i;
403 		}
404 	}
405 
406 	/* Error out if we have no free IMR entries. */
407 	if (reg == -1) {
408 		ret = -ENOMEM;
409 		goto failed;
410 	}
411 
412 	pr_debug("add %d phys %pa-%pa size %zx mask 0x%08x wmask 0x%08x\n",
413 		 reg, &base, &end, raw_size, rmask, wmask);
414 
415 	/* Enable IMR at specified range and access mask. */
416 	imr.addr_lo = phys_to_imr(base);
417 	imr.addr_hi = phys_to_imr(end);
418 	imr.rmask = rmask;
419 	imr.wmask = wmask;
420 
421 	ret = imr_write(idev, reg, &imr, lock);
422 	if (ret < 0) {
423 		/*
424 		 * In the highly unlikely event iosf_mbi_write failed
425 		 * attempt to rollback the IMR setup skipping the trapping
426 		 * of further IOSF write failures.
427 		 */
428 		imr.addr_lo = 0;
429 		imr.addr_hi = 0;
430 		imr.rmask = IMR_READ_ACCESS_ALL;
431 		imr.wmask = IMR_WRITE_ACCESS_ALL;
432 		imr_write(idev, reg, &imr, false);
433 	}
434 failed:
435 	mutex_unlock(&idev->lock);
436 	return ret;
437 }
438 EXPORT_SYMBOL_GPL(imr_add_range);
439 
440 /**
441  * __imr_remove_range - delete an Isolated Memory Region.
442  *
443  * This function allows you to delete an IMR by its index specified by reg or
444  * by address range specified by base and size respectively. If you specify an
445  * index on its own the base and size parameters are ignored.
446  * imr_remove_range(0, base, size); delete IMR at index 0 base/size ignored.
447  * imr_remove_range(-1, base, size); delete IMR from base to base+size.
448  *
449  * @reg:	imr index to remove.
450  * @base:	physical base address of region aligned to 1 KiB.
451  * @size:	physical size of region in bytes aligned to 1 KiB.
452  * @return:	-EINVAL on invalid range or out or range id
453  *		-ENODEV if reg is valid but no IMR exists or is locked
454  *		0 on success.
455  */
456 static int __imr_remove_range(int reg, phys_addr_t base, size_t size)
457 {
458 	phys_addr_t end;
459 	bool found = false;
460 	unsigned int i;
461 	struct imr_device *idev = &imr_dev;
462 	struct imr_regs imr;
463 	size_t raw_size;
464 	int ret = 0;
465 
466 	if (WARN_ONCE(idev->init == false, "driver not initialized"))
467 		return -ENODEV;
468 
469 	/*
470 	 * Validate address range if deleting by address, else we are
471 	 * deleting by index where base and size will be ignored.
472 	 */
473 	if (reg == -1) {
474 		ret = imr_check_params(base, size);
475 		if (ret)
476 			return ret;
477 	}
478 
479 	/* Tweak the size value. */
480 	raw_size = imr_raw_size(size);
481 	end = base + raw_size;
482 
483 	mutex_lock(&idev->lock);
484 
485 	if (reg >= 0) {
486 		/* If a specific IMR is given try to use it. */
487 		ret = imr_read(idev, reg, &imr);
488 		if (ret)
489 			goto failed;
490 
491 		if (!imr_is_enabled(&imr) || imr.addr_lo & IMR_LOCK) {
492 			ret = -ENODEV;
493 			goto failed;
494 		}
495 		found = true;
496 	} else {
497 		/* Search for match based on address range. */
498 		for (i = 0; i < idev->max_imr; i++) {
499 			ret = imr_read(idev, i, &imr);
500 			if (ret)
501 				goto failed;
502 
503 			if (!imr_is_enabled(&imr) || imr.addr_lo & IMR_LOCK)
504 				continue;
505 
506 			if ((imr_to_phys(imr.addr_lo) == base) &&
507 			    (imr_to_phys(imr.addr_hi) == end)) {
508 				found = true;
509 				reg = i;
510 				break;
511 			}
512 		}
513 	}
514 
515 	if (!found) {
516 		ret = -ENODEV;
517 		goto failed;
518 	}
519 
520 	pr_debug("remove %d phys %pa-%pa size %zx\n", reg, &base, &end, raw_size);
521 
522 	/* Tear down the IMR. */
523 	imr.addr_lo = 0;
524 	imr.addr_hi = 0;
525 	imr.rmask = IMR_READ_ACCESS_ALL;
526 	imr.wmask = IMR_WRITE_ACCESS_ALL;
527 
528 	ret = imr_write(idev, reg, &imr, false);
529 
530 failed:
531 	mutex_unlock(&idev->lock);
532 	return ret;
533 }
534 
535 /**
536  * imr_remove_range - delete an Isolated Memory Region by address
537  *
538  * This function allows you to delete an IMR by an address range specified
539  * by base and size respectively.
540  * imr_remove_range(base, size); delete IMR from base to base+size.
541  *
542  * @base:	physical base address of region aligned to 1 KiB.
543  * @size:	physical size of region in bytes aligned to 1 KiB.
544  * @return:	-EINVAL on invalid range or out or range id
545  *		-ENODEV if reg is valid but no IMR exists or is locked
546  *		0 on success.
547  */
548 int imr_remove_range(phys_addr_t base, size_t size)
549 {
550 	return __imr_remove_range(-1, base, size);
551 }
552 EXPORT_SYMBOL_GPL(imr_remove_range);
553 
554 /**
555  * imr_clear - delete an Isolated Memory Region by index
556  *
557  * This function allows you to delete an IMR by an address range specified
558  * by the index of the IMR. Useful for initial sanitization of the IMR
559  * address map.
560  * imr_ge(base, size); delete IMR from base to base+size.
561  *
562  * @reg:	imr index to remove.
563  * @return:	-EINVAL on invalid range or out or range id
564  *		-ENODEV if reg is valid but no IMR exists or is locked
565  *		0 on success.
566  */
567 static inline int imr_clear(int reg)
568 {
569 	return __imr_remove_range(reg, 0, 0);
570 }
571 
572 /**
573  * imr_fixup_memmap - Tear down IMRs used during bootup.
574  *
575  * BIOS and Grub both setup IMRs around compressed kernel, initrd memory
576  * that need to be removed before the kernel hands out one of the IMR
577  * encased addresses to a downstream DMA agent such as the SD or Ethernet.
578  * IMRs on Galileo are setup to immediately reset the system on violation.
579  * As a result if you're running a root filesystem from SD - you'll need
580  * the boot-time IMRs torn down or you'll find seemingly random resets when
581  * using your filesystem.
582  *
583  * @idev:	pointer to imr_device structure.
584  * @return:
585  */
586 static void __init imr_fixup_memmap(struct imr_device *idev)
587 {
588 	phys_addr_t base = virt_to_phys(&_text);
589 	size_t size = virt_to_phys(&__end_rodata) - base;
590 	int i;
591 	int ret;
592 
593 	/* Tear down all existing unlocked IMRs. */
594 	for (i = 0; i < idev->max_imr; i++)
595 		imr_clear(i);
596 
597 	/*
598 	 * Setup a locked IMR around the physical extent of the kernel
599 	 * from the beginning of the .text secton to the end of the
600 	 * .rodata section as one physically contiguous block.
601 	 */
602 	ret = imr_add_range(base, size, IMR_CPU, IMR_CPU, true);
603 	if (ret < 0) {
604 		pr_err("unable to setup IMR for kernel: (%p - %p)\n",
605 			&_text, &__end_rodata);
606 	} else {
607 		pr_info("protecting kernel .text - .rodata: %zu KiB (%p - %p)\n",
608 			size / 1024, &_text, &__end_rodata);
609 	}
610 
611 }
612 
613 static const struct x86_cpu_id imr_ids[] __initconst = {
614 	{ X86_VENDOR_INTEL, 5, 9 },	/* Intel Quark SoC X1000. */
615 	{}
616 };
617 MODULE_DEVICE_TABLE(x86cpu, imr_ids);
618 
619 /**
620  * imr_init - entry point for IMR driver.
621  *
622  * return: -ENODEV for no IMR support 0 if good to go.
623  */
624 static int __init imr_init(void)
625 {
626 	struct imr_device *idev = &imr_dev;
627 	int ret;
628 
629 	if (!x86_match_cpu(imr_ids) || !iosf_mbi_available())
630 		return -ENODEV;
631 
632 	idev->max_imr = QUARK_X1000_IMR_MAX;
633 	idev->reg_base = QUARK_X1000_IMR_REGBASE;
634 	idev->init = true;
635 
636 	mutex_init(&idev->lock);
637 	ret = imr_debugfs_register(idev);
638 	if (ret != 0)
639 		pr_warn("debugfs register failed!\n");
640 	imr_fixup_memmap(idev);
641 	return 0;
642 }
643 
644 /**
645  * imr_exit - exit point for IMR code.
646  *
647  * Deregisters debugfs, leave IMR state as-is.
648  *
649  * return:
650  */
651 static void __exit imr_exit(void)
652 {
653 	imr_debugfs_unregister(&imr_dev);
654 }
655 
656 module_init(imr_init);
657 module_exit(imr_exit);
658 
659 MODULE_AUTHOR("Bryan O'Donoghue <pure.logic@nexus-software.ie>");
660 MODULE_DESCRIPTION("Intel Isolated Memory Region driver");
661 MODULE_LICENSE("Dual BSD/GPL");
662