xref: /openbmc/linux/arch/x86/platform/efi/quirks.c (revision ddc141e5)
1 #define pr_fmt(fmt) "efi: " fmt
2 
3 #include <linux/init.h>
4 #include <linux/kernel.h>
5 #include <linux/string.h>
6 #include <linux/time.h>
7 #include <linux/types.h>
8 #include <linux/efi.h>
9 #include <linux/slab.h>
10 #include <linux/memblock.h>
11 #include <linux/bootmem.h>
12 #include <linux/acpi.h>
13 #include <linux/dmi.h>
14 
15 #include <asm/e820/api.h>
16 #include <asm/efi.h>
17 #include <asm/uv/uv.h>
18 #include <asm/cpu_device_id.h>
19 
20 #define EFI_MIN_RESERVE 5120
21 
22 #define EFI_DUMMY_GUID \
23 	EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9)
24 
25 #define QUARK_CSH_SIGNATURE		0x5f435348	/* _CSH */
26 #define QUARK_SECURITY_HEADER_SIZE	0x400
27 
28 /*
29  * Header prepended to the standard EFI capsule on Quark systems the are based
30  * on Intel firmware BSP.
31  * @csh_signature:	Unique identifier to sanity check signed module
32  * 			presence ("_CSH").
33  * @version:		Current version of CSH used. Should be one for Quark A0.
34  * @modulesize:		Size of the entire module including the module header
35  * 			and payload.
36  * @security_version_number_index: Index of SVN to use for validation of signed
37  * 			module.
38  * @security_version_number: Used to prevent against roll back of modules.
39  * @rsvd_module_id:	Currently unused for Clanton (Quark).
40  * @rsvd_module_vendor:	Vendor Identifier. For Intel products value is
41  * 			0x00008086.
42  * @rsvd_date:		BCD representation of build date as yyyymmdd, where
43  * 			yyyy=4 digit year, mm=1-12, dd=1-31.
44  * @headersize:		Total length of the header including including any
45  * 			padding optionally added by the signing tool.
46  * @hash_algo:		What Hash is used in the module signing.
47  * @cryp_algo:		What Crypto is used in the module signing.
48  * @keysize:		Total length of the key data including including any
49  * 			padding optionally added by the signing tool.
50  * @signaturesize:	Total length of the signature including including any
51  * 			padding optionally added by the signing tool.
52  * @rsvd_next_header:	32-bit pointer to the next Secure Boot Module in the
53  * 			chain, if there is a next header.
54  * @rsvd:		Reserved, padding structure to required size.
55  *
56  * See also QuartSecurityHeader_t in
57  * Quark_EDKII_v1.2.1.1/QuarkPlatformPkg/Include/QuarkBootRom.h
58  * from https://downloadcenter.intel.com/download/23197/Intel-Quark-SoC-X1000-Board-Support-Package-BSP
59  */
60 struct quark_security_header {
61 	u32 csh_signature;
62 	u32 version;
63 	u32 modulesize;
64 	u32 security_version_number_index;
65 	u32 security_version_number;
66 	u32 rsvd_module_id;
67 	u32 rsvd_module_vendor;
68 	u32 rsvd_date;
69 	u32 headersize;
70 	u32 hash_algo;
71 	u32 cryp_algo;
72 	u32 keysize;
73 	u32 signaturesize;
74 	u32 rsvd_next_header;
75 	u32 rsvd[2];
76 };
77 
78 static efi_char16_t efi_dummy_name[6] = { 'D', 'U', 'M', 'M', 'Y', 0 };
79 
80 static bool efi_no_storage_paranoia;
81 
82 /*
83  * Some firmware implementations refuse to boot if there's insufficient
84  * space in the variable store. The implementation of garbage collection
85  * in some FW versions causes stale (deleted) variables to take up space
86  * longer than intended and space is only freed once the store becomes
87  * almost completely full.
88  *
89  * Enabling this option disables the space checks in
90  * efi_query_variable_store() and forces garbage collection.
91  *
92  * Only enable this option if deleting EFI variables does not free up
93  * space in your variable store, e.g. if despite deleting variables
94  * you're unable to create new ones.
95  */
96 static int __init setup_storage_paranoia(char *arg)
97 {
98 	efi_no_storage_paranoia = true;
99 	return 0;
100 }
101 early_param("efi_no_storage_paranoia", setup_storage_paranoia);
102 
103 /*
104  * Deleting the dummy variable which kicks off garbage collection
105 */
106 void efi_delete_dummy_variable(void)
107 {
108 	efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
109 			 EFI_VARIABLE_NON_VOLATILE |
110 			 EFI_VARIABLE_BOOTSERVICE_ACCESS |
111 			 EFI_VARIABLE_RUNTIME_ACCESS,
112 			 0, NULL);
113 }
114 
115 /*
116  * In the nonblocking case we do not attempt to perform garbage
117  * collection if we do not have enough free space. Rather, we do the
118  * bare minimum check and give up immediately if the available space
119  * is below EFI_MIN_RESERVE.
120  *
121  * This function is intended to be small and simple because it is
122  * invoked from crash handler paths.
123  */
124 static efi_status_t
125 query_variable_store_nonblocking(u32 attributes, unsigned long size)
126 {
127 	efi_status_t status;
128 	u64 storage_size, remaining_size, max_size;
129 
130 	status = efi.query_variable_info_nonblocking(attributes, &storage_size,
131 						     &remaining_size,
132 						     &max_size);
133 	if (status != EFI_SUCCESS)
134 		return status;
135 
136 	if (remaining_size - size < EFI_MIN_RESERVE)
137 		return EFI_OUT_OF_RESOURCES;
138 
139 	return EFI_SUCCESS;
140 }
141 
142 /*
143  * Some firmware implementations refuse to boot if there's insufficient space
144  * in the variable store. Ensure that we never use more than a safe limit.
145  *
146  * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable
147  * store.
148  */
149 efi_status_t efi_query_variable_store(u32 attributes, unsigned long size,
150 				      bool nonblocking)
151 {
152 	efi_status_t status;
153 	u64 storage_size, remaining_size, max_size;
154 
155 	if (!(attributes & EFI_VARIABLE_NON_VOLATILE))
156 		return 0;
157 
158 	if (nonblocking)
159 		return query_variable_store_nonblocking(attributes, size);
160 
161 	status = efi.query_variable_info(attributes, &storage_size,
162 					 &remaining_size, &max_size);
163 	if (status != EFI_SUCCESS)
164 		return status;
165 
166 	/*
167 	 * We account for that by refusing the write if permitting it would
168 	 * reduce the available space to under 5KB. This figure was provided by
169 	 * Samsung, so should be safe.
170 	 */
171 	if ((remaining_size - size < EFI_MIN_RESERVE) &&
172 		!efi_no_storage_paranoia) {
173 
174 		/*
175 		 * Triggering garbage collection may require that the firmware
176 		 * generate a real EFI_OUT_OF_RESOURCES error. We can force
177 		 * that by attempting to use more space than is available.
178 		 */
179 		unsigned long dummy_size = remaining_size + 1024;
180 		void *dummy = kzalloc(dummy_size, GFP_ATOMIC);
181 
182 		if (!dummy)
183 			return EFI_OUT_OF_RESOURCES;
184 
185 		status = efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
186 					  EFI_VARIABLE_NON_VOLATILE |
187 					  EFI_VARIABLE_BOOTSERVICE_ACCESS |
188 					  EFI_VARIABLE_RUNTIME_ACCESS,
189 					  dummy_size, dummy);
190 
191 		if (status == EFI_SUCCESS) {
192 			/*
193 			 * This should have failed, so if it didn't make sure
194 			 * that we delete it...
195 			 */
196 			efi_delete_dummy_variable();
197 		}
198 
199 		kfree(dummy);
200 
201 		/*
202 		 * The runtime code may now have triggered a garbage collection
203 		 * run, so check the variable info again
204 		 */
205 		status = efi.query_variable_info(attributes, &storage_size,
206 						 &remaining_size, &max_size);
207 
208 		if (status != EFI_SUCCESS)
209 			return status;
210 
211 		/*
212 		 * There still isn't enough room, so return an error
213 		 */
214 		if (remaining_size - size < EFI_MIN_RESERVE)
215 			return EFI_OUT_OF_RESOURCES;
216 	}
217 
218 	return EFI_SUCCESS;
219 }
220 EXPORT_SYMBOL_GPL(efi_query_variable_store);
221 
222 /*
223  * The UEFI specification makes it clear that the operating system is
224  * free to do whatever it wants with boot services code after
225  * ExitBootServices() has been called. Ignoring this recommendation a
226  * significant bunch of EFI implementations continue calling into boot
227  * services code (SetVirtualAddressMap). In order to work around such
228  * buggy implementations we reserve boot services region during EFI
229  * init and make sure it stays executable. Then, after
230  * SetVirtualAddressMap(), it is discarded.
231  *
232  * However, some boot services regions contain data that is required
233  * by drivers, so we need to track which memory ranges can never be
234  * freed. This is done by tagging those regions with the
235  * EFI_MEMORY_RUNTIME attribute.
236  *
237  * Any driver that wants to mark a region as reserved must use
238  * efi_mem_reserve() which will insert a new EFI memory descriptor
239  * into efi.memmap (splitting existing regions if necessary) and tag
240  * it with EFI_MEMORY_RUNTIME.
241  */
242 void __init efi_arch_mem_reserve(phys_addr_t addr, u64 size)
243 {
244 	phys_addr_t new_phys, new_size;
245 	struct efi_mem_range mr;
246 	efi_memory_desc_t md;
247 	int num_entries;
248 	void *new;
249 
250 	if (efi_mem_desc_lookup(addr, &md)) {
251 		pr_err("Failed to lookup EFI memory descriptor for %pa\n", &addr);
252 		return;
253 	}
254 
255 	if (addr + size > md.phys_addr + (md.num_pages << EFI_PAGE_SHIFT)) {
256 		pr_err("Region spans EFI memory descriptors, %pa\n", &addr);
257 		return;
258 	}
259 
260 	/* No need to reserve regions that will never be freed. */
261 	if (md.attribute & EFI_MEMORY_RUNTIME)
262 		return;
263 
264 	size += addr % EFI_PAGE_SIZE;
265 	size = round_up(size, EFI_PAGE_SIZE);
266 	addr = round_down(addr, EFI_PAGE_SIZE);
267 
268 	mr.range.start = addr;
269 	mr.range.end = addr + size - 1;
270 	mr.attribute = md.attribute | EFI_MEMORY_RUNTIME;
271 
272 	num_entries = efi_memmap_split_count(&md, &mr.range);
273 	num_entries += efi.memmap.nr_map;
274 
275 	new_size = efi.memmap.desc_size * num_entries;
276 
277 	new_phys = efi_memmap_alloc(num_entries);
278 	if (!new_phys) {
279 		pr_err("Could not allocate boot services memmap\n");
280 		return;
281 	}
282 
283 	new = early_memremap(new_phys, new_size);
284 	if (!new) {
285 		pr_err("Failed to map new boot services memmap\n");
286 		return;
287 	}
288 
289 	efi_memmap_insert(&efi.memmap, new, &mr);
290 	early_memunmap(new, new_size);
291 
292 	efi_memmap_install(new_phys, num_entries);
293 }
294 
295 /*
296  * Helper function for efi_reserve_boot_services() to figure out if we
297  * can free regions in efi_free_boot_services().
298  *
299  * Use this function to ensure we do not free regions owned by somebody
300  * else. We must only reserve (and then free) regions:
301  *
302  * - Not within any part of the kernel
303  * - Not the BIOS reserved area (E820_TYPE_RESERVED, E820_TYPE_NVS, etc)
304  */
305 static bool can_free_region(u64 start, u64 size)
306 {
307 	if (start + size > __pa_symbol(_text) && start <= __pa_symbol(_end))
308 		return false;
309 
310 	if (!e820__mapped_all(start, start+size, E820_TYPE_RAM))
311 		return false;
312 
313 	return true;
314 }
315 
316 void __init efi_reserve_boot_services(void)
317 {
318 	efi_memory_desc_t *md;
319 
320 	for_each_efi_memory_desc(md) {
321 		u64 start = md->phys_addr;
322 		u64 size = md->num_pages << EFI_PAGE_SHIFT;
323 		bool already_reserved;
324 
325 		if (md->type != EFI_BOOT_SERVICES_CODE &&
326 		    md->type != EFI_BOOT_SERVICES_DATA)
327 			continue;
328 
329 		already_reserved = memblock_is_region_reserved(start, size);
330 
331 		/*
332 		 * Because the following memblock_reserve() is paired
333 		 * with free_bootmem_late() for this region in
334 		 * efi_free_boot_services(), we must be extremely
335 		 * careful not to reserve, and subsequently free,
336 		 * critical regions of memory (like the kernel image) or
337 		 * those regions that somebody else has already
338 		 * reserved.
339 		 *
340 		 * A good example of a critical region that must not be
341 		 * freed is page zero (first 4Kb of memory), which may
342 		 * contain boot services code/data but is marked
343 		 * E820_TYPE_RESERVED by trim_bios_range().
344 		 */
345 		if (!already_reserved) {
346 			memblock_reserve(start, size);
347 
348 			/*
349 			 * If we are the first to reserve the region, no
350 			 * one else cares about it. We own it and can
351 			 * free it later.
352 			 */
353 			if (can_free_region(start, size))
354 				continue;
355 		}
356 
357 		/*
358 		 * We don't own the region. We must not free it.
359 		 *
360 		 * Setting this bit for a boot services region really
361 		 * doesn't make sense as far as the firmware is
362 		 * concerned, but it does provide us with a way to tag
363 		 * those regions that must not be paired with
364 		 * free_bootmem_late().
365 		 */
366 		md->attribute |= EFI_MEMORY_RUNTIME;
367 	}
368 }
369 
370 void __init efi_free_boot_services(void)
371 {
372 	phys_addr_t new_phys, new_size;
373 	efi_memory_desc_t *md;
374 	int num_entries = 0;
375 	void *new, *new_md;
376 
377 	for_each_efi_memory_desc(md) {
378 		unsigned long long start = md->phys_addr;
379 		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
380 		size_t rm_size;
381 
382 		if (md->type != EFI_BOOT_SERVICES_CODE &&
383 		    md->type != EFI_BOOT_SERVICES_DATA) {
384 			num_entries++;
385 			continue;
386 		}
387 
388 		/* Do not free, someone else owns it: */
389 		if (md->attribute & EFI_MEMORY_RUNTIME) {
390 			num_entries++;
391 			continue;
392 		}
393 
394 		/*
395 		 * Nasty quirk: if all sub-1MB memory is used for boot
396 		 * services, we can get here without having allocated the
397 		 * real mode trampoline.  It's too late to hand boot services
398 		 * memory back to the memblock allocator, so instead
399 		 * try to manually allocate the trampoline if needed.
400 		 *
401 		 * I've seen this on a Dell XPS 13 9350 with firmware
402 		 * 1.4.4 with SGX enabled booting Linux via Fedora 24's
403 		 * grub2-efi on a hard disk.  (And no, I don't know why
404 		 * this happened, but Linux should still try to boot rather
405 		 * panicing early.)
406 		 */
407 		rm_size = real_mode_size_needed();
408 		if (rm_size && (start + rm_size) < (1<<20) && size >= rm_size) {
409 			set_real_mode_mem(start, rm_size);
410 			start += rm_size;
411 			size -= rm_size;
412 		}
413 
414 		free_bootmem_late(start, size);
415 	}
416 
417 	if (!num_entries)
418 		return;
419 
420 	new_size = efi.memmap.desc_size * num_entries;
421 	new_phys = efi_memmap_alloc(num_entries);
422 	if (!new_phys) {
423 		pr_err("Failed to allocate new EFI memmap\n");
424 		return;
425 	}
426 
427 	new = memremap(new_phys, new_size, MEMREMAP_WB);
428 	if (!new) {
429 		pr_err("Failed to map new EFI memmap\n");
430 		return;
431 	}
432 
433 	/*
434 	 * Build a new EFI memmap that excludes any boot services
435 	 * regions that are not tagged EFI_MEMORY_RUNTIME, since those
436 	 * regions have now been freed.
437 	 */
438 	new_md = new;
439 	for_each_efi_memory_desc(md) {
440 		if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
441 		    (md->type == EFI_BOOT_SERVICES_CODE ||
442 		     md->type == EFI_BOOT_SERVICES_DATA))
443 			continue;
444 
445 		memcpy(new_md, md, efi.memmap.desc_size);
446 		new_md += efi.memmap.desc_size;
447 	}
448 
449 	memunmap(new);
450 
451 	if (efi_memmap_install(new_phys, num_entries)) {
452 		pr_err("Could not install new EFI memmap\n");
453 		return;
454 	}
455 }
456 
457 /*
458  * A number of config table entries get remapped to virtual addresses
459  * after entering EFI virtual mode. However, the kexec kernel requires
460  * their physical addresses therefore we pass them via setup_data and
461  * correct those entries to their respective physical addresses here.
462  *
463  * Currently only handles smbios which is necessary for some firmware
464  * implementation.
465  */
466 int __init efi_reuse_config(u64 tables, int nr_tables)
467 {
468 	int i, sz, ret = 0;
469 	void *p, *tablep;
470 	struct efi_setup_data *data;
471 
472 	if (!efi_setup)
473 		return 0;
474 
475 	if (!efi_enabled(EFI_64BIT))
476 		return 0;
477 
478 	data = early_memremap(efi_setup, sizeof(*data));
479 	if (!data) {
480 		ret = -ENOMEM;
481 		goto out;
482 	}
483 
484 	if (!data->smbios)
485 		goto out_memremap;
486 
487 	sz = sizeof(efi_config_table_64_t);
488 
489 	p = tablep = early_memremap(tables, nr_tables * sz);
490 	if (!p) {
491 		pr_err("Could not map Configuration table!\n");
492 		ret = -ENOMEM;
493 		goto out_memremap;
494 	}
495 
496 	for (i = 0; i < efi.systab->nr_tables; i++) {
497 		efi_guid_t guid;
498 
499 		guid = ((efi_config_table_64_t *)p)->guid;
500 
501 		if (!efi_guidcmp(guid, SMBIOS_TABLE_GUID))
502 			((efi_config_table_64_t *)p)->table = data->smbios;
503 		p += sz;
504 	}
505 	early_memunmap(tablep, nr_tables * sz);
506 
507 out_memremap:
508 	early_memunmap(data, sizeof(*data));
509 out:
510 	return ret;
511 }
512 
513 static const struct dmi_system_id sgi_uv1_dmi[] = {
514 	{ NULL, "SGI UV1",
515 		{	DMI_MATCH(DMI_PRODUCT_NAME,	"Stoutland Platform"),
516 			DMI_MATCH(DMI_PRODUCT_VERSION,	"1.0"),
517 			DMI_MATCH(DMI_BIOS_VENDOR,	"SGI.COM"),
518 		}
519 	},
520 	{ } /* NULL entry stops DMI scanning */
521 };
522 
523 void __init efi_apply_memmap_quirks(void)
524 {
525 	/*
526 	 * Once setup is done earlier, unmap the EFI memory map on mismatched
527 	 * firmware/kernel architectures since there is no support for runtime
528 	 * services.
529 	 */
530 	if (!efi_runtime_supported()) {
531 		pr_info("Setup done, disabling due to 32/64-bit mismatch\n");
532 		efi_memmap_unmap();
533 	}
534 
535 	/* UV2+ BIOS has a fix for this issue.  UV1 still needs the quirk. */
536 	if (dmi_check_system(sgi_uv1_dmi))
537 		set_bit(EFI_OLD_MEMMAP, &efi.flags);
538 }
539 
540 /*
541  * For most modern platforms the preferred method of powering off is via
542  * ACPI. However, there are some that are known to require the use of
543  * EFI runtime services and for which ACPI does not work at all.
544  *
545  * Using EFI is a last resort, to be used only if no other option
546  * exists.
547  */
548 bool efi_reboot_required(void)
549 {
550 	if (!acpi_gbl_reduced_hardware)
551 		return false;
552 
553 	efi_reboot_quirk_mode = EFI_RESET_WARM;
554 	return true;
555 }
556 
557 bool efi_poweroff_required(void)
558 {
559 	return acpi_gbl_reduced_hardware || acpi_no_s5;
560 }
561 
562 #ifdef CONFIG_EFI_CAPSULE_QUIRK_QUARK_CSH
563 
564 static int qrk_capsule_setup_info(struct capsule_info *cap_info, void **pkbuff,
565 				  size_t hdr_bytes)
566 {
567 	struct quark_security_header *csh = *pkbuff;
568 
569 	/* Only process data block that is larger than the security header */
570 	if (hdr_bytes < sizeof(struct quark_security_header))
571 		return 0;
572 
573 	if (csh->csh_signature != QUARK_CSH_SIGNATURE ||
574 	    csh->headersize != QUARK_SECURITY_HEADER_SIZE)
575 		return 1;
576 
577 	/* Only process data block if EFI header is included */
578 	if (hdr_bytes < QUARK_SECURITY_HEADER_SIZE +
579 			sizeof(efi_capsule_header_t))
580 		return 0;
581 
582 	pr_debug("Quark security header detected\n");
583 
584 	if (csh->rsvd_next_header != 0) {
585 		pr_err("multiple Quark security headers not supported\n");
586 		return -EINVAL;
587 	}
588 
589 	*pkbuff += csh->headersize;
590 	cap_info->total_size = csh->headersize;
591 
592 	/*
593 	 * Update the first page pointer to skip over the CSH header.
594 	 */
595 	cap_info->phys[0] += csh->headersize;
596 
597 	/*
598 	 * cap_info->capsule should point at a virtual mapping of the entire
599 	 * capsule, starting at the capsule header. Our image has the Quark
600 	 * security header prepended, so we cannot rely on the default vmap()
601 	 * mapping created by the generic capsule code.
602 	 * Given that the Quark firmware does not appear to care about the
603 	 * virtual mapping, let's just point cap_info->capsule at our copy
604 	 * of the capsule header.
605 	 */
606 	cap_info->capsule = &cap_info->header;
607 
608 	return 1;
609 }
610 
611 #define ICPU(family, model, quirk_handler) \
612 	{ X86_VENDOR_INTEL, family, model, X86_FEATURE_ANY, \
613 	  (unsigned long)&quirk_handler }
614 
615 static const struct x86_cpu_id efi_capsule_quirk_ids[] = {
616 	ICPU(5, 9, qrk_capsule_setup_info),	/* Intel Quark X1000 */
617 	{ }
618 };
619 
620 int efi_capsule_setup_info(struct capsule_info *cap_info, void *kbuff,
621 			   size_t hdr_bytes)
622 {
623 	int (*quirk_handler)(struct capsule_info *, void **, size_t);
624 	const struct x86_cpu_id *id;
625 	int ret;
626 
627 	if (hdr_bytes < sizeof(efi_capsule_header_t))
628 		return 0;
629 
630 	cap_info->total_size = 0;
631 
632 	id = x86_match_cpu(efi_capsule_quirk_ids);
633 	if (id) {
634 		/*
635 		 * The quirk handler is supposed to return
636 		 *  - a value > 0 if the setup should continue, after advancing
637 		 *    kbuff as needed
638 		 *  - 0 if not enough hdr_bytes are available yet
639 		 *  - a negative error code otherwise
640 		 */
641 		quirk_handler = (typeof(quirk_handler))id->driver_data;
642 		ret = quirk_handler(cap_info, &kbuff, hdr_bytes);
643 		if (ret <= 0)
644 			return ret;
645 	}
646 
647 	memcpy(&cap_info->header, kbuff, sizeof(cap_info->header));
648 
649 	cap_info->total_size += cap_info->header.imagesize;
650 
651 	return __efi_capsule_setup_info(cap_info);
652 }
653 
654 #endif
655