1 #define pr_fmt(fmt) "efi: " fmt 2 3 #include <linux/init.h> 4 #include <linux/kernel.h> 5 #include <linux/string.h> 6 #include <linux/time.h> 7 #include <linux/types.h> 8 #include <linux/efi.h> 9 #include <linux/slab.h> 10 #include <linux/memblock.h> 11 #include <linux/bootmem.h> 12 #include <linux/acpi.h> 13 #include <linux/dmi.h> 14 #include <asm/efi.h> 15 #include <asm/uv/uv.h> 16 17 #define EFI_MIN_RESERVE 5120 18 19 #define EFI_DUMMY_GUID \ 20 EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9) 21 22 static efi_char16_t efi_dummy_name[6] = { 'D', 'U', 'M', 'M', 'Y', 0 }; 23 24 static bool efi_no_storage_paranoia; 25 26 /* 27 * Some firmware implementations refuse to boot if there's insufficient 28 * space in the variable store. The implementation of garbage collection 29 * in some FW versions causes stale (deleted) variables to take up space 30 * longer than intended and space is only freed once the store becomes 31 * almost completely full. 32 * 33 * Enabling this option disables the space checks in 34 * efi_query_variable_store() and forces garbage collection. 35 * 36 * Only enable this option if deleting EFI variables does not free up 37 * space in your variable store, e.g. if despite deleting variables 38 * you're unable to create new ones. 39 */ 40 static int __init setup_storage_paranoia(char *arg) 41 { 42 efi_no_storage_paranoia = true; 43 return 0; 44 } 45 early_param("efi_no_storage_paranoia", setup_storage_paranoia); 46 47 /* 48 * Deleting the dummy variable which kicks off garbage collection 49 */ 50 void efi_delete_dummy_variable(void) 51 { 52 efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID, 53 EFI_VARIABLE_NON_VOLATILE | 54 EFI_VARIABLE_BOOTSERVICE_ACCESS | 55 EFI_VARIABLE_RUNTIME_ACCESS, 56 0, NULL); 57 } 58 59 /* 60 * In the nonblocking case we do not attempt to perform garbage 61 * collection if we do not have enough free space. Rather, we do the 62 * bare minimum check and give up immediately if the available space 63 * is below EFI_MIN_RESERVE. 64 * 65 * This function is intended to be small and simple because it is 66 * invoked from crash handler paths. 67 */ 68 static efi_status_t 69 query_variable_store_nonblocking(u32 attributes, unsigned long size) 70 { 71 efi_status_t status; 72 u64 storage_size, remaining_size, max_size; 73 74 status = efi.query_variable_info_nonblocking(attributes, &storage_size, 75 &remaining_size, 76 &max_size); 77 if (status != EFI_SUCCESS) 78 return status; 79 80 if (remaining_size - size < EFI_MIN_RESERVE) 81 return EFI_OUT_OF_RESOURCES; 82 83 return EFI_SUCCESS; 84 } 85 86 /* 87 * Some firmware implementations refuse to boot if there's insufficient space 88 * in the variable store. Ensure that we never use more than a safe limit. 89 * 90 * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable 91 * store. 92 */ 93 efi_status_t efi_query_variable_store(u32 attributes, unsigned long size, 94 bool nonblocking) 95 { 96 efi_status_t status; 97 u64 storage_size, remaining_size, max_size; 98 99 if (!(attributes & EFI_VARIABLE_NON_VOLATILE)) 100 return 0; 101 102 if (nonblocking) 103 return query_variable_store_nonblocking(attributes, size); 104 105 status = efi.query_variable_info(attributes, &storage_size, 106 &remaining_size, &max_size); 107 if (status != EFI_SUCCESS) 108 return status; 109 110 /* 111 * We account for that by refusing the write if permitting it would 112 * reduce the available space to under 5KB. This figure was provided by 113 * Samsung, so should be safe. 114 */ 115 if ((remaining_size - size < EFI_MIN_RESERVE) && 116 !efi_no_storage_paranoia) { 117 118 /* 119 * Triggering garbage collection may require that the firmware 120 * generate a real EFI_OUT_OF_RESOURCES error. We can force 121 * that by attempting to use more space than is available. 122 */ 123 unsigned long dummy_size = remaining_size + 1024; 124 void *dummy = kzalloc(dummy_size, GFP_ATOMIC); 125 126 if (!dummy) 127 return EFI_OUT_OF_RESOURCES; 128 129 status = efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID, 130 EFI_VARIABLE_NON_VOLATILE | 131 EFI_VARIABLE_BOOTSERVICE_ACCESS | 132 EFI_VARIABLE_RUNTIME_ACCESS, 133 dummy_size, dummy); 134 135 if (status == EFI_SUCCESS) { 136 /* 137 * This should have failed, so if it didn't make sure 138 * that we delete it... 139 */ 140 efi_delete_dummy_variable(); 141 } 142 143 kfree(dummy); 144 145 /* 146 * The runtime code may now have triggered a garbage collection 147 * run, so check the variable info again 148 */ 149 status = efi.query_variable_info(attributes, &storage_size, 150 &remaining_size, &max_size); 151 152 if (status != EFI_SUCCESS) 153 return status; 154 155 /* 156 * There still isn't enough room, so return an error 157 */ 158 if (remaining_size - size < EFI_MIN_RESERVE) 159 return EFI_OUT_OF_RESOURCES; 160 } 161 162 return EFI_SUCCESS; 163 } 164 EXPORT_SYMBOL_GPL(efi_query_variable_store); 165 166 /* 167 * Helper function for efi_reserve_boot_services() to figure out if we 168 * can free regions in efi_free_boot_services(). 169 * 170 * Use this function to ensure we do not free regions owned by somebody 171 * else. We must only reserve (and then free) regions: 172 * 173 * - Not within any part of the kernel 174 * - Not the BIOS reserved area (E820_RESERVED, E820_NVS, etc) 175 */ 176 static bool can_free_region(u64 start, u64 size) 177 { 178 if (start + size > __pa_symbol(_text) && start <= __pa_symbol(_end)) 179 return false; 180 181 if (!e820_all_mapped(start, start+size, E820_RAM)) 182 return false; 183 184 return true; 185 } 186 187 /* 188 * The UEFI specification makes it clear that the operating system is free to do 189 * whatever it wants with boot services code after ExitBootServices() has been 190 * called. Ignoring this recommendation a significant bunch of EFI implementations 191 * continue calling into boot services code (SetVirtualAddressMap). In order to 192 * work around such buggy implementations we reserve boot services region during 193 * EFI init and make sure it stays executable. Then, after SetVirtualAddressMap(), it 194 * is discarded. 195 */ 196 void __init efi_reserve_boot_services(void) 197 { 198 efi_memory_desc_t *md; 199 200 for_each_efi_memory_desc(md) { 201 u64 start = md->phys_addr; 202 u64 size = md->num_pages << EFI_PAGE_SHIFT; 203 bool already_reserved; 204 205 if (md->type != EFI_BOOT_SERVICES_CODE && 206 md->type != EFI_BOOT_SERVICES_DATA) 207 continue; 208 209 already_reserved = memblock_is_region_reserved(start, size); 210 211 /* 212 * Because the following memblock_reserve() is paired 213 * with free_bootmem_late() for this region in 214 * efi_free_boot_services(), we must be extremely 215 * careful not to reserve, and subsequently free, 216 * critical regions of memory (like the kernel image) or 217 * those regions that somebody else has already 218 * reserved. 219 * 220 * A good example of a critical region that must not be 221 * freed is page zero (first 4Kb of memory), which may 222 * contain boot services code/data but is marked 223 * E820_RESERVED by trim_bios_range(). 224 */ 225 if (!already_reserved) { 226 memblock_reserve(start, size); 227 228 /* 229 * If we are the first to reserve the region, no 230 * one else cares about it. We own it and can 231 * free it later. 232 */ 233 if (can_free_region(start, size)) 234 continue; 235 } 236 237 /* 238 * We don't own the region. We must not free it. 239 * 240 * Setting this bit for a boot services region really 241 * doesn't make sense as far as the firmware is 242 * concerned, but it does provide us with a way to tag 243 * those regions that must not be paired with 244 * free_bootmem_late(). 245 */ 246 md->attribute |= EFI_MEMORY_RUNTIME; 247 } 248 } 249 250 void __init efi_free_boot_services(void) 251 { 252 efi_memory_desc_t *md; 253 254 for_each_efi_memory_desc(md) { 255 unsigned long long start = md->phys_addr; 256 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT; 257 size_t rm_size; 258 259 if (md->type != EFI_BOOT_SERVICES_CODE && 260 md->type != EFI_BOOT_SERVICES_DATA) 261 continue; 262 263 /* Do not free, someone else owns it: */ 264 if (md->attribute & EFI_MEMORY_RUNTIME) 265 continue; 266 267 /* 268 * Nasty quirk: if all sub-1MB memory is used for boot 269 * services, we can get here without having allocated the 270 * real mode trampoline. It's too late to hand boot services 271 * memory back to the memblock allocator, so instead 272 * try to manually allocate the trampoline if needed. 273 * 274 * I've seen this on a Dell XPS 13 9350 with firmware 275 * 1.4.4 with SGX enabled booting Linux via Fedora 24's 276 * grub2-efi on a hard disk. (And no, I don't know why 277 * this happened, but Linux should still try to boot rather 278 * panicing early.) 279 */ 280 rm_size = real_mode_size_needed(); 281 if (rm_size && (start + rm_size) < (1<<20) && size >= rm_size) { 282 set_real_mode_mem(start, rm_size); 283 start += rm_size; 284 size -= rm_size; 285 } 286 287 free_bootmem_late(start, size); 288 } 289 290 efi_unmap_memmap(); 291 } 292 293 /* 294 * A number of config table entries get remapped to virtual addresses 295 * after entering EFI virtual mode. However, the kexec kernel requires 296 * their physical addresses therefore we pass them via setup_data and 297 * correct those entries to their respective physical addresses here. 298 * 299 * Currently only handles smbios which is necessary for some firmware 300 * implementation. 301 */ 302 int __init efi_reuse_config(u64 tables, int nr_tables) 303 { 304 int i, sz, ret = 0; 305 void *p, *tablep; 306 struct efi_setup_data *data; 307 308 if (!efi_setup) 309 return 0; 310 311 if (!efi_enabled(EFI_64BIT)) 312 return 0; 313 314 data = early_memremap(efi_setup, sizeof(*data)); 315 if (!data) { 316 ret = -ENOMEM; 317 goto out; 318 } 319 320 if (!data->smbios) 321 goto out_memremap; 322 323 sz = sizeof(efi_config_table_64_t); 324 325 p = tablep = early_memremap(tables, nr_tables * sz); 326 if (!p) { 327 pr_err("Could not map Configuration table!\n"); 328 ret = -ENOMEM; 329 goto out_memremap; 330 } 331 332 for (i = 0; i < efi.systab->nr_tables; i++) { 333 efi_guid_t guid; 334 335 guid = ((efi_config_table_64_t *)p)->guid; 336 337 if (!efi_guidcmp(guid, SMBIOS_TABLE_GUID)) 338 ((efi_config_table_64_t *)p)->table = data->smbios; 339 p += sz; 340 } 341 early_memunmap(tablep, nr_tables * sz); 342 343 out_memremap: 344 early_memunmap(data, sizeof(*data)); 345 out: 346 return ret; 347 } 348 349 static const struct dmi_system_id sgi_uv1_dmi[] = { 350 { NULL, "SGI UV1", 351 { DMI_MATCH(DMI_PRODUCT_NAME, "Stoutland Platform"), 352 DMI_MATCH(DMI_PRODUCT_VERSION, "1.0"), 353 DMI_MATCH(DMI_BIOS_VENDOR, "SGI.COM"), 354 } 355 }, 356 { } /* NULL entry stops DMI scanning */ 357 }; 358 359 void __init efi_apply_memmap_quirks(void) 360 { 361 /* 362 * Once setup is done earlier, unmap the EFI memory map on mismatched 363 * firmware/kernel architectures since there is no support for runtime 364 * services. 365 */ 366 if (!efi_runtime_supported()) { 367 pr_info("Setup done, disabling due to 32/64-bit mismatch\n"); 368 efi_unmap_memmap(); 369 } 370 371 /* UV2+ BIOS has a fix for this issue. UV1 still needs the quirk. */ 372 if (dmi_check_system(sgi_uv1_dmi)) 373 set_bit(EFI_OLD_MEMMAP, &efi.flags); 374 } 375 376 /* 377 * For most modern platforms the preferred method of powering off is via 378 * ACPI. However, there are some that are known to require the use of 379 * EFI runtime services and for which ACPI does not work at all. 380 * 381 * Using EFI is a last resort, to be used only if no other option 382 * exists. 383 */ 384 bool efi_reboot_required(void) 385 { 386 if (!acpi_gbl_reduced_hardware) 387 return false; 388 389 efi_reboot_quirk_mode = EFI_RESET_WARM; 390 return true; 391 } 392 393 bool efi_poweroff_required(void) 394 { 395 return acpi_gbl_reduced_hardware || acpi_no_s5; 396 } 397