1 #define pr_fmt(fmt) "efi: " fmt 2 3 #include <linux/init.h> 4 #include <linux/kernel.h> 5 #include <linux/string.h> 6 #include <linux/time.h> 7 #include <linux/types.h> 8 #include <linux/efi.h> 9 #include <linux/slab.h> 10 #include <linux/memblock.h> 11 #include <linux/bootmem.h> 12 #include <linux/acpi.h> 13 #include <linux/dmi.h> 14 15 #include <asm/e820/api.h> 16 #include <asm/efi.h> 17 #include <asm/uv/uv.h> 18 #include <asm/cpu_device_id.h> 19 20 #define EFI_MIN_RESERVE 5120 21 22 #define EFI_DUMMY_GUID \ 23 EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9) 24 25 #define QUARK_CSH_SIGNATURE 0x5f435348 /* _CSH */ 26 #define QUARK_SECURITY_HEADER_SIZE 0x400 27 28 /* 29 * Header prepended to the standard EFI capsule on Quark systems the are based 30 * on Intel firmware BSP. 31 * @csh_signature: Unique identifier to sanity check signed module 32 * presence ("_CSH"). 33 * @version: Current version of CSH used. Should be one for Quark A0. 34 * @modulesize: Size of the entire module including the module header 35 * and payload. 36 * @security_version_number_index: Index of SVN to use for validation of signed 37 * module. 38 * @security_version_number: Used to prevent against roll back of modules. 39 * @rsvd_module_id: Currently unused for Clanton (Quark). 40 * @rsvd_module_vendor: Vendor Identifier. For Intel products value is 41 * 0x00008086. 42 * @rsvd_date: BCD representation of build date as yyyymmdd, where 43 * yyyy=4 digit year, mm=1-12, dd=1-31. 44 * @headersize: Total length of the header including including any 45 * padding optionally added by the signing tool. 46 * @hash_algo: What Hash is used in the module signing. 47 * @cryp_algo: What Crypto is used in the module signing. 48 * @keysize: Total length of the key data including including any 49 * padding optionally added by the signing tool. 50 * @signaturesize: Total length of the signature including including any 51 * padding optionally added by the signing tool. 52 * @rsvd_next_header: 32-bit pointer to the next Secure Boot Module in the 53 * chain, if there is a next header. 54 * @rsvd: Reserved, padding structure to required size. 55 * 56 * See also QuartSecurityHeader_t in 57 * Quark_EDKII_v1.2.1.1/QuarkPlatformPkg/Include/QuarkBootRom.h 58 * from https://downloadcenter.intel.com/download/23197/Intel-Quark-SoC-X1000-Board-Support-Package-BSP 59 */ 60 struct quark_security_header { 61 u32 csh_signature; 62 u32 version; 63 u32 modulesize; 64 u32 security_version_number_index; 65 u32 security_version_number; 66 u32 rsvd_module_id; 67 u32 rsvd_module_vendor; 68 u32 rsvd_date; 69 u32 headersize; 70 u32 hash_algo; 71 u32 cryp_algo; 72 u32 keysize; 73 u32 signaturesize; 74 u32 rsvd_next_header; 75 u32 rsvd[2]; 76 }; 77 78 static const efi_char16_t efi_dummy_name[] = L"DUMMY"; 79 80 static bool efi_no_storage_paranoia; 81 82 /* 83 * Some firmware implementations refuse to boot if there's insufficient 84 * space in the variable store. The implementation of garbage collection 85 * in some FW versions causes stale (deleted) variables to take up space 86 * longer than intended and space is only freed once the store becomes 87 * almost completely full. 88 * 89 * Enabling this option disables the space checks in 90 * efi_query_variable_store() and forces garbage collection. 91 * 92 * Only enable this option if deleting EFI variables does not free up 93 * space in your variable store, e.g. if despite deleting variables 94 * you're unable to create new ones. 95 */ 96 static int __init setup_storage_paranoia(char *arg) 97 { 98 efi_no_storage_paranoia = true; 99 return 0; 100 } 101 early_param("efi_no_storage_paranoia", setup_storage_paranoia); 102 103 /* 104 * Deleting the dummy variable which kicks off garbage collection 105 */ 106 void efi_delete_dummy_variable(void) 107 { 108 efi.set_variable((efi_char16_t *)efi_dummy_name, 109 &EFI_DUMMY_GUID, 110 EFI_VARIABLE_NON_VOLATILE | 111 EFI_VARIABLE_BOOTSERVICE_ACCESS | 112 EFI_VARIABLE_RUNTIME_ACCESS, 113 0, NULL); 114 } 115 116 /* 117 * In the nonblocking case we do not attempt to perform garbage 118 * collection if we do not have enough free space. Rather, we do the 119 * bare minimum check and give up immediately if the available space 120 * is below EFI_MIN_RESERVE. 121 * 122 * This function is intended to be small and simple because it is 123 * invoked from crash handler paths. 124 */ 125 static efi_status_t 126 query_variable_store_nonblocking(u32 attributes, unsigned long size) 127 { 128 efi_status_t status; 129 u64 storage_size, remaining_size, max_size; 130 131 status = efi.query_variable_info_nonblocking(attributes, &storage_size, 132 &remaining_size, 133 &max_size); 134 if (status != EFI_SUCCESS) 135 return status; 136 137 if (remaining_size - size < EFI_MIN_RESERVE) 138 return EFI_OUT_OF_RESOURCES; 139 140 return EFI_SUCCESS; 141 } 142 143 /* 144 * Some firmware implementations refuse to boot if there's insufficient space 145 * in the variable store. Ensure that we never use more than a safe limit. 146 * 147 * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable 148 * store. 149 */ 150 efi_status_t efi_query_variable_store(u32 attributes, unsigned long size, 151 bool nonblocking) 152 { 153 efi_status_t status; 154 u64 storage_size, remaining_size, max_size; 155 156 if (!(attributes & EFI_VARIABLE_NON_VOLATILE)) 157 return 0; 158 159 if (nonblocking) 160 return query_variable_store_nonblocking(attributes, size); 161 162 status = efi.query_variable_info(attributes, &storage_size, 163 &remaining_size, &max_size); 164 if (status != EFI_SUCCESS) 165 return status; 166 167 /* 168 * We account for that by refusing the write if permitting it would 169 * reduce the available space to under 5KB. This figure was provided by 170 * Samsung, so should be safe. 171 */ 172 if ((remaining_size - size < EFI_MIN_RESERVE) && 173 !efi_no_storage_paranoia) { 174 175 /* 176 * Triggering garbage collection may require that the firmware 177 * generate a real EFI_OUT_OF_RESOURCES error. We can force 178 * that by attempting to use more space than is available. 179 */ 180 unsigned long dummy_size = remaining_size + 1024; 181 void *dummy = kzalloc(dummy_size, GFP_KERNEL); 182 183 if (!dummy) 184 return EFI_OUT_OF_RESOURCES; 185 186 status = efi.set_variable((efi_char16_t *)efi_dummy_name, 187 &EFI_DUMMY_GUID, 188 EFI_VARIABLE_NON_VOLATILE | 189 EFI_VARIABLE_BOOTSERVICE_ACCESS | 190 EFI_VARIABLE_RUNTIME_ACCESS, 191 dummy_size, dummy); 192 193 if (status == EFI_SUCCESS) { 194 /* 195 * This should have failed, so if it didn't make sure 196 * that we delete it... 197 */ 198 efi_delete_dummy_variable(); 199 } 200 201 kfree(dummy); 202 203 /* 204 * The runtime code may now have triggered a garbage collection 205 * run, so check the variable info again 206 */ 207 status = efi.query_variable_info(attributes, &storage_size, 208 &remaining_size, &max_size); 209 210 if (status != EFI_SUCCESS) 211 return status; 212 213 /* 214 * There still isn't enough room, so return an error 215 */ 216 if (remaining_size - size < EFI_MIN_RESERVE) 217 return EFI_OUT_OF_RESOURCES; 218 } 219 220 return EFI_SUCCESS; 221 } 222 EXPORT_SYMBOL_GPL(efi_query_variable_store); 223 224 /* 225 * The UEFI specification makes it clear that the operating system is 226 * free to do whatever it wants with boot services code after 227 * ExitBootServices() has been called. Ignoring this recommendation a 228 * significant bunch of EFI implementations continue calling into boot 229 * services code (SetVirtualAddressMap). In order to work around such 230 * buggy implementations we reserve boot services region during EFI 231 * init and make sure it stays executable. Then, after 232 * SetVirtualAddressMap(), it is discarded. 233 * 234 * However, some boot services regions contain data that is required 235 * by drivers, so we need to track which memory ranges can never be 236 * freed. This is done by tagging those regions with the 237 * EFI_MEMORY_RUNTIME attribute. 238 * 239 * Any driver that wants to mark a region as reserved must use 240 * efi_mem_reserve() which will insert a new EFI memory descriptor 241 * into efi.memmap (splitting existing regions if necessary) and tag 242 * it with EFI_MEMORY_RUNTIME. 243 */ 244 void __init efi_arch_mem_reserve(phys_addr_t addr, u64 size) 245 { 246 phys_addr_t new_phys, new_size; 247 struct efi_mem_range mr; 248 efi_memory_desc_t md; 249 int num_entries; 250 void *new; 251 252 if (efi_mem_desc_lookup(addr, &md)) { 253 pr_err("Failed to lookup EFI memory descriptor for %pa\n", &addr); 254 return; 255 } 256 257 if (addr + size > md.phys_addr + (md.num_pages << EFI_PAGE_SHIFT)) { 258 pr_err("Region spans EFI memory descriptors, %pa\n", &addr); 259 return; 260 } 261 262 /* No need to reserve regions that will never be freed. */ 263 if (md.attribute & EFI_MEMORY_RUNTIME) 264 return; 265 266 size += addr % EFI_PAGE_SIZE; 267 size = round_up(size, EFI_PAGE_SIZE); 268 addr = round_down(addr, EFI_PAGE_SIZE); 269 270 mr.range.start = addr; 271 mr.range.end = addr + size - 1; 272 mr.attribute = md.attribute | EFI_MEMORY_RUNTIME; 273 274 num_entries = efi_memmap_split_count(&md, &mr.range); 275 num_entries += efi.memmap.nr_map; 276 277 new_size = efi.memmap.desc_size * num_entries; 278 279 new_phys = efi_memmap_alloc(num_entries); 280 if (!new_phys) { 281 pr_err("Could not allocate boot services memmap\n"); 282 return; 283 } 284 285 new = early_memremap(new_phys, new_size); 286 if (!new) { 287 pr_err("Failed to map new boot services memmap\n"); 288 return; 289 } 290 291 efi_memmap_insert(&efi.memmap, new, &mr); 292 early_memunmap(new, new_size); 293 294 efi_memmap_install(new_phys, num_entries); 295 } 296 297 /* 298 * Helper function for efi_reserve_boot_services() to figure out if we 299 * can free regions in efi_free_boot_services(). 300 * 301 * Use this function to ensure we do not free regions owned by somebody 302 * else. We must only reserve (and then free) regions: 303 * 304 * - Not within any part of the kernel 305 * - Not the BIOS reserved area (E820_TYPE_RESERVED, E820_TYPE_NVS, etc) 306 */ 307 static bool can_free_region(u64 start, u64 size) 308 { 309 if (start + size > __pa_symbol(_text) && start <= __pa_symbol(_end)) 310 return false; 311 312 if (!e820__mapped_all(start, start+size, E820_TYPE_RAM)) 313 return false; 314 315 return true; 316 } 317 318 void __init efi_reserve_boot_services(void) 319 { 320 efi_memory_desc_t *md; 321 322 for_each_efi_memory_desc(md) { 323 u64 start = md->phys_addr; 324 u64 size = md->num_pages << EFI_PAGE_SHIFT; 325 bool already_reserved; 326 327 if (md->type != EFI_BOOT_SERVICES_CODE && 328 md->type != EFI_BOOT_SERVICES_DATA) 329 continue; 330 331 already_reserved = memblock_is_region_reserved(start, size); 332 333 /* 334 * Because the following memblock_reserve() is paired 335 * with free_bootmem_late() for this region in 336 * efi_free_boot_services(), we must be extremely 337 * careful not to reserve, and subsequently free, 338 * critical regions of memory (like the kernel image) or 339 * those regions that somebody else has already 340 * reserved. 341 * 342 * A good example of a critical region that must not be 343 * freed is page zero (first 4Kb of memory), which may 344 * contain boot services code/data but is marked 345 * E820_TYPE_RESERVED by trim_bios_range(). 346 */ 347 if (!already_reserved) { 348 memblock_reserve(start, size); 349 350 /* 351 * If we are the first to reserve the region, no 352 * one else cares about it. We own it and can 353 * free it later. 354 */ 355 if (can_free_region(start, size)) 356 continue; 357 } 358 359 /* 360 * We don't own the region. We must not free it. 361 * 362 * Setting this bit for a boot services region really 363 * doesn't make sense as far as the firmware is 364 * concerned, but it does provide us with a way to tag 365 * those regions that must not be paired with 366 * free_bootmem_late(). 367 */ 368 md->attribute |= EFI_MEMORY_RUNTIME; 369 } 370 } 371 372 void __init efi_free_boot_services(void) 373 { 374 phys_addr_t new_phys, new_size; 375 efi_memory_desc_t *md; 376 int num_entries = 0; 377 void *new, *new_md; 378 379 for_each_efi_memory_desc(md) { 380 unsigned long long start = md->phys_addr; 381 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT; 382 size_t rm_size; 383 384 if (md->type != EFI_BOOT_SERVICES_CODE && 385 md->type != EFI_BOOT_SERVICES_DATA) { 386 num_entries++; 387 continue; 388 } 389 390 /* Do not free, someone else owns it: */ 391 if (md->attribute & EFI_MEMORY_RUNTIME) { 392 num_entries++; 393 continue; 394 } 395 396 /* 397 * Nasty quirk: if all sub-1MB memory is used for boot 398 * services, we can get here without having allocated the 399 * real mode trampoline. It's too late to hand boot services 400 * memory back to the memblock allocator, so instead 401 * try to manually allocate the trampoline if needed. 402 * 403 * I've seen this on a Dell XPS 13 9350 with firmware 404 * 1.4.4 with SGX enabled booting Linux via Fedora 24's 405 * grub2-efi on a hard disk. (And no, I don't know why 406 * this happened, but Linux should still try to boot rather 407 * panicing early.) 408 */ 409 rm_size = real_mode_size_needed(); 410 if (rm_size && (start + rm_size) < (1<<20) && size >= rm_size) { 411 set_real_mode_mem(start, rm_size); 412 start += rm_size; 413 size -= rm_size; 414 } 415 416 free_bootmem_late(start, size); 417 } 418 419 if (!num_entries) 420 return; 421 422 new_size = efi.memmap.desc_size * num_entries; 423 new_phys = efi_memmap_alloc(num_entries); 424 if (!new_phys) { 425 pr_err("Failed to allocate new EFI memmap\n"); 426 return; 427 } 428 429 new = memremap(new_phys, new_size, MEMREMAP_WB); 430 if (!new) { 431 pr_err("Failed to map new EFI memmap\n"); 432 return; 433 } 434 435 /* 436 * Build a new EFI memmap that excludes any boot services 437 * regions that are not tagged EFI_MEMORY_RUNTIME, since those 438 * regions have now been freed. 439 */ 440 new_md = new; 441 for_each_efi_memory_desc(md) { 442 if (!(md->attribute & EFI_MEMORY_RUNTIME) && 443 (md->type == EFI_BOOT_SERVICES_CODE || 444 md->type == EFI_BOOT_SERVICES_DATA)) 445 continue; 446 447 memcpy(new_md, md, efi.memmap.desc_size); 448 new_md += efi.memmap.desc_size; 449 } 450 451 memunmap(new); 452 453 if (efi_memmap_install(new_phys, num_entries)) { 454 pr_err("Could not install new EFI memmap\n"); 455 return; 456 } 457 } 458 459 /* 460 * A number of config table entries get remapped to virtual addresses 461 * after entering EFI virtual mode. However, the kexec kernel requires 462 * their physical addresses therefore we pass them via setup_data and 463 * correct those entries to their respective physical addresses here. 464 * 465 * Currently only handles smbios which is necessary for some firmware 466 * implementation. 467 */ 468 int __init efi_reuse_config(u64 tables, int nr_tables) 469 { 470 int i, sz, ret = 0; 471 void *p, *tablep; 472 struct efi_setup_data *data; 473 474 if (!efi_setup) 475 return 0; 476 477 if (!efi_enabled(EFI_64BIT)) 478 return 0; 479 480 data = early_memremap(efi_setup, sizeof(*data)); 481 if (!data) { 482 ret = -ENOMEM; 483 goto out; 484 } 485 486 if (!data->smbios) 487 goto out_memremap; 488 489 sz = sizeof(efi_config_table_64_t); 490 491 p = tablep = early_memremap(tables, nr_tables * sz); 492 if (!p) { 493 pr_err("Could not map Configuration table!\n"); 494 ret = -ENOMEM; 495 goto out_memremap; 496 } 497 498 for (i = 0; i < efi.systab->nr_tables; i++) { 499 efi_guid_t guid; 500 501 guid = ((efi_config_table_64_t *)p)->guid; 502 503 if (!efi_guidcmp(guid, SMBIOS_TABLE_GUID)) 504 ((efi_config_table_64_t *)p)->table = data->smbios; 505 p += sz; 506 } 507 early_memunmap(tablep, nr_tables * sz); 508 509 out_memremap: 510 early_memunmap(data, sizeof(*data)); 511 out: 512 return ret; 513 } 514 515 static const struct dmi_system_id sgi_uv1_dmi[] = { 516 { NULL, "SGI UV1", 517 { DMI_MATCH(DMI_PRODUCT_NAME, "Stoutland Platform"), 518 DMI_MATCH(DMI_PRODUCT_VERSION, "1.0"), 519 DMI_MATCH(DMI_BIOS_VENDOR, "SGI.COM"), 520 } 521 }, 522 { } /* NULL entry stops DMI scanning */ 523 }; 524 525 void __init efi_apply_memmap_quirks(void) 526 { 527 /* 528 * Once setup is done earlier, unmap the EFI memory map on mismatched 529 * firmware/kernel architectures since there is no support for runtime 530 * services. 531 */ 532 if (!efi_runtime_supported()) { 533 pr_info("Setup done, disabling due to 32/64-bit mismatch\n"); 534 efi_memmap_unmap(); 535 } 536 537 /* UV2+ BIOS has a fix for this issue. UV1 still needs the quirk. */ 538 if (dmi_check_system(sgi_uv1_dmi)) 539 set_bit(EFI_OLD_MEMMAP, &efi.flags); 540 } 541 542 /* 543 * For most modern platforms the preferred method of powering off is via 544 * ACPI. However, there are some that are known to require the use of 545 * EFI runtime services and for which ACPI does not work at all. 546 * 547 * Using EFI is a last resort, to be used only if no other option 548 * exists. 549 */ 550 bool efi_reboot_required(void) 551 { 552 if (!acpi_gbl_reduced_hardware) 553 return false; 554 555 efi_reboot_quirk_mode = EFI_RESET_WARM; 556 return true; 557 } 558 559 bool efi_poweroff_required(void) 560 { 561 return acpi_gbl_reduced_hardware || acpi_no_s5; 562 } 563 564 #ifdef CONFIG_EFI_CAPSULE_QUIRK_QUARK_CSH 565 566 static int qrk_capsule_setup_info(struct capsule_info *cap_info, void **pkbuff, 567 size_t hdr_bytes) 568 { 569 struct quark_security_header *csh = *pkbuff; 570 571 /* Only process data block that is larger than the security header */ 572 if (hdr_bytes < sizeof(struct quark_security_header)) 573 return 0; 574 575 if (csh->csh_signature != QUARK_CSH_SIGNATURE || 576 csh->headersize != QUARK_SECURITY_HEADER_SIZE) 577 return 1; 578 579 /* Only process data block if EFI header is included */ 580 if (hdr_bytes < QUARK_SECURITY_HEADER_SIZE + 581 sizeof(efi_capsule_header_t)) 582 return 0; 583 584 pr_debug("Quark security header detected\n"); 585 586 if (csh->rsvd_next_header != 0) { 587 pr_err("multiple Quark security headers not supported\n"); 588 return -EINVAL; 589 } 590 591 *pkbuff += csh->headersize; 592 cap_info->total_size = csh->headersize; 593 594 /* 595 * Update the first page pointer to skip over the CSH header. 596 */ 597 cap_info->phys[0] += csh->headersize; 598 599 /* 600 * cap_info->capsule should point at a virtual mapping of the entire 601 * capsule, starting at the capsule header. Our image has the Quark 602 * security header prepended, so we cannot rely on the default vmap() 603 * mapping created by the generic capsule code. 604 * Given that the Quark firmware does not appear to care about the 605 * virtual mapping, let's just point cap_info->capsule at our copy 606 * of the capsule header. 607 */ 608 cap_info->capsule = &cap_info->header; 609 610 return 1; 611 } 612 613 #define ICPU(family, model, quirk_handler) \ 614 { X86_VENDOR_INTEL, family, model, X86_FEATURE_ANY, \ 615 (unsigned long)&quirk_handler } 616 617 static const struct x86_cpu_id efi_capsule_quirk_ids[] = { 618 ICPU(5, 9, qrk_capsule_setup_info), /* Intel Quark X1000 */ 619 { } 620 }; 621 622 int efi_capsule_setup_info(struct capsule_info *cap_info, void *kbuff, 623 size_t hdr_bytes) 624 { 625 int (*quirk_handler)(struct capsule_info *, void **, size_t); 626 const struct x86_cpu_id *id; 627 int ret; 628 629 if (hdr_bytes < sizeof(efi_capsule_header_t)) 630 return 0; 631 632 cap_info->total_size = 0; 633 634 id = x86_match_cpu(efi_capsule_quirk_ids); 635 if (id) { 636 /* 637 * The quirk handler is supposed to return 638 * - a value > 0 if the setup should continue, after advancing 639 * kbuff as needed 640 * - 0 if not enough hdr_bytes are available yet 641 * - a negative error code otherwise 642 */ 643 quirk_handler = (typeof(quirk_handler))id->driver_data; 644 ret = quirk_handler(cap_info, &kbuff, hdr_bytes); 645 if (ret <= 0) 646 return ret; 647 } 648 649 memcpy(&cap_info->header, kbuff, sizeof(cap_info->header)); 650 651 cap_info->total_size += cap_info->header.imagesize; 652 653 return __efi_capsule_setup_info(cap_info); 654 } 655 656 #endif 657