1 // SPDX-License-Identifier: GPL-2.0-only 2 #define pr_fmt(fmt) "efi: " fmt 3 4 #include <linux/init.h> 5 #include <linux/kernel.h> 6 #include <linux/string.h> 7 #include <linux/time.h> 8 #include <linux/types.h> 9 #include <linux/efi.h> 10 #include <linux/slab.h> 11 #include <linux/memblock.h> 12 #include <linux/acpi.h> 13 #include <linux/dmi.h> 14 15 #include <asm/e820/api.h> 16 #include <asm/efi.h> 17 #include <asm/uv/uv.h> 18 #include <asm/cpu_device_id.h> 19 #include <asm/realmode.h> 20 #include <asm/reboot.h> 21 22 #define EFI_MIN_RESERVE 5120 23 24 #define EFI_DUMMY_GUID \ 25 EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9) 26 27 #define QUARK_CSH_SIGNATURE 0x5f435348 /* _CSH */ 28 #define QUARK_SECURITY_HEADER_SIZE 0x400 29 30 /* 31 * Header prepended to the standard EFI capsule on Quark systems the are based 32 * on Intel firmware BSP. 33 * @csh_signature: Unique identifier to sanity check signed module 34 * presence ("_CSH"). 35 * @version: Current version of CSH used. Should be one for Quark A0. 36 * @modulesize: Size of the entire module including the module header 37 * and payload. 38 * @security_version_number_index: Index of SVN to use for validation of signed 39 * module. 40 * @security_version_number: Used to prevent against roll back of modules. 41 * @rsvd_module_id: Currently unused for Clanton (Quark). 42 * @rsvd_module_vendor: Vendor Identifier. For Intel products value is 43 * 0x00008086. 44 * @rsvd_date: BCD representation of build date as yyyymmdd, where 45 * yyyy=4 digit year, mm=1-12, dd=1-31. 46 * @headersize: Total length of the header including including any 47 * padding optionally added by the signing tool. 48 * @hash_algo: What Hash is used in the module signing. 49 * @cryp_algo: What Crypto is used in the module signing. 50 * @keysize: Total length of the key data including including any 51 * padding optionally added by the signing tool. 52 * @signaturesize: Total length of the signature including including any 53 * padding optionally added by the signing tool. 54 * @rsvd_next_header: 32-bit pointer to the next Secure Boot Module in the 55 * chain, if there is a next header. 56 * @rsvd: Reserved, padding structure to required size. 57 * 58 * See also QuartSecurityHeader_t in 59 * Quark_EDKII_v1.2.1.1/QuarkPlatformPkg/Include/QuarkBootRom.h 60 * from https://downloadcenter.intel.com/download/23197/Intel-Quark-SoC-X1000-Board-Support-Package-BSP 61 */ 62 struct quark_security_header { 63 u32 csh_signature; 64 u32 version; 65 u32 modulesize; 66 u32 security_version_number_index; 67 u32 security_version_number; 68 u32 rsvd_module_id; 69 u32 rsvd_module_vendor; 70 u32 rsvd_date; 71 u32 headersize; 72 u32 hash_algo; 73 u32 cryp_algo; 74 u32 keysize; 75 u32 signaturesize; 76 u32 rsvd_next_header; 77 u32 rsvd[2]; 78 }; 79 80 static const efi_char16_t efi_dummy_name[] = L"DUMMY"; 81 82 static bool efi_no_storage_paranoia; 83 84 /* 85 * Some firmware implementations refuse to boot if there's insufficient 86 * space in the variable store. The implementation of garbage collection 87 * in some FW versions causes stale (deleted) variables to take up space 88 * longer than intended and space is only freed once the store becomes 89 * almost completely full. 90 * 91 * Enabling this option disables the space checks in 92 * efi_query_variable_store() and forces garbage collection. 93 * 94 * Only enable this option if deleting EFI variables does not free up 95 * space in your variable store, e.g. if despite deleting variables 96 * you're unable to create new ones. 97 */ 98 static int __init setup_storage_paranoia(char *arg) 99 { 100 efi_no_storage_paranoia = true; 101 return 0; 102 } 103 early_param("efi_no_storage_paranoia", setup_storage_paranoia); 104 105 /* 106 * Deleting the dummy variable which kicks off garbage collection 107 */ 108 void efi_delete_dummy_variable(void) 109 { 110 efi.set_variable_nonblocking((efi_char16_t *)efi_dummy_name, 111 &EFI_DUMMY_GUID, 112 EFI_VARIABLE_NON_VOLATILE | 113 EFI_VARIABLE_BOOTSERVICE_ACCESS | 114 EFI_VARIABLE_RUNTIME_ACCESS, 0, NULL); 115 } 116 117 /* 118 * In the nonblocking case we do not attempt to perform garbage 119 * collection if we do not have enough free space. Rather, we do the 120 * bare minimum check and give up immediately if the available space 121 * is below EFI_MIN_RESERVE. 122 * 123 * This function is intended to be small and simple because it is 124 * invoked from crash handler paths. 125 */ 126 static efi_status_t 127 query_variable_store_nonblocking(u32 attributes, unsigned long size) 128 { 129 efi_status_t status; 130 u64 storage_size, remaining_size, max_size; 131 132 status = efi.query_variable_info_nonblocking(attributes, &storage_size, 133 &remaining_size, 134 &max_size); 135 if (status != EFI_SUCCESS) 136 return status; 137 138 if (remaining_size - size < EFI_MIN_RESERVE) 139 return EFI_OUT_OF_RESOURCES; 140 141 return EFI_SUCCESS; 142 } 143 144 /* 145 * Some firmware implementations refuse to boot if there's insufficient space 146 * in the variable store. Ensure that we never use more than a safe limit. 147 * 148 * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable 149 * store. 150 */ 151 efi_status_t efi_query_variable_store(u32 attributes, unsigned long size, 152 bool nonblocking) 153 { 154 efi_status_t status; 155 u64 storage_size, remaining_size, max_size; 156 157 if (!(attributes & EFI_VARIABLE_NON_VOLATILE)) 158 return 0; 159 160 if (nonblocking) 161 return query_variable_store_nonblocking(attributes, size); 162 163 status = efi.query_variable_info(attributes, &storage_size, 164 &remaining_size, &max_size); 165 if (status != EFI_SUCCESS) 166 return status; 167 168 /* 169 * We account for that by refusing the write if permitting it would 170 * reduce the available space to under 5KB. This figure was provided by 171 * Samsung, so should be safe. 172 */ 173 if ((remaining_size - size < EFI_MIN_RESERVE) && 174 !efi_no_storage_paranoia) { 175 176 /* 177 * Triggering garbage collection may require that the firmware 178 * generate a real EFI_OUT_OF_RESOURCES error. We can force 179 * that by attempting to use more space than is available. 180 */ 181 unsigned long dummy_size = remaining_size + 1024; 182 void *dummy = kzalloc(dummy_size, GFP_KERNEL); 183 184 if (!dummy) 185 return EFI_OUT_OF_RESOURCES; 186 187 status = efi.set_variable((efi_char16_t *)efi_dummy_name, 188 &EFI_DUMMY_GUID, 189 EFI_VARIABLE_NON_VOLATILE | 190 EFI_VARIABLE_BOOTSERVICE_ACCESS | 191 EFI_VARIABLE_RUNTIME_ACCESS, 192 dummy_size, dummy); 193 194 if (status == EFI_SUCCESS) { 195 /* 196 * This should have failed, so if it didn't make sure 197 * that we delete it... 198 */ 199 efi_delete_dummy_variable(); 200 } 201 202 kfree(dummy); 203 204 /* 205 * The runtime code may now have triggered a garbage collection 206 * run, so check the variable info again 207 */ 208 status = efi.query_variable_info(attributes, &storage_size, 209 &remaining_size, &max_size); 210 211 if (status != EFI_SUCCESS) 212 return status; 213 214 /* 215 * There still isn't enough room, so return an error 216 */ 217 if (remaining_size - size < EFI_MIN_RESERVE) 218 return EFI_OUT_OF_RESOURCES; 219 } 220 221 return EFI_SUCCESS; 222 } 223 EXPORT_SYMBOL_GPL(efi_query_variable_store); 224 225 /* 226 * The UEFI specification makes it clear that the operating system is 227 * free to do whatever it wants with boot services code after 228 * ExitBootServices() has been called. Ignoring this recommendation a 229 * significant bunch of EFI implementations continue calling into boot 230 * services code (SetVirtualAddressMap). In order to work around such 231 * buggy implementations we reserve boot services region during EFI 232 * init and make sure it stays executable. Then, after 233 * SetVirtualAddressMap(), it is discarded. 234 * 235 * However, some boot services regions contain data that is required 236 * by drivers, so we need to track which memory ranges can never be 237 * freed. This is done by tagging those regions with the 238 * EFI_MEMORY_RUNTIME attribute. 239 * 240 * Any driver that wants to mark a region as reserved must use 241 * efi_mem_reserve() which will insert a new EFI memory descriptor 242 * into efi.memmap (splitting existing regions if necessary) and tag 243 * it with EFI_MEMORY_RUNTIME. 244 */ 245 void __init efi_arch_mem_reserve(phys_addr_t addr, u64 size) 246 { 247 struct efi_memory_map_data data = { 0 }; 248 struct efi_mem_range mr; 249 efi_memory_desc_t md; 250 int num_entries; 251 void *new; 252 253 if (efi_mem_desc_lookup(addr, &md) || 254 md.type != EFI_BOOT_SERVICES_DATA) { 255 pr_err("Failed to lookup EFI memory descriptor for %pa\n", &addr); 256 return; 257 } 258 259 if (addr + size > md.phys_addr + (md.num_pages << EFI_PAGE_SHIFT)) { 260 pr_err("Region spans EFI memory descriptors, %pa\n", &addr); 261 return; 262 } 263 264 size += addr % EFI_PAGE_SIZE; 265 size = round_up(size, EFI_PAGE_SIZE); 266 addr = round_down(addr, EFI_PAGE_SIZE); 267 268 mr.range.start = addr; 269 mr.range.end = addr + size - 1; 270 mr.attribute = md.attribute | EFI_MEMORY_RUNTIME; 271 272 num_entries = efi_memmap_split_count(&md, &mr.range); 273 num_entries += efi.memmap.nr_map; 274 275 if (efi_memmap_alloc(num_entries, &data) != 0) { 276 pr_err("Could not allocate boot services memmap\n"); 277 return; 278 } 279 280 new = early_memremap(data.phys_map, data.size); 281 if (!new) { 282 pr_err("Failed to map new boot services memmap\n"); 283 return; 284 } 285 286 efi_memmap_insert(&efi.memmap, new, &mr); 287 early_memunmap(new, data.size); 288 289 efi_memmap_install(&data); 290 e820__range_update(addr, size, E820_TYPE_RAM, E820_TYPE_RESERVED); 291 e820__update_table(e820_table); 292 } 293 294 /* 295 * Helper function for efi_reserve_boot_services() to figure out if we 296 * can free regions in efi_free_boot_services(). 297 * 298 * Use this function to ensure we do not free regions owned by somebody 299 * else. We must only reserve (and then free) regions: 300 * 301 * - Not within any part of the kernel 302 * - Not the BIOS reserved area (E820_TYPE_RESERVED, E820_TYPE_NVS, etc) 303 */ 304 static __init bool can_free_region(u64 start, u64 size) 305 { 306 if (start + size > __pa_symbol(_text) && start <= __pa_symbol(_end)) 307 return false; 308 309 if (!e820__mapped_all(start, start+size, E820_TYPE_RAM)) 310 return false; 311 312 return true; 313 } 314 315 void __init efi_reserve_boot_services(void) 316 { 317 efi_memory_desc_t *md; 318 319 if (!efi_enabled(EFI_MEMMAP)) 320 return; 321 322 for_each_efi_memory_desc(md) { 323 u64 start = md->phys_addr; 324 u64 size = md->num_pages << EFI_PAGE_SHIFT; 325 bool already_reserved; 326 327 if (md->type != EFI_BOOT_SERVICES_CODE && 328 md->type != EFI_BOOT_SERVICES_DATA) 329 continue; 330 331 already_reserved = memblock_is_region_reserved(start, size); 332 333 /* 334 * Because the following memblock_reserve() is paired 335 * with memblock_free_late() for this region in 336 * efi_free_boot_services(), we must be extremely 337 * careful not to reserve, and subsequently free, 338 * critical regions of memory (like the kernel image) or 339 * those regions that somebody else has already 340 * reserved. 341 * 342 * A good example of a critical region that must not be 343 * freed is page zero (first 4Kb of memory), which may 344 * contain boot services code/data but is marked 345 * E820_TYPE_RESERVED by trim_bios_range(). 346 */ 347 if (!already_reserved) { 348 memblock_reserve(start, size); 349 350 /* 351 * If we are the first to reserve the region, no 352 * one else cares about it. We own it and can 353 * free it later. 354 */ 355 if (can_free_region(start, size)) 356 continue; 357 } 358 359 /* 360 * We don't own the region. We must not free it. 361 * 362 * Setting this bit for a boot services region really 363 * doesn't make sense as far as the firmware is 364 * concerned, but it does provide us with a way to tag 365 * those regions that must not be paired with 366 * memblock_free_late(). 367 */ 368 md->attribute |= EFI_MEMORY_RUNTIME; 369 } 370 } 371 372 /* 373 * Apart from having VA mappings for EFI boot services code/data regions, 374 * (duplicate) 1:1 mappings were also created as a quirk for buggy firmware. So, 375 * unmap both 1:1 and VA mappings. 376 */ 377 static void __init efi_unmap_pages(efi_memory_desc_t *md) 378 { 379 pgd_t *pgd = efi_mm.pgd; 380 u64 pa = md->phys_addr; 381 u64 va = md->virt_addr; 382 383 /* 384 * EFI mixed mode has all RAM mapped to access arguments while making 385 * EFI runtime calls, hence don't unmap EFI boot services code/data 386 * regions. 387 */ 388 if (efi_is_mixed()) 389 return; 390 391 if (kernel_unmap_pages_in_pgd(pgd, pa, md->num_pages)) 392 pr_err("Failed to unmap 1:1 mapping for 0x%llx\n", pa); 393 394 if (kernel_unmap_pages_in_pgd(pgd, va, md->num_pages)) 395 pr_err("Failed to unmap VA mapping for 0x%llx\n", va); 396 } 397 398 void __init efi_free_boot_services(void) 399 { 400 struct efi_memory_map_data data = { 0 }; 401 efi_memory_desc_t *md; 402 int num_entries = 0; 403 void *new, *new_md; 404 405 /* Keep all regions for /sys/kernel/debug/efi */ 406 if (efi_enabled(EFI_DBG)) 407 return; 408 409 for_each_efi_memory_desc(md) { 410 unsigned long long start = md->phys_addr; 411 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT; 412 size_t rm_size; 413 414 if (md->type != EFI_BOOT_SERVICES_CODE && 415 md->type != EFI_BOOT_SERVICES_DATA) { 416 num_entries++; 417 continue; 418 } 419 420 /* Do not free, someone else owns it: */ 421 if (md->attribute & EFI_MEMORY_RUNTIME) { 422 num_entries++; 423 continue; 424 } 425 426 /* 427 * Before calling set_virtual_address_map(), EFI boot services 428 * code/data regions were mapped as a quirk for buggy firmware. 429 * Unmap them from efi_pgd before freeing them up. 430 */ 431 efi_unmap_pages(md); 432 433 /* 434 * Nasty quirk: if all sub-1MB memory is used for boot 435 * services, we can get here without having allocated the 436 * real mode trampoline. It's too late to hand boot services 437 * memory back to the memblock allocator, so instead 438 * try to manually allocate the trampoline if needed. 439 * 440 * I've seen this on a Dell XPS 13 9350 with firmware 441 * 1.4.4 with SGX enabled booting Linux via Fedora 24's 442 * grub2-efi on a hard disk. (And no, I don't know why 443 * this happened, but Linux should still try to boot rather 444 * panicking early.) 445 */ 446 rm_size = real_mode_size_needed(); 447 if (rm_size && (start + rm_size) < (1<<20) && size >= rm_size) { 448 set_real_mode_mem(start); 449 start += rm_size; 450 size -= rm_size; 451 } 452 453 /* 454 * Don't free memory under 1M for two reasons: 455 * - BIOS might clobber it 456 * - Crash kernel needs it to be reserved 457 */ 458 if (start + size < SZ_1M) 459 continue; 460 if (start < SZ_1M) { 461 size -= (SZ_1M - start); 462 start = SZ_1M; 463 } 464 465 memblock_free_late(start, size); 466 } 467 468 if (!num_entries) 469 return; 470 471 if (efi_memmap_alloc(num_entries, &data) != 0) { 472 pr_err("Failed to allocate new EFI memmap\n"); 473 return; 474 } 475 476 new = memremap(data.phys_map, data.size, MEMREMAP_WB); 477 if (!new) { 478 pr_err("Failed to map new EFI memmap\n"); 479 return; 480 } 481 482 /* 483 * Build a new EFI memmap that excludes any boot services 484 * regions that are not tagged EFI_MEMORY_RUNTIME, since those 485 * regions have now been freed. 486 */ 487 new_md = new; 488 for_each_efi_memory_desc(md) { 489 if (!(md->attribute & EFI_MEMORY_RUNTIME) && 490 (md->type == EFI_BOOT_SERVICES_CODE || 491 md->type == EFI_BOOT_SERVICES_DATA)) 492 continue; 493 494 memcpy(new_md, md, efi.memmap.desc_size); 495 new_md += efi.memmap.desc_size; 496 } 497 498 memunmap(new); 499 500 if (efi_memmap_install(&data) != 0) { 501 pr_err("Could not install new EFI memmap\n"); 502 return; 503 } 504 } 505 506 /* 507 * A number of config table entries get remapped to virtual addresses 508 * after entering EFI virtual mode. However, the kexec kernel requires 509 * their physical addresses therefore we pass them via setup_data and 510 * correct those entries to their respective physical addresses here. 511 * 512 * Currently only handles smbios which is necessary for some firmware 513 * implementation. 514 */ 515 int __init efi_reuse_config(u64 tables, int nr_tables) 516 { 517 int i, sz, ret = 0; 518 void *p, *tablep; 519 struct efi_setup_data *data; 520 521 if (nr_tables == 0) 522 return 0; 523 524 if (!efi_setup) 525 return 0; 526 527 if (!efi_enabled(EFI_64BIT)) 528 return 0; 529 530 data = early_memremap(efi_setup, sizeof(*data)); 531 if (!data) { 532 ret = -ENOMEM; 533 goto out; 534 } 535 536 if (!data->smbios) 537 goto out_memremap; 538 539 sz = sizeof(efi_config_table_64_t); 540 541 p = tablep = early_memremap(tables, nr_tables * sz); 542 if (!p) { 543 pr_err("Could not map Configuration table!\n"); 544 ret = -ENOMEM; 545 goto out_memremap; 546 } 547 548 for (i = 0; i < nr_tables; i++) { 549 efi_guid_t guid; 550 551 guid = ((efi_config_table_64_t *)p)->guid; 552 553 if (!efi_guidcmp(guid, SMBIOS_TABLE_GUID)) 554 ((efi_config_table_64_t *)p)->table = data->smbios; 555 p += sz; 556 } 557 early_memunmap(tablep, nr_tables * sz); 558 559 out_memremap: 560 early_memunmap(data, sizeof(*data)); 561 out: 562 return ret; 563 } 564 565 void __init efi_apply_memmap_quirks(void) 566 { 567 /* 568 * Once setup is done earlier, unmap the EFI memory map on mismatched 569 * firmware/kernel architectures since there is no support for runtime 570 * services. 571 */ 572 if (!efi_runtime_supported()) { 573 pr_info("Setup done, disabling due to 32/64-bit mismatch\n"); 574 efi_memmap_unmap(); 575 } 576 } 577 578 /* 579 * For most modern platforms the preferred method of powering off is via 580 * ACPI. However, there are some that are known to require the use of 581 * EFI runtime services and for which ACPI does not work at all. 582 * 583 * Using EFI is a last resort, to be used only if no other option 584 * exists. 585 */ 586 bool efi_reboot_required(void) 587 { 588 if (!acpi_gbl_reduced_hardware) 589 return false; 590 591 efi_reboot_quirk_mode = EFI_RESET_WARM; 592 return true; 593 } 594 595 bool efi_poweroff_required(void) 596 { 597 return acpi_gbl_reduced_hardware || acpi_no_s5; 598 } 599 600 #ifdef CONFIG_EFI_CAPSULE_QUIRK_QUARK_CSH 601 602 static int qrk_capsule_setup_info(struct capsule_info *cap_info, void **pkbuff, 603 size_t hdr_bytes) 604 { 605 struct quark_security_header *csh = *pkbuff; 606 607 /* Only process data block that is larger than the security header */ 608 if (hdr_bytes < sizeof(struct quark_security_header)) 609 return 0; 610 611 if (csh->csh_signature != QUARK_CSH_SIGNATURE || 612 csh->headersize != QUARK_SECURITY_HEADER_SIZE) 613 return 1; 614 615 /* Only process data block if EFI header is included */ 616 if (hdr_bytes < QUARK_SECURITY_HEADER_SIZE + 617 sizeof(efi_capsule_header_t)) 618 return 0; 619 620 pr_debug("Quark security header detected\n"); 621 622 if (csh->rsvd_next_header != 0) { 623 pr_err("multiple Quark security headers not supported\n"); 624 return -EINVAL; 625 } 626 627 *pkbuff += csh->headersize; 628 cap_info->total_size = csh->headersize; 629 630 /* 631 * Update the first page pointer to skip over the CSH header. 632 */ 633 cap_info->phys[0] += csh->headersize; 634 635 /* 636 * cap_info->capsule should point at a virtual mapping of the entire 637 * capsule, starting at the capsule header. Our image has the Quark 638 * security header prepended, so we cannot rely on the default vmap() 639 * mapping created by the generic capsule code. 640 * Given that the Quark firmware does not appear to care about the 641 * virtual mapping, let's just point cap_info->capsule at our copy 642 * of the capsule header. 643 */ 644 cap_info->capsule = &cap_info->header; 645 646 return 1; 647 } 648 649 static const struct x86_cpu_id efi_capsule_quirk_ids[] = { 650 X86_MATCH_VENDOR_FAM_MODEL(INTEL, 5, INTEL_FAM5_QUARK_X1000, 651 &qrk_capsule_setup_info), 652 { } 653 }; 654 655 int efi_capsule_setup_info(struct capsule_info *cap_info, void *kbuff, 656 size_t hdr_bytes) 657 { 658 int (*quirk_handler)(struct capsule_info *, void **, size_t); 659 const struct x86_cpu_id *id; 660 int ret; 661 662 if (hdr_bytes < sizeof(efi_capsule_header_t)) 663 return 0; 664 665 cap_info->total_size = 0; 666 667 id = x86_match_cpu(efi_capsule_quirk_ids); 668 if (id) { 669 /* 670 * The quirk handler is supposed to return 671 * - a value > 0 if the setup should continue, after advancing 672 * kbuff as needed 673 * - 0 if not enough hdr_bytes are available yet 674 * - a negative error code otherwise 675 */ 676 quirk_handler = (typeof(quirk_handler))id->driver_data; 677 ret = quirk_handler(cap_info, &kbuff, hdr_bytes); 678 if (ret <= 0) 679 return ret; 680 } 681 682 memcpy(&cap_info->header, kbuff, sizeof(cap_info->header)); 683 684 cap_info->total_size += cap_info->header.imagesize; 685 686 return __efi_capsule_setup_info(cap_info); 687 } 688 689 #endif 690 691 /* 692 * If any access by any efi runtime service causes a page fault, then, 693 * 1. If it's efi_reset_system(), reboot through BIOS. 694 * 2. If any other efi runtime service, then 695 * a. Return error status to the efi caller process. 696 * b. Disable EFI Runtime Services forever and 697 * c. Freeze efi_rts_wq and schedule new process. 698 * 699 * @return: Returns, if the page fault is not handled. This function 700 * will never return if the page fault is handled successfully. 701 */ 702 void efi_crash_gracefully_on_page_fault(unsigned long phys_addr) 703 { 704 if (!IS_ENABLED(CONFIG_X86_64)) 705 return; 706 707 /* 708 * If we get an interrupt/NMI while processing an EFI runtime service 709 * then this is a regular OOPS, not an EFI failure. 710 */ 711 if (in_interrupt()) 712 return; 713 714 /* 715 * Make sure that an efi runtime service caused the page fault. 716 * READ_ONCE() because we might be OOPSing in a different thread, 717 * and we don't want to trip KTSAN while trying to OOPS. 718 */ 719 if (READ_ONCE(efi_rts_work.efi_rts_id) == EFI_NONE || 720 current_work() != &efi_rts_work.work) 721 return; 722 723 /* 724 * Address range 0x0000 - 0x0fff is always mapped in the efi_pgd, so 725 * page faulting on these addresses isn't expected. 726 */ 727 if (phys_addr <= 0x0fff) 728 return; 729 730 /* 731 * Print stack trace as it might be useful to know which EFI Runtime 732 * Service is buggy. 733 */ 734 WARN(1, FW_BUG "Page fault caused by firmware at PA: 0x%lx\n", 735 phys_addr); 736 737 /* 738 * Buggy efi_reset_system() is handled differently from other EFI 739 * Runtime Services as it doesn't use efi_rts_wq. Although, 740 * native_machine_emergency_restart() says that machine_real_restart() 741 * could fail, it's better not to complicate this fault handler 742 * because this case occurs *very* rarely and hence could be improved 743 * on a need by basis. 744 */ 745 if (efi_rts_work.efi_rts_id == EFI_RESET_SYSTEM) { 746 pr_info("efi_reset_system() buggy! Reboot through BIOS\n"); 747 machine_real_restart(MRR_BIOS); 748 return; 749 } 750 751 /* 752 * Before calling EFI Runtime Service, the kernel has switched the 753 * calling process to efi_mm. Hence, switch back to task_mm. 754 */ 755 arch_efi_call_virt_teardown(); 756 757 /* Signal error status to the efi caller process */ 758 efi_rts_work.status = EFI_ABORTED; 759 complete(&efi_rts_work.efi_rts_comp); 760 761 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); 762 pr_info("Froze efi_rts_wq and disabled EFI Runtime Services\n"); 763 764 /* 765 * Call schedule() in an infinite loop, so that any spurious wake ups 766 * will never run efi_rts_wq again. 767 */ 768 for (;;) { 769 set_current_state(TASK_IDLE); 770 schedule(); 771 } 772 } 773