xref: /openbmc/linux/arch/x86/platform/efi/quirks.c (revision a36954f5)
1 #define pr_fmt(fmt) "efi: " fmt
2 
3 #include <linux/init.h>
4 #include <linux/kernel.h>
5 #include <linux/string.h>
6 #include <linux/time.h>
7 #include <linux/types.h>
8 #include <linux/efi.h>
9 #include <linux/slab.h>
10 #include <linux/memblock.h>
11 #include <linux/bootmem.h>
12 #include <linux/acpi.h>
13 #include <linux/dmi.h>
14 
15 #include <asm/e820/api.h>
16 #include <asm/efi.h>
17 #include <asm/uv/uv.h>
18 
19 #define EFI_MIN_RESERVE 5120
20 
21 #define EFI_DUMMY_GUID \
22 	EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9)
23 
24 static efi_char16_t efi_dummy_name[6] = { 'D', 'U', 'M', 'M', 'Y', 0 };
25 
26 static bool efi_no_storage_paranoia;
27 
28 /*
29  * Some firmware implementations refuse to boot if there's insufficient
30  * space in the variable store. The implementation of garbage collection
31  * in some FW versions causes stale (deleted) variables to take up space
32  * longer than intended and space is only freed once the store becomes
33  * almost completely full.
34  *
35  * Enabling this option disables the space checks in
36  * efi_query_variable_store() and forces garbage collection.
37  *
38  * Only enable this option if deleting EFI variables does not free up
39  * space in your variable store, e.g. if despite deleting variables
40  * you're unable to create new ones.
41  */
42 static int __init setup_storage_paranoia(char *arg)
43 {
44 	efi_no_storage_paranoia = true;
45 	return 0;
46 }
47 early_param("efi_no_storage_paranoia", setup_storage_paranoia);
48 
49 /*
50  * Deleting the dummy variable which kicks off garbage collection
51 */
52 void efi_delete_dummy_variable(void)
53 {
54 	efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
55 			 EFI_VARIABLE_NON_VOLATILE |
56 			 EFI_VARIABLE_BOOTSERVICE_ACCESS |
57 			 EFI_VARIABLE_RUNTIME_ACCESS,
58 			 0, NULL);
59 }
60 
61 /*
62  * In the nonblocking case we do not attempt to perform garbage
63  * collection if we do not have enough free space. Rather, we do the
64  * bare minimum check and give up immediately if the available space
65  * is below EFI_MIN_RESERVE.
66  *
67  * This function is intended to be small and simple because it is
68  * invoked from crash handler paths.
69  */
70 static efi_status_t
71 query_variable_store_nonblocking(u32 attributes, unsigned long size)
72 {
73 	efi_status_t status;
74 	u64 storage_size, remaining_size, max_size;
75 
76 	status = efi.query_variable_info_nonblocking(attributes, &storage_size,
77 						     &remaining_size,
78 						     &max_size);
79 	if (status != EFI_SUCCESS)
80 		return status;
81 
82 	if (remaining_size - size < EFI_MIN_RESERVE)
83 		return EFI_OUT_OF_RESOURCES;
84 
85 	return EFI_SUCCESS;
86 }
87 
88 /*
89  * Some firmware implementations refuse to boot if there's insufficient space
90  * in the variable store. Ensure that we never use more than a safe limit.
91  *
92  * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable
93  * store.
94  */
95 efi_status_t efi_query_variable_store(u32 attributes, unsigned long size,
96 				      bool nonblocking)
97 {
98 	efi_status_t status;
99 	u64 storage_size, remaining_size, max_size;
100 
101 	if (!(attributes & EFI_VARIABLE_NON_VOLATILE))
102 		return 0;
103 
104 	if (nonblocking)
105 		return query_variable_store_nonblocking(attributes, size);
106 
107 	status = efi.query_variable_info(attributes, &storage_size,
108 					 &remaining_size, &max_size);
109 	if (status != EFI_SUCCESS)
110 		return status;
111 
112 	/*
113 	 * We account for that by refusing the write if permitting it would
114 	 * reduce the available space to under 5KB. This figure was provided by
115 	 * Samsung, so should be safe.
116 	 */
117 	if ((remaining_size - size < EFI_MIN_RESERVE) &&
118 		!efi_no_storage_paranoia) {
119 
120 		/*
121 		 * Triggering garbage collection may require that the firmware
122 		 * generate a real EFI_OUT_OF_RESOURCES error. We can force
123 		 * that by attempting to use more space than is available.
124 		 */
125 		unsigned long dummy_size = remaining_size + 1024;
126 		void *dummy = kzalloc(dummy_size, GFP_ATOMIC);
127 
128 		if (!dummy)
129 			return EFI_OUT_OF_RESOURCES;
130 
131 		status = efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
132 					  EFI_VARIABLE_NON_VOLATILE |
133 					  EFI_VARIABLE_BOOTSERVICE_ACCESS |
134 					  EFI_VARIABLE_RUNTIME_ACCESS,
135 					  dummy_size, dummy);
136 
137 		if (status == EFI_SUCCESS) {
138 			/*
139 			 * This should have failed, so if it didn't make sure
140 			 * that we delete it...
141 			 */
142 			efi_delete_dummy_variable();
143 		}
144 
145 		kfree(dummy);
146 
147 		/*
148 		 * The runtime code may now have triggered a garbage collection
149 		 * run, so check the variable info again
150 		 */
151 		status = efi.query_variable_info(attributes, &storage_size,
152 						 &remaining_size, &max_size);
153 
154 		if (status != EFI_SUCCESS)
155 			return status;
156 
157 		/*
158 		 * There still isn't enough room, so return an error
159 		 */
160 		if (remaining_size - size < EFI_MIN_RESERVE)
161 			return EFI_OUT_OF_RESOURCES;
162 	}
163 
164 	return EFI_SUCCESS;
165 }
166 EXPORT_SYMBOL_GPL(efi_query_variable_store);
167 
168 /*
169  * The UEFI specification makes it clear that the operating system is
170  * free to do whatever it wants with boot services code after
171  * ExitBootServices() has been called. Ignoring this recommendation a
172  * significant bunch of EFI implementations continue calling into boot
173  * services code (SetVirtualAddressMap). In order to work around such
174  * buggy implementations we reserve boot services region during EFI
175  * init and make sure it stays executable. Then, after
176  * SetVirtualAddressMap(), it is discarded.
177  *
178  * However, some boot services regions contain data that is required
179  * by drivers, so we need to track which memory ranges can never be
180  * freed. This is done by tagging those regions with the
181  * EFI_MEMORY_RUNTIME attribute.
182  *
183  * Any driver that wants to mark a region as reserved must use
184  * efi_mem_reserve() which will insert a new EFI memory descriptor
185  * into efi.memmap (splitting existing regions if necessary) and tag
186  * it with EFI_MEMORY_RUNTIME.
187  */
188 void __init efi_arch_mem_reserve(phys_addr_t addr, u64 size)
189 {
190 	phys_addr_t new_phys, new_size;
191 	struct efi_mem_range mr;
192 	efi_memory_desc_t md;
193 	int num_entries;
194 	void *new;
195 
196 	if (efi_mem_desc_lookup(addr, &md)) {
197 		pr_err("Failed to lookup EFI memory descriptor for %pa\n", &addr);
198 		return;
199 	}
200 
201 	if (addr + size > md.phys_addr + (md.num_pages << EFI_PAGE_SHIFT)) {
202 		pr_err("Region spans EFI memory descriptors, %pa\n", &addr);
203 		return;
204 	}
205 
206 	/* No need to reserve regions that will never be freed. */
207 	if (md.attribute & EFI_MEMORY_RUNTIME)
208 		return;
209 
210 	size += addr % EFI_PAGE_SIZE;
211 	size = round_up(size, EFI_PAGE_SIZE);
212 	addr = round_down(addr, EFI_PAGE_SIZE);
213 
214 	mr.range.start = addr;
215 	mr.range.end = addr + size - 1;
216 	mr.attribute = md.attribute | EFI_MEMORY_RUNTIME;
217 
218 	num_entries = efi_memmap_split_count(&md, &mr.range);
219 	num_entries += efi.memmap.nr_map;
220 
221 	new_size = efi.memmap.desc_size * num_entries;
222 
223 	new_phys = efi_memmap_alloc(num_entries);
224 	if (!new_phys) {
225 		pr_err("Could not allocate boot services memmap\n");
226 		return;
227 	}
228 
229 	new = early_memremap(new_phys, new_size);
230 	if (!new) {
231 		pr_err("Failed to map new boot services memmap\n");
232 		return;
233 	}
234 
235 	efi_memmap_insert(&efi.memmap, new, &mr);
236 	early_memunmap(new, new_size);
237 
238 	efi_memmap_install(new_phys, num_entries);
239 }
240 
241 /*
242  * Helper function for efi_reserve_boot_services() to figure out if we
243  * can free regions in efi_free_boot_services().
244  *
245  * Use this function to ensure we do not free regions owned by somebody
246  * else. We must only reserve (and then free) regions:
247  *
248  * - Not within any part of the kernel
249  * - Not the BIOS reserved area (E820_TYPE_RESERVED, E820_TYPE_NVS, etc)
250  */
251 static bool can_free_region(u64 start, u64 size)
252 {
253 	if (start + size > __pa_symbol(_text) && start <= __pa_symbol(_end))
254 		return false;
255 
256 	if (!e820__mapped_all(start, start+size, E820_TYPE_RAM))
257 		return false;
258 
259 	return true;
260 }
261 
262 void __init efi_reserve_boot_services(void)
263 {
264 	efi_memory_desc_t *md;
265 
266 	for_each_efi_memory_desc(md) {
267 		u64 start = md->phys_addr;
268 		u64 size = md->num_pages << EFI_PAGE_SHIFT;
269 		bool already_reserved;
270 
271 		if (md->type != EFI_BOOT_SERVICES_CODE &&
272 		    md->type != EFI_BOOT_SERVICES_DATA)
273 			continue;
274 
275 		already_reserved = memblock_is_region_reserved(start, size);
276 
277 		/*
278 		 * Because the following memblock_reserve() is paired
279 		 * with free_bootmem_late() for this region in
280 		 * efi_free_boot_services(), we must be extremely
281 		 * careful not to reserve, and subsequently free,
282 		 * critical regions of memory (like the kernel image) or
283 		 * those regions that somebody else has already
284 		 * reserved.
285 		 *
286 		 * A good example of a critical region that must not be
287 		 * freed is page zero (first 4Kb of memory), which may
288 		 * contain boot services code/data but is marked
289 		 * E820_TYPE_RESERVED by trim_bios_range().
290 		 */
291 		if (!already_reserved) {
292 			memblock_reserve(start, size);
293 
294 			/*
295 			 * If we are the first to reserve the region, no
296 			 * one else cares about it. We own it and can
297 			 * free it later.
298 			 */
299 			if (can_free_region(start, size))
300 				continue;
301 		}
302 
303 		/*
304 		 * We don't own the region. We must not free it.
305 		 *
306 		 * Setting this bit for a boot services region really
307 		 * doesn't make sense as far as the firmware is
308 		 * concerned, but it does provide us with a way to tag
309 		 * those regions that must not be paired with
310 		 * free_bootmem_late().
311 		 */
312 		md->attribute |= EFI_MEMORY_RUNTIME;
313 	}
314 }
315 
316 void __init efi_free_boot_services(void)
317 {
318 	phys_addr_t new_phys, new_size;
319 	efi_memory_desc_t *md;
320 	int num_entries = 0;
321 	void *new, *new_md;
322 
323 	for_each_efi_memory_desc(md) {
324 		unsigned long long start = md->phys_addr;
325 		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
326 		size_t rm_size;
327 
328 		if (md->type != EFI_BOOT_SERVICES_CODE &&
329 		    md->type != EFI_BOOT_SERVICES_DATA) {
330 			num_entries++;
331 			continue;
332 		}
333 
334 		/* Do not free, someone else owns it: */
335 		if (md->attribute & EFI_MEMORY_RUNTIME) {
336 			num_entries++;
337 			continue;
338 		}
339 
340 		/*
341 		 * Nasty quirk: if all sub-1MB memory is used for boot
342 		 * services, we can get here without having allocated the
343 		 * real mode trampoline.  It's too late to hand boot services
344 		 * memory back to the memblock allocator, so instead
345 		 * try to manually allocate the trampoline if needed.
346 		 *
347 		 * I've seen this on a Dell XPS 13 9350 with firmware
348 		 * 1.4.4 with SGX enabled booting Linux via Fedora 24's
349 		 * grub2-efi on a hard disk.  (And no, I don't know why
350 		 * this happened, but Linux should still try to boot rather
351 		 * panicing early.)
352 		 */
353 		rm_size = real_mode_size_needed();
354 		if (rm_size && (start + rm_size) < (1<<20) && size >= rm_size) {
355 			set_real_mode_mem(start, rm_size);
356 			start += rm_size;
357 			size -= rm_size;
358 		}
359 
360 		free_bootmem_late(start, size);
361 	}
362 
363 	new_size = efi.memmap.desc_size * num_entries;
364 	new_phys = efi_memmap_alloc(num_entries);
365 	if (!new_phys) {
366 		pr_err("Failed to allocate new EFI memmap\n");
367 		return;
368 	}
369 
370 	new = memremap(new_phys, new_size, MEMREMAP_WB);
371 	if (!new) {
372 		pr_err("Failed to map new EFI memmap\n");
373 		return;
374 	}
375 
376 	/*
377 	 * Build a new EFI memmap that excludes any boot services
378 	 * regions that are not tagged EFI_MEMORY_RUNTIME, since those
379 	 * regions have now been freed.
380 	 */
381 	new_md = new;
382 	for_each_efi_memory_desc(md) {
383 		if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
384 		    (md->type == EFI_BOOT_SERVICES_CODE ||
385 		     md->type == EFI_BOOT_SERVICES_DATA))
386 			continue;
387 
388 		memcpy(new_md, md, efi.memmap.desc_size);
389 		new_md += efi.memmap.desc_size;
390 	}
391 
392 	memunmap(new);
393 
394 	if (efi_memmap_install(new_phys, num_entries)) {
395 		pr_err("Could not install new EFI memmap\n");
396 		return;
397 	}
398 }
399 
400 /*
401  * A number of config table entries get remapped to virtual addresses
402  * after entering EFI virtual mode. However, the kexec kernel requires
403  * their physical addresses therefore we pass them via setup_data and
404  * correct those entries to their respective physical addresses here.
405  *
406  * Currently only handles smbios which is necessary for some firmware
407  * implementation.
408  */
409 int __init efi_reuse_config(u64 tables, int nr_tables)
410 {
411 	int i, sz, ret = 0;
412 	void *p, *tablep;
413 	struct efi_setup_data *data;
414 
415 	if (!efi_setup)
416 		return 0;
417 
418 	if (!efi_enabled(EFI_64BIT))
419 		return 0;
420 
421 	data = early_memremap(efi_setup, sizeof(*data));
422 	if (!data) {
423 		ret = -ENOMEM;
424 		goto out;
425 	}
426 
427 	if (!data->smbios)
428 		goto out_memremap;
429 
430 	sz = sizeof(efi_config_table_64_t);
431 
432 	p = tablep = early_memremap(tables, nr_tables * sz);
433 	if (!p) {
434 		pr_err("Could not map Configuration table!\n");
435 		ret = -ENOMEM;
436 		goto out_memremap;
437 	}
438 
439 	for (i = 0; i < efi.systab->nr_tables; i++) {
440 		efi_guid_t guid;
441 
442 		guid = ((efi_config_table_64_t *)p)->guid;
443 
444 		if (!efi_guidcmp(guid, SMBIOS_TABLE_GUID))
445 			((efi_config_table_64_t *)p)->table = data->smbios;
446 		p += sz;
447 	}
448 	early_memunmap(tablep, nr_tables * sz);
449 
450 out_memremap:
451 	early_memunmap(data, sizeof(*data));
452 out:
453 	return ret;
454 }
455 
456 static const struct dmi_system_id sgi_uv1_dmi[] = {
457 	{ NULL, "SGI UV1",
458 		{	DMI_MATCH(DMI_PRODUCT_NAME,	"Stoutland Platform"),
459 			DMI_MATCH(DMI_PRODUCT_VERSION,	"1.0"),
460 			DMI_MATCH(DMI_BIOS_VENDOR,	"SGI.COM"),
461 		}
462 	},
463 	{ } /* NULL entry stops DMI scanning */
464 };
465 
466 void __init efi_apply_memmap_quirks(void)
467 {
468 	/*
469 	 * Once setup is done earlier, unmap the EFI memory map on mismatched
470 	 * firmware/kernel architectures since there is no support for runtime
471 	 * services.
472 	 */
473 	if (!efi_runtime_supported()) {
474 		pr_info("Setup done, disabling due to 32/64-bit mismatch\n");
475 		efi_memmap_unmap();
476 	}
477 
478 	/* UV2+ BIOS has a fix for this issue.  UV1 still needs the quirk. */
479 	if (dmi_check_system(sgi_uv1_dmi))
480 		set_bit(EFI_OLD_MEMMAP, &efi.flags);
481 }
482 
483 /*
484  * For most modern platforms the preferred method of powering off is via
485  * ACPI. However, there are some that are known to require the use of
486  * EFI runtime services and for which ACPI does not work at all.
487  *
488  * Using EFI is a last resort, to be used only if no other option
489  * exists.
490  */
491 bool efi_reboot_required(void)
492 {
493 	if (!acpi_gbl_reduced_hardware)
494 		return false;
495 
496 	efi_reboot_quirk_mode = EFI_RESET_WARM;
497 	return true;
498 }
499 
500 bool efi_poweroff_required(void)
501 {
502 	return acpi_gbl_reduced_hardware || acpi_no_s5;
503 }
504