1 #define pr_fmt(fmt) "efi: " fmt 2 3 #include <linux/init.h> 4 #include <linux/kernel.h> 5 #include <linux/string.h> 6 #include <linux/time.h> 7 #include <linux/types.h> 8 #include <linux/efi.h> 9 #include <linux/slab.h> 10 #include <linux/memblock.h> 11 #include <linux/bootmem.h> 12 #include <linux/acpi.h> 13 #include <linux/dmi.h> 14 15 #include <asm/e820/api.h> 16 #include <asm/efi.h> 17 #include <asm/uv/uv.h> 18 #include <asm/cpu_device_id.h> 19 20 #define EFI_MIN_RESERVE 5120 21 22 #define EFI_DUMMY_GUID \ 23 EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9) 24 25 #define QUARK_CSH_SIGNATURE 0x5f435348 /* _CSH */ 26 #define QUARK_SECURITY_HEADER_SIZE 0x400 27 28 /* 29 * Header prepended to the standard EFI capsule on Quark systems the are based 30 * on Intel firmware BSP. 31 * @csh_signature: Unique identifier to sanity check signed module 32 * presence ("_CSH"). 33 * @version: Current version of CSH used. Should be one for Quark A0. 34 * @modulesize: Size of the entire module including the module header 35 * and payload. 36 * @security_version_number_index: Index of SVN to use for validation of signed 37 * module. 38 * @security_version_number: Used to prevent against roll back of modules. 39 * @rsvd_module_id: Currently unused for Clanton (Quark). 40 * @rsvd_module_vendor: Vendor Identifier. For Intel products value is 41 * 0x00008086. 42 * @rsvd_date: BCD representation of build date as yyyymmdd, where 43 * yyyy=4 digit year, mm=1-12, dd=1-31. 44 * @headersize: Total length of the header including including any 45 * padding optionally added by the signing tool. 46 * @hash_algo: What Hash is used in the module signing. 47 * @cryp_algo: What Crypto is used in the module signing. 48 * @keysize: Total length of the key data including including any 49 * padding optionally added by the signing tool. 50 * @signaturesize: Total length of the signature including including any 51 * padding optionally added by the signing tool. 52 * @rsvd_next_header: 32-bit pointer to the next Secure Boot Module in the 53 * chain, if there is a next header. 54 * @rsvd: Reserved, padding structure to required size. 55 * 56 * See also QuartSecurityHeader_t in 57 * Quark_EDKII_v1.2.1.1/QuarkPlatformPkg/Include/QuarkBootRom.h 58 * from https://downloadcenter.intel.com/download/23197/Intel-Quark-SoC-X1000-Board-Support-Package-BSP 59 */ 60 struct quark_security_header { 61 u32 csh_signature; 62 u32 version; 63 u32 modulesize; 64 u32 security_version_number_index; 65 u32 security_version_number; 66 u32 rsvd_module_id; 67 u32 rsvd_module_vendor; 68 u32 rsvd_date; 69 u32 headersize; 70 u32 hash_algo; 71 u32 cryp_algo; 72 u32 keysize; 73 u32 signaturesize; 74 u32 rsvd_next_header; 75 u32 rsvd[2]; 76 }; 77 78 static efi_char16_t efi_dummy_name[6] = { 'D', 'U', 'M', 'M', 'Y', 0 }; 79 80 static bool efi_no_storage_paranoia; 81 82 /* 83 * Some firmware implementations refuse to boot if there's insufficient 84 * space in the variable store. The implementation of garbage collection 85 * in some FW versions causes stale (deleted) variables to take up space 86 * longer than intended and space is only freed once the store becomes 87 * almost completely full. 88 * 89 * Enabling this option disables the space checks in 90 * efi_query_variable_store() and forces garbage collection. 91 * 92 * Only enable this option if deleting EFI variables does not free up 93 * space in your variable store, e.g. if despite deleting variables 94 * you're unable to create new ones. 95 */ 96 static int __init setup_storage_paranoia(char *arg) 97 { 98 efi_no_storage_paranoia = true; 99 return 0; 100 } 101 early_param("efi_no_storage_paranoia", setup_storage_paranoia); 102 103 /* 104 * Deleting the dummy variable which kicks off garbage collection 105 */ 106 void efi_delete_dummy_variable(void) 107 { 108 efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID, 109 EFI_VARIABLE_NON_VOLATILE | 110 EFI_VARIABLE_BOOTSERVICE_ACCESS | 111 EFI_VARIABLE_RUNTIME_ACCESS, 112 0, NULL); 113 } 114 115 /* 116 * In the nonblocking case we do not attempt to perform garbage 117 * collection if we do not have enough free space. Rather, we do the 118 * bare minimum check and give up immediately if the available space 119 * is below EFI_MIN_RESERVE. 120 * 121 * This function is intended to be small and simple because it is 122 * invoked from crash handler paths. 123 */ 124 static efi_status_t 125 query_variable_store_nonblocking(u32 attributes, unsigned long size) 126 { 127 efi_status_t status; 128 u64 storage_size, remaining_size, max_size; 129 130 status = efi.query_variable_info_nonblocking(attributes, &storage_size, 131 &remaining_size, 132 &max_size); 133 if (status != EFI_SUCCESS) 134 return status; 135 136 if (remaining_size - size < EFI_MIN_RESERVE) 137 return EFI_OUT_OF_RESOURCES; 138 139 return EFI_SUCCESS; 140 } 141 142 /* 143 * Some firmware implementations refuse to boot if there's insufficient space 144 * in the variable store. Ensure that we never use more than a safe limit. 145 * 146 * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable 147 * store. 148 */ 149 efi_status_t efi_query_variable_store(u32 attributes, unsigned long size, 150 bool nonblocking) 151 { 152 efi_status_t status; 153 u64 storage_size, remaining_size, max_size; 154 155 if (!(attributes & EFI_VARIABLE_NON_VOLATILE)) 156 return 0; 157 158 if (nonblocking) 159 return query_variable_store_nonblocking(attributes, size); 160 161 status = efi.query_variable_info(attributes, &storage_size, 162 &remaining_size, &max_size); 163 if (status != EFI_SUCCESS) 164 return status; 165 166 /* 167 * We account for that by refusing the write if permitting it would 168 * reduce the available space to under 5KB. This figure was provided by 169 * Samsung, so should be safe. 170 */ 171 if ((remaining_size - size < EFI_MIN_RESERVE) && 172 !efi_no_storage_paranoia) { 173 174 /* 175 * Triggering garbage collection may require that the firmware 176 * generate a real EFI_OUT_OF_RESOURCES error. We can force 177 * that by attempting to use more space than is available. 178 */ 179 unsigned long dummy_size = remaining_size + 1024; 180 void *dummy = kzalloc(dummy_size, GFP_ATOMIC); 181 182 if (!dummy) 183 return EFI_OUT_OF_RESOURCES; 184 185 status = efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID, 186 EFI_VARIABLE_NON_VOLATILE | 187 EFI_VARIABLE_BOOTSERVICE_ACCESS | 188 EFI_VARIABLE_RUNTIME_ACCESS, 189 dummy_size, dummy); 190 191 if (status == EFI_SUCCESS) { 192 /* 193 * This should have failed, so if it didn't make sure 194 * that we delete it... 195 */ 196 efi_delete_dummy_variable(); 197 } 198 199 kfree(dummy); 200 201 /* 202 * The runtime code may now have triggered a garbage collection 203 * run, so check the variable info again 204 */ 205 status = efi.query_variable_info(attributes, &storage_size, 206 &remaining_size, &max_size); 207 208 if (status != EFI_SUCCESS) 209 return status; 210 211 /* 212 * There still isn't enough room, so return an error 213 */ 214 if (remaining_size - size < EFI_MIN_RESERVE) 215 return EFI_OUT_OF_RESOURCES; 216 } 217 218 return EFI_SUCCESS; 219 } 220 EXPORT_SYMBOL_GPL(efi_query_variable_store); 221 222 /* 223 * The UEFI specification makes it clear that the operating system is 224 * free to do whatever it wants with boot services code after 225 * ExitBootServices() has been called. Ignoring this recommendation a 226 * significant bunch of EFI implementations continue calling into boot 227 * services code (SetVirtualAddressMap). In order to work around such 228 * buggy implementations we reserve boot services region during EFI 229 * init and make sure it stays executable. Then, after 230 * SetVirtualAddressMap(), it is discarded. 231 * 232 * However, some boot services regions contain data that is required 233 * by drivers, so we need to track which memory ranges can never be 234 * freed. This is done by tagging those regions with the 235 * EFI_MEMORY_RUNTIME attribute. 236 * 237 * Any driver that wants to mark a region as reserved must use 238 * efi_mem_reserve() which will insert a new EFI memory descriptor 239 * into efi.memmap (splitting existing regions if necessary) and tag 240 * it with EFI_MEMORY_RUNTIME. 241 */ 242 void __init efi_arch_mem_reserve(phys_addr_t addr, u64 size) 243 { 244 phys_addr_t new_phys, new_size; 245 struct efi_mem_range mr; 246 efi_memory_desc_t md; 247 int num_entries; 248 void *new; 249 250 if (efi_mem_desc_lookup(addr, &md)) { 251 pr_err("Failed to lookup EFI memory descriptor for %pa\n", &addr); 252 return; 253 } 254 255 if (addr + size > md.phys_addr + (md.num_pages << EFI_PAGE_SHIFT)) { 256 pr_err("Region spans EFI memory descriptors, %pa\n", &addr); 257 return; 258 } 259 260 /* No need to reserve regions that will never be freed. */ 261 if (md.attribute & EFI_MEMORY_RUNTIME) 262 return; 263 264 size += addr % EFI_PAGE_SIZE; 265 size = round_up(size, EFI_PAGE_SIZE); 266 addr = round_down(addr, EFI_PAGE_SIZE); 267 268 mr.range.start = addr; 269 mr.range.end = addr + size - 1; 270 mr.attribute = md.attribute | EFI_MEMORY_RUNTIME; 271 272 num_entries = efi_memmap_split_count(&md, &mr.range); 273 num_entries += efi.memmap.nr_map; 274 275 new_size = efi.memmap.desc_size * num_entries; 276 277 new_phys = efi_memmap_alloc(num_entries); 278 if (!new_phys) { 279 pr_err("Could not allocate boot services memmap\n"); 280 return; 281 } 282 283 new = early_memremap(new_phys, new_size); 284 if (!new) { 285 pr_err("Failed to map new boot services memmap\n"); 286 return; 287 } 288 289 efi_memmap_insert(&efi.memmap, new, &mr); 290 early_memunmap(new, new_size); 291 292 efi_memmap_install(new_phys, num_entries); 293 } 294 295 /* 296 * Helper function for efi_reserve_boot_services() to figure out if we 297 * can free regions in efi_free_boot_services(). 298 * 299 * Use this function to ensure we do not free regions owned by somebody 300 * else. We must only reserve (and then free) regions: 301 * 302 * - Not within any part of the kernel 303 * - Not the BIOS reserved area (E820_TYPE_RESERVED, E820_TYPE_NVS, etc) 304 */ 305 static bool can_free_region(u64 start, u64 size) 306 { 307 if (start + size > __pa_symbol(_text) && start <= __pa_symbol(_end)) 308 return false; 309 310 if (!e820__mapped_all(start, start+size, E820_TYPE_RAM)) 311 return false; 312 313 return true; 314 } 315 316 void __init efi_reserve_boot_services(void) 317 { 318 efi_memory_desc_t *md; 319 320 for_each_efi_memory_desc(md) { 321 u64 start = md->phys_addr; 322 u64 size = md->num_pages << EFI_PAGE_SHIFT; 323 bool already_reserved; 324 325 if (md->type != EFI_BOOT_SERVICES_CODE && 326 md->type != EFI_BOOT_SERVICES_DATA) 327 continue; 328 329 already_reserved = memblock_is_region_reserved(start, size); 330 331 /* 332 * Because the following memblock_reserve() is paired 333 * with free_bootmem_late() for this region in 334 * efi_free_boot_services(), we must be extremely 335 * careful not to reserve, and subsequently free, 336 * critical regions of memory (like the kernel image) or 337 * those regions that somebody else has already 338 * reserved. 339 * 340 * A good example of a critical region that must not be 341 * freed is page zero (first 4Kb of memory), which may 342 * contain boot services code/data but is marked 343 * E820_TYPE_RESERVED by trim_bios_range(). 344 */ 345 if (!already_reserved) { 346 memblock_reserve(start, size); 347 348 /* 349 * If we are the first to reserve the region, no 350 * one else cares about it. We own it and can 351 * free it later. 352 */ 353 if (can_free_region(start, size)) 354 continue; 355 } 356 357 /* 358 * We don't own the region. We must not free it. 359 * 360 * Setting this bit for a boot services region really 361 * doesn't make sense as far as the firmware is 362 * concerned, but it does provide us with a way to tag 363 * those regions that must not be paired with 364 * free_bootmem_late(). 365 */ 366 md->attribute |= EFI_MEMORY_RUNTIME; 367 } 368 } 369 370 void __init efi_free_boot_services(void) 371 { 372 phys_addr_t new_phys, new_size; 373 efi_memory_desc_t *md; 374 int num_entries = 0; 375 void *new, *new_md; 376 377 for_each_efi_memory_desc(md) { 378 unsigned long long start = md->phys_addr; 379 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT; 380 size_t rm_size; 381 382 if (md->type != EFI_BOOT_SERVICES_CODE && 383 md->type != EFI_BOOT_SERVICES_DATA) { 384 num_entries++; 385 continue; 386 } 387 388 /* Do not free, someone else owns it: */ 389 if (md->attribute & EFI_MEMORY_RUNTIME) { 390 num_entries++; 391 continue; 392 } 393 394 /* 395 * Nasty quirk: if all sub-1MB memory is used for boot 396 * services, we can get here without having allocated the 397 * real mode trampoline. It's too late to hand boot services 398 * memory back to the memblock allocator, so instead 399 * try to manually allocate the trampoline if needed. 400 * 401 * I've seen this on a Dell XPS 13 9350 with firmware 402 * 1.4.4 with SGX enabled booting Linux via Fedora 24's 403 * grub2-efi on a hard disk. (And no, I don't know why 404 * this happened, but Linux should still try to boot rather 405 * panicing early.) 406 */ 407 rm_size = real_mode_size_needed(); 408 if (rm_size && (start + rm_size) < (1<<20) && size >= rm_size) { 409 set_real_mode_mem(start, rm_size); 410 start += rm_size; 411 size -= rm_size; 412 } 413 414 free_bootmem_late(start, size); 415 } 416 417 if (!num_entries) 418 return; 419 420 new_size = efi.memmap.desc_size * num_entries; 421 new_phys = efi_memmap_alloc(num_entries); 422 if (!new_phys) { 423 pr_err("Failed to allocate new EFI memmap\n"); 424 return; 425 } 426 427 new = memremap(new_phys, new_size, MEMREMAP_WB); 428 if (!new) { 429 pr_err("Failed to map new EFI memmap\n"); 430 return; 431 } 432 433 /* 434 * Build a new EFI memmap that excludes any boot services 435 * regions that are not tagged EFI_MEMORY_RUNTIME, since those 436 * regions have now been freed. 437 */ 438 new_md = new; 439 for_each_efi_memory_desc(md) { 440 if (!(md->attribute & EFI_MEMORY_RUNTIME) && 441 (md->type == EFI_BOOT_SERVICES_CODE || 442 md->type == EFI_BOOT_SERVICES_DATA)) 443 continue; 444 445 memcpy(new_md, md, efi.memmap.desc_size); 446 new_md += efi.memmap.desc_size; 447 } 448 449 memunmap(new); 450 451 if (efi_memmap_install(new_phys, num_entries)) { 452 pr_err("Could not install new EFI memmap\n"); 453 return; 454 } 455 } 456 457 /* 458 * A number of config table entries get remapped to virtual addresses 459 * after entering EFI virtual mode. However, the kexec kernel requires 460 * their physical addresses therefore we pass them via setup_data and 461 * correct those entries to their respective physical addresses here. 462 * 463 * Currently only handles smbios which is necessary for some firmware 464 * implementation. 465 */ 466 int __init efi_reuse_config(u64 tables, int nr_tables) 467 { 468 int i, sz, ret = 0; 469 void *p, *tablep; 470 struct efi_setup_data *data; 471 472 if (!efi_setup) 473 return 0; 474 475 if (!efi_enabled(EFI_64BIT)) 476 return 0; 477 478 data = early_memremap(efi_setup, sizeof(*data)); 479 if (!data) { 480 ret = -ENOMEM; 481 goto out; 482 } 483 484 if (!data->smbios) 485 goto out_memremap; 486 487 sz = sizeof(efi_config_table_64_t); 488 489 p = tablep = early_memremap(tables, nr_tables * sz); 490 if (!p) { 491 pr_err("Could not map Configuration table!\n"); 492 ret = -ENOMEM; 493 goto out_memremap; 494 } 495 496 for (i = 0; i < efi.systab->nr_tables; i++) { 497 efi_guid_t guid; 498 499 guid = ((efi_config_table_64_t *)p)->guid; 500 501 if (!efi_guidcmp(guid, SMBIOS_TABLE_GUID)) 502 ((efi_config_table_64_t *)p)->table = data->smbios; 503 p += sz; 504 } 505 early_memunmap(tablep, nr_tables * sz); 506 507 out_memremap: 508 early_memunmap(data, sizeof(*data)); 509 out: 510 return ret; 511 } 512 513 static const struct dmi_system_id sgi_uv1_dmi[] = { 514 { NULL, "SGI UV1", 515 { DMI_MATCH(DMI_PRODUCT_NAME, "Stoutland Platform"), 516 DMI_MATCH(DMI_PRODUCT_VERSION, "1.0"), 517 DMI_MATCH(DMI_BIOS_VENDOR, "SGI.COM"), 518 } 519 }, 520 { } /* NULL entry stops DMI scanning */ 521 }; 522 523 void __init efi_apply_memmap_quirks(void) 524 { 525 /* 526 * Once setup is done earlier, unmap the EFI memory map on mismatched 527 * firmware/kernel architectures since there is no support for runtime 528 * services. 529 */ 530 if (!efi_runtime_supported()) { 531 pr_info("Setup done, disabling due to 32/64-bit mismatch\n"); 532 efi_memmap_unmap(); 533 } 534 535 /* UV2+ BIOS has a fix for this issue. UV1 still needs the quirk. */ 536 if (dmi_check_system(sgi_uv1_dmi)) 537 set_bit(EFI_OLD_MEMMAP, &efi.flags); 538 } 539 540 /* 541 * For most modern platforms the preferred method of powering off is via 542 * ACPI. However, there are some that are known to require the use of 543 * EFI runtime services and for which ACPI does not work at all. 544 * 545 * Using EFI is a last resort, to be used only if no other option 546 * exists. 547 */ 548 bool efi_reboot_required(void) 549 { 550 if (!acpi_gbl_reduced_hardware) 551 return false; 552 553 efi_reboot_quirk_mode = EFI_RESET_WARM; 554 return true; 555 } 556 557 bool efi_poweroff_required(void) 558 { 559 return acpi_gbl_reduced_hardware || acpi_no_s5; 560 } 561 562 #ifdef CONFIG_EFI_CAPSULE_QUIRK_QUARK_CSH 563 564 static int qrk_capsule_setup_info(struct capsule_info *cap_info, void **pkbuff, 565 size_t hdr_bytes) 566 { 567 struct quark_security_header *csh = *pkbuff; 568 569 /* Only process data block that is larger than the security header */ 570 if (hdr_bytes < sizeof(struct quark_security_header)) 571 return 0; 572 573 if (csh->csh_signature != QUARK_CSH_SIGNATURE || 574 csh->headersize != QUARK_SECURITY_HEADER_SIZE) 575 return 1; 576 577 /* Only process data block if EFI header is included */ 578 if (hdr_bytes < QUARK_SECURITY_HEADER_SIZE + 579 sizeof(efi_capsule_header_t)) 580 return 0; 581 582 pr_debug("Quark security header detected\n"); 583 584 if (csh->rsvd_next_header != 0) { 585 pr_err("multiple Quark security headers not supported\n"); 586 return -EINVAL; 587 } 588 589 *pkbuff += csh->headersize; 590 cap_info->total_size = csh->headersize; 591 592 /* 593 * Update the first page pointer to skip over the CSH header. 594 */ 595 cap_info->phys[0] += csh->headersize; 596 597 /* 598 * cap_info->capsule should point at a virtual mapping of the entire 599 * capsule, starting at the capsule header. Our image has the Quark 600 * security header prepended, so we cannot rely on the default vmap() 601 * mapping created by the generic capsule code. 602 * Given that the Quark firmware does not appear to care about the 603 * virtual mapping, let's just point cap_info->capsule at our copy 604 * of the capsule header. 605 */ 606 cap_info->capsule = &cap_info->header; 607 608 return 1; 609 } 610 611 #define ICPU(family, model, quirk_handler) \ 612 { X86_VENDOR_INTEL, family, model, X86_FEATURE_ANY, \ 613 (unsigned long)&quirk_handler } 614 615 static const struct x86_cpu_id efi_capsule_quirk_ids[] = { 616 ICPU(5, 9, qrk_capsule_setup_info), /* Intel Quark X1000 */ 617 { } 618 }; 619 620 int efi_capsule_setup_info(struct capsule_info *cap_info, void *kbuff, 621 size_t hdr_bytes) 622 { 623 int (*quirk_handler)(struct capsule_info *, void **, size_t); 624 const struct x86_cpu_id *id; 625 int ret; 626 627 if (hdr_bytes < sizeof(efi_capsule_header_t)) 628 return 0; 629 630 cap_info->total_size = 0; 631 632 id = x86_match_cpu(efi_capsule_quirk_ids); 633 if (id) { 634 /* 635 * The quirk handler is supposed to return 636 * - a value > 0 if the setup should continue, after advancing 637 * kbuff as needed 638 * - 0 if not enough hdr_bytes are available yet 639 * - a negative error code otherwise 640 */ 641 quirk_handler = (typeof(quirk_handler))id->driver_data; 642 ret = quirk_handler(cap_info, &kbuff, hdr_bytes); 643 if (ret <= 0) 644 return ret; 645 } 646 647 memcpy(&cap_info->header, kbuff, sizeof(cap_info->header)); 648 649 cap_info->total_size += cap_info->header.imagesize; 650 651 return __efi_capsule_setup_info(cap_info); 652 } 653 654 #endif 655