1 // SPDX-License-Identifier: GPL-2.0-only 2 #define pr_fmt(fmt) "efi: " fmt 3 4 #include <linux/init.h> 5 #include <linux/kernel.h> 6 #include <linux/string.h> 7 #include <linux/time.h> 8 #include <linux/types.h> 9 #include <linux/efi.h> 10 #include <linux/slab.h> 11 #include <linux/memblock.h> 12 #include <linux/acpi.h> 13 #include <linux/dmi.h> 14 15 #include <asm/e820/api.h> 16 #include <asm/efi.h> 17 #include <asm/uv/uv.h> 18 #include <asm/cpu_device_id.h> 19 #include <asm/reboot.h> 20 21 #define EFI_MIN_RESERVE 5120 22 23 #define EFI_DUMMY_GUID \ 24 EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9) 25 26 #define QUARK_CSH_SIGNATURE 0x5f435348 /* _CSH */ 27 #define QUARK_SECURITY_HEADER_SIZE 0x400 28 29 /* 30 * Header prepended to the standard EFI capsule on Quark systems the are based 31 * on Intel firmware BSP. 32 * @csh_signature: Unique identifier to sanity check signed module 33 * presence ("_CSH"). 34 * @version: Current version of CSH used. Should be one for Quark A0. 35 * @modulesize: Size of the entire module including the module header 36 * and payload. 37 * @security_version_number_index: Index of SVN to use for validation of signed 38 * module. 39 * @security_version_number: Used to prevent against roll back of modules. 40 * @rsvd_module_id: Currently unused for Clanton (Quark). 41 * @rsvd_module_vendor: Vendor Identifier. For Intel products value is 42 * 0x00008086. 43 * @rsvd_date: BCD representation of build date as yyyymmdd, where 44 * yyyy=4 digit year, mm=1-12, dd=1-31. 45 * @headersize: Total length of the header including including any 46 * padding optionally added by the signing tool. 47 * @hash_algo: What Hash is used in the module signing. 48 * @cryp_algo: What Crypto is used in the module signing. 49 * @keysize: Total length of the key data including including any 50 * padding optionally added by the signing tool. 51 * @signaturesize: Total length of the signature including including any 52 * padding optionally added by the signing tool. 53 * @rsvd_next_header: 32-bit pointer to the next Secure Boot Module in the 54 * chain, if there is a next header. 55 * @rsvd: Reserved, padding structure to required size. 56 * 57 * See also QuartSecurityHeader_t in 58 * Quark_EDKII_v1.2.1.1/QuarkPlatformPkg/Include/QuarkBootRom.h 59 * from https://downloadcenter.intel.com/download/23197/Intel-Quark-SoC-X1000-Board-Support-Package-BSP 60 */ 61 struct quark_security_header { 62 u32 csh_signature; 63 u32 version; 64 u32 modulesize; 65 u32 security_version_number_index; 66 u32 security_version_number; 67 u32 rsvd_module_id; 68 u32 rsvd_module_vendor; 69 u32 rsvd_date; 70 u32 headersize; 71 u32 hash_algo; 72 u32 cryp_algo; 73 u32 keysize; 74 u32 signaturesize; 75 u32 rsvd_next_header; 76 u32 rsvd[2]; 77 }; 78 79 static const efi_char16_t efi_dummy_name[] = L"DUMMY"; 80 81 static bool efi_no_storage_paranoia; 82 83 /* 84 * Some firmware implementations refuse to boot if there's insufficient 85 * space in the variable store. The implementation of garbage collection 86 * in some FW versions causes stale (deleted) variables to take up space 87 * longer than intended and space is only freed once the store becomes 88 * almost completely full. 89 * 90 * Enabling this option disables the space checks in 91 * efi_query_variable_store() and forces garbage collection. 92 * 93 * Only enable this option if deleting EFI variables does not free up 94 * space in your variable store, e.g. if despite deleting variables 95 * you're unable to create new ones. 96 */ 97 static int __init setup_storage_paranoia(char *arg) 98 { 99 efi_no_storage_paranoia = true; 100 return 0; 101 } 102 early_param("efi_no_storage_paranoia", setup_storage_paranoia); 103 104 /* 105 * Deleting the dummy variable which kicks off garbage collection 106 */ 107 void efi_delete_dummy_variable(void) 108 { 109 efi.set_variable_nonblocking((efi_char16_t *)efi_dummy_name, 110 &EFI_DUMMY_GUID, 111 EFI_VARIABLE_NON_VOLATILE | 112 EFI_VARIABLE_BOOTSERVICE_ACCESS | 113 EFI_VARIABLE_RUNTIME_ACCESS, 0, NULL); 114 } 115 116 /* 117 * In the nonblocking case we do not attempt to perform garbage 118 * collection if we do not have enough free space. Rather, we do the 119 * bare minimum check and give up immediately if the available space 120 * is below EFI_MIN_RESERVE. 121 * 122 * This function is intended to be small and simple because it is 123 * invoked from crash handler paths. 124 */ 125 static efi_status_t 126 query_variable_store_nonblocking(u32 attributes, unsigned long size) 127 { 128 efi_status_t status; 129 u64 storage_size, remaining_size, max_size; 130 131 status = efi.query_variable_info_nonblocking(attributes, &storage_size, 132 &remaining_size, 133 &max_size); 134 if (status != EFI_SUCCESS) 135 return status; 136 137 if (remaining_size - size < EFI_MIN_RESERVE) 138 return EFI_OUT_OF_RESOURCES; 139 140 return EFI_SUCCESS; 141 } 142 143 /* 144 * Some firmware implementations refuse to boot if there's insufficient space 145 * in the variable store. Ensure that we never use more than a safe limit. 146 * 147 * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable 148 * store. 149 */ 150 efi_status_t efi_query_variable_store(u32 attributes, unsigned long size, 151 bool nonblocking) 152 { 153 efi_status_t status; 154 u64 storage_size, remaining_size, max_size; 155 156 if (!(attributes & EFI_VARIABLE_NON_VOLATILE)) 157 return 0; 158 159 if (nonblocking) 160 return query_variable_store_nonblocking(attributes, size); 161 162 status = efi.query_variable_info(attributes, &storage_size, 163 &remaining_size, &max_size); 164 if (status != EFI_SUCCESS) 165 return status; 166 167 /* 168 * We account for that by refusing the write if permitting it would 169 * reduce the available space to under 5KB. This figure was provided by 170 * Samsung, so should be safe. 171 */ 172 if ((remaining_size - size < EFI_MIN_RESERVE) && 173 !efi_no_storage_paranoia) { 174 175 /* 176 * Triggering garbage collection may require that the firmware 177 * generate a real EFI_OUT_OF_RESOURCES error. We can force 178 * that by attempting to use more space than is available. 179 */ 180 unsigned long dummy_size = remaining_size + 1024; 181 void *dummy = kzalloc(dummy_size, GFP_KERNEL); 182 183 if (!dummy) 184 return EFI_OUT_OF_RESOURCES; 185 186 status = efi.set_variable((efi_char16_t *)efi_dummy_name, 187 &EFI_DUMMY_GUID, 188 EFI_VARIABLE_NON_VOLATILE | 189 EFI_VARIABLE_BOOTSERVICE_ACCESS | 190 EFI_VARIABLE_RUNTIME_ACCESS, 191 dummy_size, dummy); 192 193 if (status == EFI_SUCCESS) { 194 /* 195 * This should have failed, so if it didn't make sure 196 * that we delete it... 197 */ 198 efi_delete_dummy_variable(); 199 } 200 201 kfree(dummy); 202 203 /* 204 * The runtime code may now have triggered a garbage collection 205 * run, so check the variable info again 206 */ 207 status = efi.query_variable_info(attributes, &storage_size, 208 &remaining_size, &max_size); 209 210 if (status != EFI_SUCCESS) 211 return status; 212 213 /* 214 * There still isn't enough room, so return an error 215 */ 216 if (remaining_size - size < EFI_MIN_RESERVE) 217 return EFI_OUT_OF_RESOURCES; 218 } 219 220 return EFI_SUCCESS; 221 } 222 EXPORT_SYMBOL_GPL(efi_query_variable_store); 223 224 /* 225 * The UEFI specification makes it clear that the operating system is 226 * free to do whatever it wants with boot services code after 227 * ExitBootServices() has been called. Ignoring this recommendation a 228 * significant bunch of EFI implementations continue calling into boot 229 * services code (SetVirtualAddressMap). In order to work around such 230 * buggy implementations we reserve boot services region during EFI 231 * init and make sure it stays executable. Then, after 232 * SetVirtualAddressMap(), it is discarded. 233 * 234 * However, some boot services regions contain data that is required 235 * by drivers, so we need to track which memory ranges can never be 236 * freed. This is done by tagging those regions with the 237 * EFI_MEMORY_RUNTIME attribute. 238 * 239 * Any driver that wants to mark a region as reserved must use 240 * efi_mem_reserve() which will insert a new EFI memory descriptor 241 * into efi.memmap (splitting existing regions if necessary) and tag 242 * it with EFI_MEMORY_RUNTIME. 243 */ 244 void __init efi_arch_mem_reserve(phys_addr_t addr, u64 size) 245 { 246 phys_addr_t new_phys, new_size; 247 struct efi_mem_range mr; 248 efi_memory_desc_t md; 249 int num_entries; 250 void *new; 251 252 if (efi_mem_desc_lookup(addr, &md) || 253 md.type != EFI_BOOT_SERVICES_DATA) { 254 pr_err("Failed to lookup EFI memory descriptor for %pa\n", &addr); 255 return; 256 } 257 258 if (addr + size > md.phys_addr + (md.num_pages << EFI_PAGE_SHIFT)) { 259 pr_err("Region spans EFI memory descriptors, %pa\n", &addr); 260 return; 261 } 262 263 size += addr % EFI_PAGE_SIZE; 264 size = round_up(size, EFI_PAGE_SIZE); 265 addr = round_down(addr, EFI_PAGE_SIZE); 266 267 mr.range.start = addr; 268 mr.range.end = addr + size - 1; 269 mr.attribute = md.attribute | EFI_MEMORY_RUNTIME; 270 271 num_entries = efi_memmap_split_count(&md, &mr.range); 272 num_entries += efi.memmap.nr_map; 273 274 new_size = efi.memmap.desc_size * num_entries; 275 276 new_phys = efi_memmap_alloc(num_entries); 277 if (!new_phys) { 278 pr_err("Could not allocate boot services memmap\n"); 279 return; 280 } 281 282 new = early_memremap(new_phys, new_size); 283 if (!new) { 284 pr_err("Failed to map new boot services memmap\n"); 285 return; 286 } 287 288 efi_memmap_insert(&efi.memmap, new, &mr); 289 early_memunmap(new, new_size); 290 291 efi_memmap_install(new_phys, num_entries); 292 e820__range_update(addr, size, E820_TYPE_RAM, E820_TYPE_RESERVED); 293 e820__update_table(e820_table); 294 } 295 296 /* 297 * Helper function for efi_reserve_boot_services() to figure out if we 298 * can free regions in efi_free_boot_services(). 299 * 300 * Use this function to ensure we do not free regions owned by somebody 301 * else. We must only reserve (and then free) regions: 302 * 303 * - Not within any part of the kernel 304 * - Not the BIOS reserved area (E820_TYPE_RESERVED, E820_TYPE_NVS, etc) 305 */ 306 static __init bool can_free_region(u64 start, u64 size) 307 { 308 if (start + size > __pa_symbol(_text) && start <= __pa_symbol(_end)) 309 return false; 310 311 if (!e820__mapped_all(start, start+size, E820_TYPE_RAM)) 312 return false; 313 314 return true; 315 } 316 317 void __init efi_reserve_boot_services(void) 318 { 319 efi_memory_desc_t *md; 320 321 if (!efi_enabled(EFI_MEMMAP)) 322 return; 323 324 for_each_efi_memory_desc(md) { 325 u64 start = md->phys_addr; 326 u64 size = md->num_pages << EFI_PAGE_SHIFT; 327 bool already_reserved; 328 329 if (md->type != EFI_BOOT_SERVICES_CODE && 330 md->type != EFI_BOOT_SERVICES_DATA) 331 continue; 332 333 already_reserved = memblock_is_region_reserved(start, size); 334 335 /* 336 * Because the following memblock_reserve() is paired 337 * with memblock_free_late() for this region in 338 * efi_free_boot_services(), we must be extremely 339 * careful not to reserve, and subsequently free, 340 * critical regions of memory (like the kernel image) or 341 * those regions that somebody else has already 342 * reserved. 343 * 344 * A good example of a critical region that must not be 345 * freed is page zero (first 4Kb of memory), which may 346 * contain boot services code/data but is marked 347 * E820_TYPE_RESERVED by trim_bios_range(). 348 */ 349 if (!already_reserved) { 350 memblock_reserve(start, size); 351 352 /* 353 * If we are the first to reserve the region, no 354 * one else cares about it. We own it and can 355 * free it later. 356 */ 357 if (can_free_region(start, size)) 358 continue; 359 } 360 361 /* 362 * We don't own the region. We must not free it. 363 * 364 * Setting this bit for a boot services region really 365 * doesn't make sense as far as the firmware is 366 * concerned, but it does provide us with a way to tag 367 * those regions that must not be paired with 368 * memblock_free_late(). 369 */ 370 md->attribute |= EFI_MEMORY_RUNTIME; 371 } 372 } 373 374 /* 375 * Apart from having VA mappings for EFI boot services code/data regions, 376 * (duplicate) 1:1 mappings were also created as a quirk for buggy firmware. So, 377 * unmap both 1:1 and VA mappings. 378 */ 379 static void __init efi_unmap_pages(efi_memory_desc_t *md) 380 { 381 pgd_t *pgd = efi_mm.pgd; 382 u64 pa = md->phys_addr; 383 u64 va = md->virt_addr; 384 385 /* 386 * To Do: Remove this check after adding functionality to unmap EFI boot 387 * services code/data regions from direct mapping area because 388 * "efi=old_map" maps EFI regions in swapper_pg_dir. 389 */ 390 if (efi_enabled(EFI_OLD_MEMMAP)) 391 return; 392 393 /* 394 * EFI mixed mode has all RAM mapped to access arguments while making 395 * EFI runtime calls, hence don't unmap EFI boot services code/data 396 * regions. 397 */ 398 if (!efi_is_native()) 399 return; 400 401 if (kernel_unmap_pages_in_pgd(pgd, pa, md->num_pages)) 402 pr_err("Failed to unmap 1:1 mapping for 0x%llx\n", pa); 403 404 if (kernel_unmap_pages_in_pgd(pgd, va, md->num_pages)) 405 pr_err("Failed to unmap VA mapping for 0x%llx\n", va); 406 } 407 408 void __init efi_free_boot_services(void) 409 { 410 phys_addr_t new_phys, new_size; 411 efi_memory_desc_t *md; 412 int num_entries = 0; 413 void *new, *new_md; 414 415 for_each_efi_memory_desc(md) { 416 unsigned long long start = md->phys_addr; 417 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT; 418 size_t rm_size; 419 420 if (md->type != EFI_BOOT_SERVICES_CODE && 421 md->type != EFI_BOOT_SERVICES_DATA) { 422 num_entries++; 423 continue; 424 } 425 426 /* Do not free, someone else owns it: */ 427 if (md->attribute & EFI_MEMORY_RUNTIME) { 428 num_entries++; 429 continue; 430 } 431 432 /* 433 * Before calling set_virtual_address_map(), EFI boot services 434 * code/data regions were mapped as a quirk for buggy firmware. 435 * Unmap them from efi_pgd before freeing them up. 436 */ 437 efi_unmap_pages(md); 438 439 /* 440 * Nasty quirk: if all sub-1MB memory is used for boot 441 * services, we can get here without having allocated the 442 * real mode trampoline. It's too late to hand boot services 443 * memory back to the memblock allocator, so instead 444 * try to manually allocate the trampoline if needed. 445 * 446 * I've seen this on a Dell XPS 13 9350 with firmware 447 * 1.4.4 with SGX enabled booting Linux via Fedora 24's 448 * grub2-efi on a hard disk. (And no, I don't know why 449 * this happened, but Linux should still try to boot rather 450 * panicing early.) 451 */ 452 rm_size = real_mode_size_needed(); 453 if (rm_size && (start + rm_size) < (1<<20) && size >= rm_size) { 454 set_real_mode_mem(start); 455 start += rm_size; 456 size -= rm_size; 457 } 458 459 memblock_free_late(start, size); 460 } 461 462 if (!num_entries) 463 return; 464 465 new_size = efi.memmap.desc_size * num_entries; 466 new_phys = efi_memmap_alloc(num_entries); 467 if (!new_phys) { 468 pr_err("Failed to allocate new EFI memmap\n"); 469 return; 470 } 471 472 new = memremap(new_phys, new_size, MEMREMAP_WB); 473 if (!new) { 474 pr_err("Failed to map new EFI memmap\n"); 475 return; 476 } 477 478 /* 479 * Build a new EFI memmap that excludes any boot services 480 * regions that are not tagged EFI_MEMORY_RUNTIME, since those 481 * regions have now been freed. 482 */ 483 new_md = new; 484 for_each_efi_memory_desc(md) { 485 if (!(md->attribute & EFI_MEMORY_RUNTIME) && 486 (md->type == EFI_BOOT_SERVICES_CODE || 487 md->type == EFI_BOOT_SERVICES_DATA)) 488 continue; 489 490 memcpy(new_md, md, efi.memmap.desc_size); 491 new_md += efi.memmap.desc_size; 492 } 493 494 memunmap(new); 495 496 if (efi_memmap_install(new_phys, num_entries)) { 497 pr_err("Could not install new EFI memmap\n"); 498 return; 499 } 500 } 501 502 /* 503 * A number of config table entries get remapped to virtual addresses 504 * after entering EFI virtual mode. However, the kexec kernel requires 505 * their physical addresses therefore we pass them via setup_data and 506 * correct those entries to their respective physical addresses here. 507 * 508 * Currently only handles smbios which is necessary for some firmware 509 * implementation. 510 */ 511 int __init efi_reuse_config(u64 tables, int nr_tables) 512 { 513 int i, sz, ret = 0; 514 void *p, *tablep; 515 struct efi_setup_data *data; 516 517 if (nr_tables == 0) 518 return 0; 519 520 if (!efi_setup) 521 return 0; 522 523 if (!efi_enabled(EFI_64BIT)) 524 return 0; 525 526 data = early_memremap(efi_setup, sizeof(*data)); 527 if (!data) { 528 ret = -ENOMEM; 529 goto out; 530 } 531 532 if (!data->smbios) 533 goto out_memremap; 534 535 sz = sizeof(efi_config_table_64_t); 536 537 p = tablep = early_memremap(tables, nr_tables * sz); 538 if (!p) { 539 pr_err("Could not map Configuration table!\n"); 540 ret = -ENOMEM; 541 goto out_memremap; 542 } 543 544 for (i = 0; i < efi.systab->nr_tables; i++) { 545 efi_guid_t guid; 546 547 guid = ((efi_config_table_64_t *)p)->guid; 548 549 if (!efi_guidcmp(guid, SMBIOS_TABLE_GUID)) 550 ((efi_config_table_64_t *)p)->table = data->smbios; 551 p += sz; 552 } 553 early_memunmap(tablep, nr_tables * sz); 554 555 out_memremap: 556 early_memunmap(data, sizeof(*data)); 557 out: 558 return ret; 559 } 560 561 static const struct dmi_system_id sgi_uv1_dmi[] = { 562 { NULL, "SGI UV1", 563 { DMI_MATCH(DMI_PRODUCT_NAME, "Stoutland Platform"), 564 DMI_MATCH(DMI_PRODUCT_VERSION, "1.0"), 565 DMI_MATCH(DMI_BIOS_VENDOR, "SGI.COM"), 566 } 567 }, 568 { } /* NULL entry stops DMI scanning */ 569 }; 570 571 void __init efi_apply_memmap_quirks(void) 572 { 573 /* 574 * Once setup is done earlier, unmap the EFI memory map on mismatched 575 * firmware/kernel architectures since there is no support for runtime 576 * services. 577 */ 578 if (!efi_runtime_supported()) { 579 pr_info("Setup done, disabling due to 32/64-bit mismatch\n"); 580 efi_memmap_unmap(); 581 } 582 583 /* UV2+ BIOS has a fix for this issue. UV1 still needs the quirk. */ 584 if (dmi_check_system(sgi_uv1_dmi)) 585 set_bit(EFI_OLD_MEMMAP, &efi.flags); 586 } 587 588 /* 589 * For most modern platforms the preferred method of powering off is via 590 * ACPI. However, there are some that are known to require the use of 591 * EFI runtime services and for which ACPI does not work at all. 592 * 593 * Using EFI is a last resort, to be used only if no other option 594 * exists. 595 */ 596 bool efi_reboot_required(void) 597 { 598 if (!acpi_gbl_reduced_hardware) 599 return false; 600 601 efi_reboot_quirk_mode = EFI_RESET_WARM; 602 return true; 603 } 604 605 bool efi_poweroff_required(void) 606 { 607 return acpi_gbl_reduced_hardware || acpi_no_s5; 608 } 609 610 #ifdef CONFIG_EFI_CAPSULE_QUIRK_QUARK_CSH 611 612 static int qrk_capsule_setup_info(struct capsule_info *cap_info, void **pkbuff, 613 size_t hdr_bytes) 614 { 615 struct quark_security_header *csh = *pkbuff; 616 617 /* Only process data block that is larger than the security header */ 618 if (hdr_bytes < sizeof(struct quark_security_header)) 619 return 0; 620 621 if (csh->csh_signature != QUARK_CSH_SIGNATURE || 622 csh->headersize != QUARK_SECURITY_HEADER_SIZE) 623 return 1; 624 625 /* Only process data block if EFI header is included */ 626 if (hdr_bytes < QUARK_SECURITY_HEADER_SIZE + 627 sizeof(efi_capsule_header_t)) 628 return 0; 629 630 pr_debug("Quark security header detected\n"); 631 632 if (csh->rsvd_next_header != 0) { 633 pr_err("multiple Quark security headers not supported\n"); 634 return -EINVAL; 635 } 636 637 *pkbuff += csh->headersize; 638 cap_info->total_size = csh->headersize; 639 640 /* 641 * Update the first page pointer to skip over the CSH header. 642 */ 643 cap_info->phys[0] += csh->headersize; 644 645 /* 646 * cap_info->capsule should point at a virtual mapping of the entire 647 * capsule, starting at the capsule header. Our image has the Quark 648 * security header prepended, so we cannot rely on the default vmap() 649 * mapping created by the generic capsule code. 650 * Given that the Quark firmware does not appear to care about the 651 * virtual mapping, let's just point cap_info->capsule at our copy 652 * of the capsule header. 653 */ 654 cap_info->capsule = &cap_info->header; 655 656 return 1; 657 } 658 659 #define ICPU(family, model, quirk_handler) \ 660 { X86_VENDOR_INTEL, family, model, X86_FEATURE_ANY, \ 661 (unsigned long)&quirk_handler } 662 663 static const struct x86_cpu_id efi_capsule_quirk_ids[] = { 664 ICPU(5, 9, qrk_capsule_setup_info), /* Intel Quark X1000 */ 665 { } 666 }; 667 668 int efi_capsule_setup_info(struct capsule_info *cap_info, void *kbuff, 669 size_t hdr_bytes) 670 { 671 int (*quirk_handler)(struct capsule_info *, void **, size_t); 672 const struct x86_cpu_id *id; 673 int ret; 674 675 if (hdr_bytes < sizeof(efi_capsule_header_t)) 676 return 0; 677 678 cap_info->total_size = 0; 679 680 id = x86_match_cpu(efi_capsule_quirk_ids); 681 if (id) { 682 /* 683 * The quirk handler is supposed to return 684 * - a value > 0 if the setup should continue, after advancing 685 * kbuff as needed 686 * - 0 if not enough hdr_bytes are available yet 687 * - a negative error code otherwise 688 */ 689 quirk_handler = (typeof(quirk_handler))id->driver_data; 690 ret = quirk_handler(cap_info, &kbuff, hdr_bytes); 691 if (ret <= 0) 692 return ret; 693 } 694 695 memcpy(&cap_info->header, kbuff, sizeof(cap_info->header)); 696 697 cap_info->total_size += cap_info->header.imagesize; 698 699 return __efi_capsule_setup_info(cap_info); 700 } 701 702 #endif 703 704 /* 705 * If any access by any efi runtime service causes a page fault, then, 706 * 1. If it's efi_reset_system(), reboot through BIOS. 707 * 2. If any other efi runtime service, then 708 * a. Return error status to the efi caller process. 709 * b. Disable EFI Runtime Services forever and 710 * c. Freeze efi_rts_wq and schedule new process. 711 * 712 * @return: Returns, if the page fault is not handled. This function 713 * will never return if the page fault is handled successfully. 714 */ 715 void efi_recover_from_page_fault(unsigned long phys_addr) 716 { 717 if (!IS_ENABLED(CONFIG_X86_64)) 718 return; 719 720 /* 721 * Make sure that an efi runtime service caused the page fault. 722 * "efi_mm" cannot be used to check if the page fault had occurred 723 * in the firmware context because efi=old_map doesn't use efi_pgd. 724 */ 725 if (efi_rts_work.efi_rts_id == EFI_NONE) 726 return; 727 728 /* 729 * Address range 0x0000 - 0x0fff is always mapped in the efi_pgd, so 730 * page faulting on these addresses isn't expected. 731 */ 732 if (phys_addr <= 0x0fff) 733 return; 734 735 /* 736 * Print stack trace as it might be useful to know which EFI Runtime 737 * Service is buggy. 738 */ 739 WARN(1, FW_BUG "Page fault caused by firmware at PA: 0x%lx\n", 740 phys_addr); 741 742 /* 743 * Buggy efi_reset_system() is handled differently from other EFI 744 * Runtime Services as it doesn't use efi_rts_wq. Although, 745 * native_machine_emergency_restart() says that machine_real_restart() 746 * could fail, it's better not to compilcate this fault handler 747 * because this case occurs *very* rarely and hence could be improved 748 * on a need by basis. 749 */ 750 if (efi_rts_work.efi_rts_id == EFI_RESET_SYSTEM) { 751 pr_info("efi_reset_system() buggy! Reboot through BIOS\n"); 752 machine_real_restart(MRR_BIOS); 753 return; 754 } 755 756 /* 757 * Before calling EFI Runtime Service, the kernel has switched the 758 * calling process to efi_mm. Hence, switch back to task_mm. 759 */ 760 arch_efi_call_virt_teardown(); 761 762 /* Signal error status to the efi caller process */ 763 efi_rts_work.status = EFI_ABORTED; 764 complete(&efi_rts_work.efi_rts_comp); 765 766 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); 767 pr_info("Froze efi_rts_wq and disabled EFI Runtime Services\n"); 768 769 /* 770 * Call schedule() in an infinite loop, so that any spurious wake ups 771 * will never run efi_rts_wq again. 772 */ 773 for (;;) { 774 set_current_state(TASK_IDLE); 775 schedule(); 776 } 777 778 return; 779 } 780