1 // SPDX-License-Identifier: GPL-2.0-only 2 #define pr_fmt(fmt) "efi: " fmt 3 4 #include <linux/init.h> 5 #include <linux/kernel.h> 6 #include <linux/string.h> 7 #include <linux/time.h> 8 #include <linux/types.h> 9 #include <linux/efi.h> 10 #include <linux/slab.h> 11 #include <linux/memblock.h> 12 #include <linux/acpi.h> 13 #include <linux/dmi.h> 14 15 #include <asm/e820/api.h> 16 #include <asm/efi.h> 17 #include <asm/uv/uv.h> 18 #include <asm/cpu_device_id.h> 19 #include <asm/reboot.h> 20 21 #define EFI_MIN_RESERVE 5120 22 23 #define EFI_DUMMY_GUID \ 24 EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9) 25 26 #define QUARK_CSH_SIGNATURE 0x5f435348 /* _CSH */ 27 #define QUARK_SECURITY_HEADER_SIZE 0x400 28 29 /* 30 * Header prepended to the standard EFI capsule on Quark systems the are based 31 * on Intel firmware BSP. 32 * @csh_signature: Unique identifier to sanity check signed module 33 * presence ("_CSH"). 34 * @version: Current version of CSH used. Should be one for Quark A0. 35 * @modulesize: Size of the entire module including the module header 36 * and payload. 37 * @security_version_number_index: Index of SVN to use for validation of signed 38 * module. 39 * @security_version_number: Used to prevent against roll back of modules. 40 * @rsvd_module_id: Currently unused for Clanton (Quark). 41 * @rsvd_module_vendor: Vendor Identifier. For Intel products value is 42 * 0x00008086. 43 * @rsvd_date: BCD representation of build date as yyyymmdd, where 44 * yyyy=4 digit year, mm=1-12, dd=1-31. 45 * @headersize: Total length of the header including including any 46 * padding optionally added by the signing tool. 47 * @hash_algo: What Hash is used in the module signing. 48 * @cryp_algo: What Crypto is used in the module signing. 49 * @keysize: Total length of the key data including including any 50 * padding optionally added by the signing tool. 51 * @signaturesize: Total length of the signature including including any 52 * padding optionally added by the signing tool. 53 * @rsvd_next_header: 32-bit pointer to the next Secure Boot Module in the 54 * chain, if there is a next header. 55 * @rsvd: Reserved, padding structure to required size. 56 * 57 * See also QuartSecurityHeader_t in 58 * Quark_EDKII_v1.2.1.1/QuarkPlatformPkg/Include/QuarkBootRom.h 59 * from https://downloadcenter.intel.com/download/23197/Intel-Quark-SoC-X1000-Board-Support-Package-BSP 60 */ 61 struct quark_security_header { 62 u32 csh_signature; 63 u32 version; 64 u32 modulesize; 65 u32 security_version_number_index; 66 u32 security_version_number; 67 u32 rsvd_module_id; 68 u32 rsvd_module_vendor; 69 u32 rsvd_date; 70 u32 headersize; 71 u32 hash_algo; 72 u32 cryp_algo; 73 u32 keysize; 74 u32 signaturesize; 75 u32 rsvd_next_header; 76 u32 rsvd[2]; 77 }; 78 79 static const efi_char16_t efi_dummy_name[] = L"DUMMY"; 80 81 static bool efi_no_storage_paranoia; 82 83 /* 84 * Some firmware implementations refuse to boot if there's insufficient 85 * space in the variable store. The implementation of garbage collection 86 * in some FW versions causes stale (deleted) variables to take up space 87 * longer than intended and space is only freed once the store becomes 88 * almost completely full. 89 * 90 * Enabling this option disables the space checks in 91 * efi_query_variable_store() and forces garbage collection. 92 * 93 * Only enable this option if deleting EFI variables does not free up 94 * space in your variable store, e.g. if despite deleting variables 95 * you're unable to create new ones. 96 */ 97 static int __init setup_storage_paranoia(char *arg) 98 { 99 efi_no_storage_paranoia = true; 100 return 0; 101 } 102 early_param("efi_no_storage_paranoia", setup_storage_paranoia); 103 104 /* 105 * Deleting the dummy variable which kicks off garbage collection 106 */ 107 void efi_delete_dummy_variable(void) 108 { 109 efi.set_variable_nonblocking((efi_char16_t *)efi_dummy_name, 110 &EFI_DUMMY_GUID, 111 EFI_VARIABLE_NON_VOLATILE | 112 EFI_VARIABLE_BOOTSERVICE_ACCESS | 113 EFI_VARIABLE_RUNTIME_ACCESS, 0, NULL); 114 } 115 116 /* 117 * In the nonblocking case we do not attempt to perform garbage 118 * collection if we do not have enough free space. Rather, we do the 119 * bare minimum check and give up immediately if the available space 120 * is below EFI_MIN_RESERVE. 121 * 122 * This function is intended to be small and simple because it is 123 * invoked from crash handler paths. 124 */ 125 static efi_status_t 126 query_variable_store_nonblocking(u32 attributes, unsigned long size) 127 { 128 efi_status_t status; 129 u64 storage_size, remaining_size, max_size; 130 131 status = efi.query_variable_info_nonblocking(attributes, &storage_size, 132 &remaining_size, 133 &max_size); 134 if (status != EFI_SUCCESS) 135 return status; 136 137 if (remaining_size - size < EFI_MIN_RESERVE) 138 return EFI_OUT_OF_RESOURCES; 139 140 return EFI_SUCCESS; 141 } 142 143 /* 144 * Some firmware implementations refuse to boot if there's insufficient space 145 * in the variable store. Ensure that we never use more than a safe limit. 146 * 147 * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable 148 * store. 149 */ 150 efi_status_t efi_query_variable_store(u32 attributes, unsigned long size, 151 bool nonblocking) 152 { 153 efi_status_t status; 154 u64 storage_size, remaining_size, max_size; 155 156 if (!(attributes & EFI_VARIABLE_NON_VOLATILE)) 157 return 0; 158 159 if (nonblocking) 160 return query_variable_store_nonblocking(attributes, size); 161 162 status = efi.query_variable_info(attributes, &storage_size, 163 &remaining_size, &max_size); 164 if (status != EFI_SUCCESS) 165 return status; 166 167 /* 168 * We account for that by refusing the write if permitting it would 169 * reduce the available space to under 5KB. This figure was provided by 170 * Samsung, so should be safe. 171 */ 172 if ((remaining_size - size < EFI_MIN_RESERVE) && 173 !efi_no_storage_paranoia) { 174 175 /* 176 * Triggering garbage collection may require that the firmware 177 * generate a real EFI_OUT_OF_RESOURCES error. We can force 178 * that by attempting to use more space than is available. 179 */ 180 unsigned long dummy_size = remaining_size + 1024; 181 void *dummy = kzalloc(dummy_size, GFP_KERNEL); 182 183 if (!dummy) 184 return EFI_OUT_OF_RESOURCES; 185 186 status = efi.set_variable((efi_char16_t *)efi_dummy_name, 187 &EFI_DUMMY_GUID, 188 EFI_VARIABLE_NON_VOLATILE | 189 EFI_VARIABLE_BOOTSERVICE_ACCESS | 190 EFI_VARIABLE_RUNTIME_ACCESS, 191 dummy_size, dummy); 192 193 if (status == EFI_SUCCESS) { 194 /* 195 * This should have failed, so if it didn't make sure 196 * that we delete it... 197 */ 198 efi_delete_dummy_variable(); 199 } 200 201 kfree(dummy); 202 203 /* 204 * The runtime code may now have triggered a garbage collection 205 * run, so check the variable info again 206 */ 207 status = efi.query_variable_info(attributes, &storage_size, 208 &remaining_size, &max_size); 209 210 if (status != EFI_SUCCESS) 211 return status; 212 213 /* 214 * There still isn't enough room, so return an error 215 */ 216 if (remaining_size - size < EFI_MIN_RESERVE) 217 return EFI_OUT_OF_RESOURCES; 218 } 219 220 return EFI_SUCCESS; 221 } 222 EXPORT_SYMBOL_GPL(efi_query_variable_store); 223 224 /* 225 * The UEFI specification makes it clear that the operating system is 226 * free to do whatever it wants with boot services code after 227 * ExitBootServices() has been called. Ignoring this recommendation a 228 * significant bunch of EFI implementations continue calling into boot 229 * services code (SetVirtualAddressMap). In order to work around such 230 * buggy implementations we reserve boot services region during EFI 231 * init and make sure it stays executable. Then, after 232 * SetVirtualAddressMap(), it is discarded. 233 * 234 * However, some boot services regions contain data that is required 235 * by drivers, so we need to track which memory ranges can never be 236 * freed. This is done by tagging those regions with the 237 * EFI_MEMORY_RUNTIME attribute. 238 * 239 * Any driver that wants to mark a region as reserved must use 240 * efi_mem_reserve() which will insert a new EFI memory descriptor 241 * into efi.memmap (splitting existing regions if necessary) and tag 242 * it with EFI_MEMORY_RUNTIME. 243 */ 244 void __init efi_arch_mem_reserve(phys_addr_t addr, u64 size) 245 { 246 phys_addr_t new_phys, new_size; 247 struct efi_mem_range mr; 248 efi_memory_desc_t md; 249 int num_entries; 250 void *new; 251 252 if (efi_mem_desc_lookup(addr, &md) || 253 md.type != EFI_BOOT_SERVICES_DATA) { 254 pr_err("Failed to lookup EFI memory descriptor for %pa\n", &addr); 255 return; 256 } 257 258 if (addr + size > md.phys_addr + (md.num_pages << EFI_PAGE_SHIFT)) { 259 pr_err("Region spans EFI memory descriptors, %pa\n", &addr); 260 return; 261 } 262 263 /* No need to reserve regions that will never be freed. */ 264 if (md.attribute & EFI_MEMORY_RUNTIME) 265 return; 266 267 size += addr % EFI_PAGE_SIZE; 268 size = round_up(size, EFI_PAGE_SIZE); 269 addr = round_down(addr, EFI_PAGE_SIZE); 270 271 mr.range.start = addr; 272 mr.range.end = addr + size - 1; 273 mr.attribute = md.attribute | EFI_MEMORY_RUNTIME; 274 275 num_entries = efi_memmap_split_count(&md, &mr.range); 276 num_entries += efi.memmap.nr_map; 277 278 new_size = efi.memmap.desc_size * num_entries; 279 280 new_phys = efi_memmap_alloc(num_entries); 281 if (!new_phys) { 282 pr_err("Could not allocate boot services memmap\n"); 283 return; 284 } 285 286 new = early_memremap(new_phys, new_size); 287 if (!new) { 288 pr_err("Failed to map new boot services memmap\n"); 289 return; 290 } 291 292 efi_memmap_insert(&efi.memmap, new, &mr); 293 early_memunmap(new, new_size); 294 295 efi_memmap_install(new_phys, num_entries); 296 } 297 298 /* 299 * Helper function for efi_reserve_boot_services() to figure out if we 300 * can free regions in efi_free_boot_services(). 301 * 302 * Use this function to ensure we do not free regions owned by somebody 303 * else. We must only reserve (and then free) regions: 304 * 305 * - Not within any part of the kernel 306 * - Not the BIOS reserved area (E820_TYPE_RESERVED, E820_TYPE_NVS, etc) 307 */ 308 static __init bool can_free_region(u64 start, u64 size) 309 { 310 if (start + size > __pa_symbol(_text) && start <= __pa_symbol(_end)) 311 return false; 312 313 if (!e820__mapped_all(start, start+size, E820_TYPE_RAM)) 314 return false; 315 316 return true; 317 } 318 319 void __init efi_reserve_boot_services(void) 320 { 321 efi_memory_desc_t *md; 322 323 for_each_efi_memory_desc(md) { 324 u64 start = md->phys_addr; 325 u64 size = md->num_pages << EFI_PAGE_SHIFT; 326 bool already_reserved; 327 328 if (md->type != EFI_BOOT_SERVICES_CODE && 329 md->type != EFI_BOOT_SERVICES_DATA) 330 continue; 331 332 already_reserved = memblock_is_region_reserved(start, size); 333 334 /* 335 * Because the following memblock_reserve() is paired 336 * with memblock_free_late() for this region in 337 * efi_free_boot_services(), we must be extremely 338 * careful not to reserve, and subsequently free, 339 * critical regions of memory (like the kernel image) or 340 * those regions that somebody else has already 341 * reserved. 342 * 343 * A good example of a critical region that must not be 344 * freed is page zero (first 4Kb of memory), which may 345 * contain boot services code/data but is marked 346 * E820_TYPE_RESERVED by trim_bios_range(). 347 */ 348 if (!already_reserved) { 349 memblock_reserve(start, size); 350 351 /* 352 * If we are the first to reserve the region, no 353 * one else cares about it. We own it and can 354 * free it later. 355 */ 356 if (can_free_region(start, size)) 357 continue; 358 } 359 360 /* 361 * We don't own the region. We must not free it. 362 * 363 * Setting this bit for a boot services region really 364 * doesn't make sense as far as the firmware is 365 * concerned, but it does provide us with a way to tag 366 * those regions that must not be paired with 367 * memblock_free_late(). 368 */ 369 md->attribute |= EFI_MEMORY_RUNTIME; 370 } 371 } 372 373 /* 374 * Apart from having VA mappings for EFI boot services code/data regions, 375 * (duplicate) 1:1 mappings were also created as a quirk for buggy firmware. So, 376 * unmap both 1:1 and VA mappings. 377 */ 378 static void __init efi_unmap_pages(efi_memory_desc_t *md) 379 { 380 pgd_t *pgd = efi_mm.pgd; 381 u64 pa = md->phys_addr; 382 u64 va = md->virt_addr; 383 384 /* 385 * To Do: Remove this check after adding functionality to unmap EFI boot 386 * services code/data regions from direct mapping area because 387 * "efi=old_map" maps EFI regions in swapper_pg_dir. 388 */ 389 if (efi_enabled(EFI_OLD_MEMMAP)) 390 return; 391 392 /* 393 * EFI mixed mode has all RAM mapped to access arguments while making 394 * EFI runtime calls, hence don't unmap EFI boot services code/data 395 * regions. 396 */ 397 if (!efi_is_native()) 398 return; 399 400 if (kernel_unmap_pages_in_pgd(pgd, pa, md->num_pages)) 401 pr_err("Failed to unmap 1:1 mapping for 0x%llx\n", pa); 402 403 if (kernel_unmap_pages_in_pgd(pgd, va, md->num_pages)) 404 pr_err("Failed to unmap VA mapping for 0x%llx\n", va); 405 } 406 407 void __init efi_free_boot_services(void) 408 { 409 phys_addr_t new_phys, new_size; 410 efi_memory_desc_t *md; 411 int num_entries = 0; 412 void *new, *new_md; 413 414 for_each_efi_memory_desc(md) { 415 unsigned long long start = md->phys_addr; 416 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT; 417 size_t rm_size; 418 419 if (md->type != EFI_BOOT_SERVICES_CODE && 420 md->type != EFI_BOOT_SERVICES_DATA) { 421 num_entries++; 422 continue; 423 } 424 425 /* Do not free, someone else owns it: */ 426 if (md->attribute & EFI_MEMORY_RUNTIME) { 427 num_entries++; 428 continue; 429 } 430 431 /* 432 * Before calling set_virtual_address_map(), EFI boot services 433 * code/data regions were mapped as a quirk for buggy firmware. 434 * Unmap them from efi_pgd before freeing them up. 435 */ 436 efi_unmap_pages(md); 437 438 /* 439 * Nasty quirk: if all sub-1MB memory is used for boot 440 * services, we can get here without having allocated the 441 * real mode trampoline. It's too late to hand boot services 442 * memory back to the memblock allocator, so instead 443 * try to manually allocate the trampoline if needed. 444 * 445 * I've seen this on a Dell XPS 13 9350 with firmware 446 * 1.4.4 with SGX enabled booting Linux via Fedora 24's 447 * grub2-efi on a hard disk. (And no, I don't know why 448 * this happened, but Linux should still try to boot rather 449 * panicing early.) 450 */ 451 rm_size = real_mode_size_needed(); 452 if (rm_size && (start + rm_size) < (1<<20) && size >= rm_size) { 453 set_real_mode_mem(start); 454 start += rm_size; 455 size -= rm_size; 456 } 457 458 memblock_free_late(start, size); 459 } 460 461 if (!num_entries) 462 return; 463 464 new_size = efi.memmap.desc_size * num_entries; 465 new_phys = efi_memmap_alloc(num_entries); 466 if (!new_phys) { 467 pr_err("Failed to allocate new EFI memmap\n"); 468 return; 469 } 470 471 new = memremap(new_phys, new_size, MEMREMAP_WB); 472 if (!new) { 473 pr_err("Failed to map new EFI memmap\n"); 474 return; 475 } 476 477 /* 478 * Build a new EFI memmap that excludes any boot services 479 * regions that are not tagged EFI_MEMORY_RUNTIME, since those 480 * regions have now been freed. 481 */ 482 new_md = new; 483 for_each_efi_memory_desc(md) { 484 if (!(md->attribute & EFI_MEMORY_RUNTIME) && 485 (md->type == EFI_BOOT_SERVICES_CODE || 486 md->type == EFI_BOOT_SERVICES_DATA)) 487 continue; 488 489 memcpy(new_md, md, efi.memmap.desc_size); 490 new_md += efi.memmap.desc_size; 491 } 492 493 memunmap(new); 494 495 if (efi_memmap_install(new_phys, num_entries)) { 496 pr_err("Could not install new EFI memmap\n"); 497 return; 498 } 499 } 500 501 /* 502 * A number of config table entries get remapped to virtual addresses 503 * after entering EFI virtual mode. However, the kexec kernel requires 504 * their physical addresses therefore we pass them via setup_data and 505 * correct those entries to their respective physical addresses here. 506 * 507 * Currently only handles smbios which is necessary for some firmware 508 * implementation. 509 */ 510 int __init efi_reuse_config(u64 tables, int nr_tables) 511 { 512 int i, sz, ret = 0; 513 void *p, *tablep; 514 struct efi_setup_data *data; 515 516 if (nr_tables == 0) 517 return 0; 518 519 if (!efi_setup) 520 return 0; 521 522 if (!efi_enabled(EFI_64BIT)) 523 return 0; 524 525 data = early_memremap(efi_setup, sizeof(*data)); 526 if (!data) { 527 ret = -ENOMEM; 528 goto out; 529 } 530 531 if (!data->smbios) 532 goto out_memremap; 533 534 sz = sizeof(efi_config_table_64_t); 535 536 p = tablep = early_memremap(tables, nr_tables * sz); 537 if (!p) { 538 pr_err("Could not map Configuration table!\n"); 539 ret = -ENOMEM; 540 goto out_memremap; 541 } 542 543 for (i = 0; i < efi.systab->nr_tables; i++) { 544 efi_guid_t guid; 545 546 guid = ((efi_config_table_64_t *)p)->guid; 547 548 if (!efi_guidcmp(guid, SMBIOS_TABLE_GUID)) 549 ((efi_config_table_64_t *)p)->table = data->smbios; 550 p += sz; 551 } 552 early_memunmap(tablep, nr_tables * sz); 553 554 out_memremap: 555 early_memunmap(data, sizeof(*data)); 556 out: 557 return ret; 558 } 559 560 static const struct dmi_system_id sgi_uv1_dmi[] = { 561 { NULL, "SGI UV1", 562 { DMI_MATCH(DMI_PRODUCT_NAME, "Stoutland Platform"), 563 DMI_MATCH(DMI_PRODUCT_VERSION, "1.0"), 564 DMI_MATCH(DMI_BIOS_VENDOR, "SGI.COM"), 565 } 566 }, 567 { } /* NULL entry stops DMI scanning */ 568 }; 569 570 void __init efi_apply_memmap_quirks(void) 571 { 572 /* 573 * Once setup is done earlier, unmap the EFI memory map on mismatched 574 * firmware/kernel architectures since there is no support for runtime 575 * services. 576 */ 577 if (!efi_runtime_supported()) { 578 pr_info("Setup done, disabling due to 32/64-bit mismatch\n"); 579 efi_memmap_unmap(); 580 } 581 582 /* UV2+ BIOS has a fix for this issue. UV1 still needs the quirk. */ 583 if (dmi_check_system(sgi_uv1_dmi)) 584 set_bit(EFI_OLD_MEMMAP, &efi.flags); 585 } 586 587 /* 588 * For most modern platforms the preferred method of powering off is via 589 * ACPI. However, there are some that are known to require the use of 590 * EFI runtime services and for which ACPI does not work at all. 591 * 592 * Using EFI is a last resort, to be used only if no other option 593 * exists. 594 */ 595 bool efi_reboot_required(void) 596 { 597 if (!acpi_gbl_reduced_hardware) 598 return false; 599 600 efi_reboot_quirk_mode = EFI_RESET_WARM; 601 return true; 602 } 603 604 bool efi_poweroff_required(void) 605 { 606 return acpi_gbl_reduced_hardware || acpi_no_s5; 607 } 608 609 #ifdef CONFIG_EFI_CAPSULE_QUIRK_QUARK_CSH 610 611 static int qrk_capsule_setup_info(struct capsule_info *cap_info, void **pkbuff, 612 size_t hdr_bytes) 613 { 614 struct quark_security_header *csh = *pkbuff; 615 616 /* Only process data block that is larger than the security header */ 617 if (hdr_bytes < sizeof(struct quark_security_header)) 618 return 0; 619 620 if (csh->csh_signature != QUARK_CSH_SIGNATURE || 621 csh->headersize != QUARK_SECURITY_HEADER_SIZE) 622 return 1; 623 624 /* Only process data block if EFI header is included */ 625 if (hdr_bytes < QUARK_SECURITY_HEADER_SIZE + 626 sizeof(efi_capsule_header_t)) 627 return 0; 628 629 pr_debug("Quark security header detected\n"); 630 631 if (csh->rsvd_next_header != 0) { 632 pr_err("multiple Quark security headers not supported\n"); 633 return -EINVAL; 634 } 635 636 *pkbuff += csh->headersize; 637 cap_info->total_size = csh->headersize; 638 639 /* 640 * Update the first page pointer to skip over the CSH header. 641 */ 642 cap_info->phys[0] += csh->headersize; 643 644 /* 645 * cap_info->capsule should point at a virtual mapping of the entire 646 * capsule, starting at the capsule header. Our image has the Quark 647 * security header prepended, so we cannot rely on the default vmap() 648 * mapping created by the generic capsule code. 649 * Given that the Quark firmware does not appear to care about the 650 * virtual mapping, let's just point cap_info->capsule at our copy 651 * of the capsule header. 652 */ 653 cap_info->capsule = &cap_info->header; 654 655 return 1; 656 } 657 658 #define ICPU(family, model, quirk_handler) \ 659 { X86_VENDOR_INTEL, family, model, X86_FEATURE_ANY, \ 660 (unsigned long)&quirk_handler } 661 662 static const struct x86_cpu_id efi_capsule_quirk_ids[] = { 663 ICPU(5, 9, qrk_capsule_setup_info), /* Intel Quark X1000 */ 664 { } 665 }; 666 667 int efi_capsule_setup_info(struct capsule_info *cap_info, void *kbuff, 668 size_t hdr_bytes) 669 { 670 int (*quirk_handler)(struct capsule_info *, void **, size_t); 671 const struct x86_cpu_id *id; 672 int ret; 673 674 if (hdr_bytes < sizeof(efi_capsule_header_t)) 675 return 0; 676 677 cap_info->total_size = 0; 678 679 id = x86_match_cpu(efi_capsule_quirk_ids); 680 if (id) { 681 /* 682 * The quirk handler is supposed to return 683 * - a value > 0 if the setup should continue, after advancing 684 * kbuff as needed 685 * - 0 if not enough hdr_bytes are available yet 686 * - a negative error code otherwise 687 */ 688 quirk_handler = (typeof(quirk_handler))id->driver_data; 689 ret = quirk_handler(cap_info, &kbuff, hdr_bytes); 690 if (ret <= 0) 691 return ret; 692 } 693 694 memcpy(&cap_info->header, kbuff, sizeof(cap_info->header)); 695 696 cap_info->total_size += cap_info->header.imagesize; 697 698 return __efi_capsule_setup_info(cap_info); 699 } 700 701 #endif 702 703 /* 704 * If any access by any efi runtime service causes a page fault, then, 705 * 1. If it's efi_reset_system(), reboot through BIOS. 706 * 2. If any other efi runtime service, then 707 * a. Return error status to the efi caller process. 708 * b. Disable EFI Runtime Services forever and 709 * c. Freeze efi_rts_wq and schedule new process. 710 * 711 * @return: Returns, if the page fault is not handled. This function 712 * will never return if the page fault is handled successfully. 713 */ 714 void efi_recover_from_page_fault(unsigned long phys_addr) 715 { 716 if (!IS_ENABLED(CONFIG_X86_64)) 717 return; 718 719 /* 720 * Make sure that an efi runtime service caused the page fault. 721 * "efi_mm" cannot be used to check if the page fault had occurred 722 * in the firmware context because efi=old_map doesn't use efi_pgd. 723 */ 724 if (efi_rts_work.efi_rts_id == EFI_NONE) 725 return; 726 727 /* 728 * Address range 0x0000 - 0x0fff is always mapped in the efi_pgd, so 729 * page faulting on these addresses isn't expected. 730 */ 731 if (phys_addr >= 0x0000 && phys_addr <= 0x0fff) 732 return; 733 734 /* 735 * Print stack trace as it might be useful to know which EFI Runtime 736 * Service is buggy. 737 */ 738 WARN(1, FW_BUG "Page fault caused by firmware at PA: 0x%lx\n", 739 phys_addr); 740 741 /* 742 * Buggy efi_reset_system() is handled differently from other EFI 743 * Runtime Services as it doesn't use efi_rts_wq. Although, 744 * native_machine_emergency_restart() says that machine_real_restart() 745 * could fail, it's better not to compilcate this fault handler 746 * because this case occurs *very* rarely and hence could be improved 747 * on a need by basis. 748 */ 749 if (efi_rts_work.efi_rts_id == EFI_RESET_SYSTEM) { 750 pr_info("efi_reset_system() buggy! Reboot through BIOS\n"); 751 machine_real_restart(MRR_BIOS); 752 return; 753 } 754 755 /* 756 * Before calling EFI Runtime Service, the kernel has switched the 757 * calling process to efi_mm. Hence, switch back to task_mm. 758 */ 759 arch_efi_call_virt_teardown(); 760 761 /* Signal error status to the efi caller process */ 762 efi_rts_work.status = EFI_ABORTED; 763 complete(&efi_rts_work.efi_rts_comp); 764 765 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); 766 pr_info("Froze efi_rts_wq and disabled EFI Runtime Services\n"); 767 768 /* 769 * Call schedule() in an infinite loop, so that any spurious wake ups 770 * will never run efi_rts_wq again. 771 */ 772 for (;;) { 773 set_current_state(TASK_IDLE); 774 schedule(); 775 } 776 777 return; 778 } 779