xref: /openbmc/linux/arch/x86/platform/efi/memmap.c (revision feeeeb4c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common EFI memory map functions.
4  */
5 
6 #define pr_fmt(fmt) "efi: " fmt
7 
8 #include <linux/init.h>
9 #include <linux/kernel.h>
10 #include <linux/efi.h>
11 #include <linux/io.h>
12 #include <asm/early_ioremap.h>
13 #include <asm/efi.h>
14 #include <linux/memblock.h>
15 #include <linux/slab.h>
16 
17 static phys_addr_t __init __efi_memmap_alloc_early(unsigned long size)
18 {
19 	return memblock_phys_alloc(size, SMP_CACHE_BYTES);
20 }
21 
22 static phys_addr_t __init __efi_memmap_alloc_late(unsigned long size)
23 {
24 	unsigned int order = get_order(size);
25 	struct page *p = alloc_pages(GFP_KERNEL, order);
26 
27 	if (!p)
28 		return 0;
29 
30 	return PFN_PHYS(page_to_pfn(p));
31 }
32 
33 void __init __efi_memmap_free(u64 phys, unsigned long size, unsigned long flags)
34 {
35 	if (flags & EFI_MEMMAP_MEMBLOCK) {
36 		if (slab_is_available())
37 			memblock_free_late(phys, size);
38 		else
39 			memblock_phys_free(phys, size);
40 	} else if (flags & EFI_MEMMAP_SLAB) {
41 		struct page *p = pfn_to_page(PHYS_PFN(phys));
42 		unsigned int order = get_order(size);
43 
44 		free_pages((unsigned long) page_address(p), order);
45 	}
46 }
47 
48 /**
49  * efi_memmap_alloc - Allocate memory for the EFI memory map
50  * @num_entries: Number of entries in the allocated map.
51  * @data: efi memmap installation parameters
52  *
53  * Depending on whether mm_init() has already been invoked or not,
54  * either memblock or "normal" page allocation is used.
55  *
56  * Returns zero on success, a negative error code on failure.
57  */
58 int __init efi_memmap_alloc(unsigned int num_entries,
59 		struct efi_memory_map_data *data)
60 {
61 	/* Expect allocation parameters are zero initialized */
62 	WARN_ON(data->phys_map || data->size);
63 
64 	data->size = num_entries * efi.memmap.desc_size;
65 	data->desc_version = efi.memmap.desc_version;
66 	data->desc_size = efi.memmap.desc_size;
67 	data->flags &= ~(EFI_MEMMAP_SLAB | EFI_MEMMAP_MEMBLOCK);
68 	data->flags |= efi.memmap.flags & EFI_MEMMAP_LATE;
69 
70 	if (slab_is_available()) {
71 		data->flags |= EFI_MEMMAP_SLAB;
72 		data->phys_map = __efi_memmap_alloc_late(data->size);
73 	} else {
74 		data->flags |= EFI_MEMMAP_MEMBLOCK;
75 		data->phys_map = __efi_memmap_alloc_early(data->size);
76 	}
77 
78 	if (!data->phys_map)
79 		return -ENOMEM;
80 	return 0;
81 }
82 
83 /**
84  * efi_memmap_install - Install a new EFI memory map in efi.memmap
85  * @data: efi memmap installation parameters
86  *
87  * Unlike efi_memmap_init_*(), this function does not allow the caller
88  * to switch from early to late mappings. It simply uses the existing
89  * mapping function and installs the new memmap.
90  *
91  * Returns zero on success, a negative error code on failure.
92  */
93 int __init efi_memmap_install(struct efi_memory_map_data *data)
94 {
95 	unsigned long size = efi.memmap.desc_size * efi.memmap.nr_map;
96 	unsigned long flags = efi.memmap.flags;
97 	u64 phys = efi.memmap.phys_map;
98 	int ret;
99 
100 	efi_memmap_unmap();
101 
102 	if (efi_enabled(EFI_PARAVIRT))
103 		return 0;
104 
105 	ret = __efi_memmap_init(data);
106 	if (ret)
107 		return ret;
108 
109 	__efi_memmap_free(phys, size, flags);
110 	return 0;
111 }
112 
113 /**
114  * efi_memmap_split_count - Count number of additional EFI memmap entries
115  * @md: EFI memory descriptor to split
116  * @range: Address range (start, end) to split around
117  *
118  * Returns the number of additional EFI memmap entries required to
119  * accommodate @range.
120  */
121 int __init efi_memmap_split_count(efi_memory_desc_t *md, struct range *range)
122 {
123 	u64 m_start, m_end;
124 	u64 start, end;
125 	int count = 0;
126 
127 	start = md->phys_addr;
128 	end = start + (md->num_pages << EFI_PAGE_SHIFT) - 1;
129 
130 	/* modifying range */
131 	m_start = range->start;
132 	m_end = range->end;
133 
134 	if (m_start <= start) {
135 		/* split into 2 parts */
136 		if (start < m_end && m_end < end)
137 			count++;
138 	}
139 
140 	if (start < m_start && m_start < end) {
141 		/* split into 3 parts */
142 		if (m_end < end)
143 			count += 2;
144 		/* split into 2 parts */
145 		if (end <= m_end)
146 			count++;
147 	}
148 
149 	return count;
150 }
151 
152 /**
153  * efi_memmap_insert - Insert a memory region in an EFI memmap
154  * @old_memmap: The existing EFI memory map structure
155  * @buf: Address of buffer to store new map
156  * @mem: Memory map entry to insert
157  *
158  * It is suggested that you call efi_memmap_split_count() first
159  * to see how large @buf needs to be.
160  */
161 void __init efi_memmap_insert(struct efi_memory_map *old_memmap, void *buf,
162 			      struct efi_mem_range *mem)
163 {
164 	u64 m_start, m_end, m_attr;
165 	efi_memory_desc_t *md;
166 	u64 start, end;
167 	void *old, *new;
168 
169 	/* modifying range */
170 	m_start = mem->range.start;
171 	m_end = mem->range.end;
172 	m_attr = mem->attribute;
173 
174 	/*
175 	 * The EFI memory map deals with regions in EFI_PAGE_SIZE
176 	 * units. Ensure that the region described by 'mem' is aligned
177 	 * correctly.
178 	 */
179 	if (!IS_ALIGNED(m_start, EFI_PAGE_SIZE) ||
180 	    !IS_ALIGNED(m_end + 1, EFI_PAGE_SIZE)) {
181 		WARN_ON(1);
182 		return;
183 	}
184 
185 	for (old = old_memmap->map, new = buf;
186 	     old < old_memmap->map_end;
187 	     old += old_memmap->desc_size, new += old_memmap->desc_size) {
188 
189 		/* copy original EFI memory descriptor */
190 		memcpy(new, old, old_memmap->desc_size);
191 		md = new;
192 		start = md->phys_addr;
193 		end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1;
194 
195 		if (m_start <= start && end <= m_end)
196 			md->attribute |= m_attr;
197 
198 		if (m_start <= start &&
199 		    (start < m_end && m_end < end)) {
200 			/* first part */
201 			md->attribute |= m_attr;
202 			md->num_pages = (m_end - md->phys_addr + 1) >>
203 				EFI_PAGE_SHIFT;
204 			/* latter part */
205 			new += old_memmap->desc_size;
206 			memcpy(new, old, old_memmap->desc_size);
207 			md = new;
208 			md->phys_addr = m_end + 1;
209 			md->num_pages = (end - md->phys_addr + 1) >>
210 				EFI_PAGE_SHIFT;
211 		}
212 
213 		if ((start < m_start && m_start < end) && m_end < end) {
214 			/* first part */
215 			md->num_pages = (m_start - md->phys_addr) >>
216 				EFI_PAGE_SHIFT;
217 			/* middle part */
218 			new += old_memmap->desc_size;
219 			memcpy(new, old, old_memmap->desc_size);
220 			md = new;
221 			md->attribute |= m_attr;
222 			md->phys_addr = m_start;
223 			md->num_pages = (m_end - m_start + 1) >>
224 				EFI_PAGE_SHIFT;
225 			/* last part */
226 			new += old_memmap->desc_size;
227 			memcpy(new, old, old_memmap->desc_size);
228 			md = new;
229 			md->phys_addr = m_end + 1;
230 			md->num_pages = (end - m_end) >>
231 				EFI_PAGE_SHIFT;
232 		}
233 
234 		if ((start < m_start && m_start < end) &&
235 		    (end <= m_end)) {
236 			/* first part */
237 			md->num_pages = (m_start - md->phys_addr) >>
238 				EFI_PAGE_SHIFT;
239 			/* latter part */
240 			new += old_memmap->desc_size;
241 			memcpy(new, old, old_memmap->desc_size);
242 			md = new;
243 			md->phys_addr = m_start;
244 			md->num_pages = (end - md->phys_addr + 1) >>
245 				EFI_PAGE_SHIFT;
246 			md->attribute |= m_attr;
247 		}
248 	}
249 }
250