xref: /openbmc/linux/arch/x86/platform/efi/fake_mem.c (revision 612cf4d2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fake_mem.c
4  *
5  * Copyright (C) 2015 FUJITSU LIMITED
6  * Author: Taku Izumi <izumi.taku@jp.fujitsu.com>
7  *
8  * This code introduces new boot option named "efi_fake_mem"
9  * By specifying this parameter, you can add arbitrary attribute to
10  * specific memory range by updating original (firmware provided) EFI
11  * memmap.
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/efi.h>
16 #include <linux/init.h>
17 #include <linux/memblock.h>
18 #include <linux/types.h>
19 #include <linux/sort.h>
20 #include <asm/e820/api.h>
21 #include <asm/efi.h>
22 
23 #define EFI_MAX_FAKEMEM CONFIG_EFI_MAX_FAKE_MEM
24 
25 static struct efi_mem_range efi_fake_mems[EFI_MAX_FAKEMEM];
26 static int nr_fake_mem;
27 
28 static int __init cmp_fake_mem(const void *x1, const void *x2)
29 {
30 	const struct efi_mem_range *m1 = x1;
31 	const struct efi_mem_range *m2 = x2;
32 
33 	if (m1->range.start < m2->range.start)
34 		return -1;
35 	if (m1->range.start > m2->range.start)
36 		return 1;
37 	return 0;
38 }
39 
40 static void __init efi_fake_range(struct efi_mem_range *efi_range)
41 {
42 	struct efi_memory_map_data data = { 0 };
43 	int new_nr_map = efi.memmap.nr_map;
44 	efi_memory_desc_t *md;
45 	void *new_memmap;
46 
47 	/* count up the number of EFI memory descriptor */
48 	for_each_efi_memory_desc(md)
49 		new_nr_map += efi_memmap_split_count(md, &efi_range->range);
50 
51 	/* allocate memory for new EFI memmap */
52 	if (efi_memmap_alloc(new_nr_map, &data) != 0)
53 		return;
54 
55 	/* create new EFI memmap */
56 	new_memmap = early_memremap(data.phys_map, data.size);
57 	if (!new_memmap) {
58 		__efi_memmap_free(data.phys_map, data.size, data.flags);
59 		return;
60 	}
61 
62 	efi_memmap_insert(&efi.memmap, new_memmap, efi_range);
63 
64 	/* swap into new EFI memmap */
65 	early_memunmap(new_memmap, data.size);
66 
67 	efi_memmap_install(&data);
68 }
69 
70 void __init efi_fake_memmap(void)
71 {
72 	int i;
73 
74 	if (!efi_enabled(EFI_MEMMAP) || !nr_fake_mem)
75 		return;
76 
77 	for (i = 0; i < nr_fake_mem; i++)
78 		efi_fake_range(&efi_fake_mems[i]);
79 
80 	/* print new EFI memmap */
81 	efi_print_memmap();
82 }
83 
84 static int __init setup_fake_mem(char *p)
85 {
86 	u64 start = 0, mem_size = 0, attribute = 0;
87 	int i;
88 
89 	if (!p)
90 		return -EINVAL;
91 
92 	while (*p != '\0') {
93 		mem_size = memparse(p, &p);
94 		if (*p == '@')
95 			start = memparse(p+1, &p);
96 		else
97 			break;
98 
99 		if (*p == ':')
100 			attribute = simple_strtoull(p+1, &p, 0);
101 		else
102 			break;
103 
104 		if (nr_fake_mem >= EFI_MAX_FAKEMEM)
105 			break;
106 
107 		efi_fake_mems[nr_fake_mem].range.start = start;
108 		efi_fake_mems[nr_fake_mem].range.end = start + mem_size - 1;
109 		efi_fake_mems[nr_fake_mem].attribute = attribute;
110 		nr_fake_mem++;
111 
112 		if (*p == ',')
113 			p++;
114 	}
115 
116 	sort(efi_fake_mems, nr_fake_mem, sizeof(struct efi_mem_range),
117 	     cmp_fake_mem, NULL);
118 
119 	for (i = 0; i < nr_fake_mem; i++)
120 		pr_info("efi_fake_mem: add attr=0x%016llx to [mem 0x%016llx-0x%016llx]",
121 			efi_fake_mems[i].attribute, efi_fake_mems[i].range.start,
122 			efi_fake_mems[i].range.end);
123 
124 	return *p == '\0' ? 0 : -EINVAL;
125 }
126 
127 early_param("efi_fake_mem", setup_fake_mem);
128 
129 void __init efi_fake_memmap_early(void)
130 {
131 	int i;
132 
133 	/*
134 	 * The late efi_fake_mem() call can handle all requests if
135 	 * EFI_MEMORY_SP support is disabled.
136 	 */
137 	if (!efi_soft_reserve_enabled())
138 		return;
139 
140 	if (!efi_enabled(EFI_MEMMAP) || !nr_fake_mem)
141 		return;
142 
143 	/*
144 	 * Given that efi_fake_memmap() needs to perform memblock
145 	 * allocations it needs to run after e820__memblock_setup().
146 	 * However, if efi_fake_mem specifies EFI_MEMORY_SP for a given
147 	 * address range that potentially needs to mark the memory as
148 	 * reserved prior to e820__memblock_setup(). Update e820
149 	 * directly if EFI_MEMORY_SP is specified for an
150 	 * EFI_CONVENTIONAL_MEMORY descriptor.
151 	 */
152 	for (i = 0; i < nr_fake_mem; i++) {
153 		struct efi_mem_range *mem = &efi_fake_mems[i];
154 		efi_memory_desc_t *md;
155 		u64 m_start, m_end;
156 
157 		if ((mem->attribute & EFI_MEMORY_SP) == 0)
158 			continue;
159 
160 		m_start = mem->range.start;
161 		m_end = mem->range.end;
162 		for_each_efi_memory_desc(md) {
163 			u64 start, end, size;
164 
165 			if (md->type != EFI_CONVENTIONAL_MEMORY)
166 				continue;
167 
168 			start = md->phys_addr;
169 			end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1;
170 
171 			if (m_start <= end && m_end >= start)
172 				/* fake range overlaps descriptor */;
173 			else
174 				continue;
175 
176 			/*
177 			 * Trim the boundary of the e820 update to the
178 			 * descriptor in case the fake range overlaps
179 			 * !EFI_CONVENTIONAL_MEMORY
180 			 */
181 			start = max(start, m_start);
182 			end = min(end, m_end);
183 			size = end - start + 1;
184 
185 			if (end <= start)
186 				continue;
187 
188 			/*
189 			 * Ensure each efi_fake_mem instance results in
190 			 * a unique e820 resource
191 			 */
192 			e820__range_remove(start, size, E820_TYPE_RAM, 1);
193 			e820__range_add(start, size, E820_TYPE_SOFT_RESERVED);
194 			e820__update_table(e820_table);
195 		}
196 	}
197 }
198