xref: /openbmc/linux/arch/x86/platform/efi/efi_64.c (revision e3d786a3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * x86_64 specific EFI support functions
4  * Based on Extensible Firmware Interface Specification version 1.0
5  *
6  * Copyright (C) 2005-2008 Intel Co.
7  *	Fenghua Yu <fenghua.yu@intel.com>
8  *	Bibo Mao <bibo.mao@intel.com>
9  *	Chandramouli Narayanan <mouli@linux.intel.com>
10  *	Huang Ying <ying.huang@intel.com>
11  *
12  * Code to convert EFI to E820 map has been implemented in elilo bootloader
13  * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table
14  * is setup appropriately for EFI runtime code.
15  * - mouli 06/14/2007.
16  *
17  */
18 
19 #define pr_fmt(fmt) "efi: " fmt
20 
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/mm.h>
24 #include <linux/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/memblock.h>
27 #include <linux/ioport.h>
28 #include <linux/mc146818rtc.h>
29 #include <linux/efi.h>
30 #include <linux/export.h>
31 #include <linux/uaccess.h>
32 #include <linux/io.h>
33 #include <linux/reboot.h>
34 #include <linux/slab.h>
35 #include <linux/ucs2_string.h>
36 #include <linux/mem_encrypt.h>
37 #include <linux/sched/task.h>
38 
39 #include <asm/setup.h>
40 #include <asm/page.h>
41 #include <asm/e820/api.h>
42 #include <asm/pgtable.h>
43 #include <asm/tlbflush.h>
44 #include <asm/proto.h>
45 #include <asm/efi.h>
46 #include <asm/cacheflush.h>
47 #include <asm/fixmap.h>
48 #include <asm/realmode.h>
49 #include <asm/time.h>
50 #include <asm/pgalloc.h>
51 
52 /*
53  * We allocate runtime services regions top-down, starting from -4G, i.e.
54  * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G.
55  */
56 static u64 efi_va = EFI_VA_START;
57 
58 struct efi_scratch efi_scratch;
59 
60 static void __init early_code_mapping_set_exec(int executable)
61 {
62 	efi_memory_desc_t *md;
63 
64 	if (!(__supported_pte_mask & _PAGE_NX))
65 		return;
66 
67 	/* Make EFI service code area executable */
68 	for_each_efi_memory_desc(md) {
69 		if (md->type == EFI_RUNTIME_SERVICES_CODE ||
70 		    md->type == EFI_BOOT_SERVICES_CODE)
71 			efi_set_executable(md, executable);
72 	}
73 }
74 
75 pgd_t * __init efi_call_phys_prolog(void)
76 {
77 	unsigned long vaddr, addr_pgd, addr_p4d, addr_pud;
78 	pgd_t *save_pgd, *pgd_k, *pgd_efi;
79 	p4d_t *p4d, *p4d_k, *p4d_efi;
80 	pud_t *pud;
81 
82 	int pgd;
83 	int n_pgds, i, j;
84 
85 	if (!efi_enabled(EFI_OLD_MEMMAP)) {
86 		efi_switch_mm(&efi_mm);
87 		return NULL;
88 	}
89 
90 	early_code_mapping_set_exec(1);
91 
92 	n_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT), PGDIR_SIZE);
93 	save_pgd = kmalloc_array(n_pgds, sizeof(*save_pgd), GFP_KERNEL);
94 
95 	/*
96 	 * Build 1:1 identity mapping for efi=old_map usage. Note that
97 	 * PAGE_OFFSET is PGDIR_SIZE aligned when KASLR is disabled, while
98 	 * it is PUD_SIZE ALIGNED with KASLR enabled. So for a given physical
99 	 * address X, the pud_index(X) != pud_index(__va(X)), we can only copy
100 	 * PUD entry of __va(X) to fill in pud entry of X to build 1:1 mapping.
101 	 * This means here we can only reuse the PMD tables of the direct mapping.
102 	 */
103 	for (pgd = 0; pgd < n_pgds; pgd++) {
104 		addr_pgd = (unsigned long)(pgd * PGDIR_SIZE);
105 		vaddr = (unsigned long)__va(pgd * PGDIR_SIZE);
106 		pgd_efi = pgd_offset_k(addr_pgd);
107 		save_pgd[pgd] = *pgd_efi;
108 
109 		p4d = p4d_alloc(&init_mm, pgd_efi, addr_pgd);
110 		if (!p4d) {
111 			pr_err("Failed to allocate p4d table!\n");
112 			goto out;
113 		}
114 
115 		for (i = 0; i < PTRS_PER_P4D; i++) {
116 			addr_p4d = addr_pgd + i * P4D_SIZE;
117 			p4d_efi = p4d + p4d_index(addr_p4d);
118 
119 			pud = pud_alloc(&init_mm, p4d_efi, addr_p4d);
120 			if (!pud) {
121 				pr_err("Failed to allocate pud table!\n");
122 				goto out;
123 			}
124 
125 			for (j = 0; j < PTRS_PER_PUD; j++) {
126 				addr_pud = addr_p4d + j * PUD_SIZE;
127 
128 				if (addr_pud > (max_pfn << PAGE_SHIFT))
129 					break;
130 
131 				vaddr = (unsigned long)__va(addr_pud);
132 
133 				pgd_k = pgd_offset_k(vaddr);
134 				p4d_k = p4d_offset(pgd_k, vaddr);
135 				pud[j] = *pud_offset(p4d_k, vaddr);
136 			}
137 		}
138 		pgd_offset_k(pgd * PGDIR_SIZE)->pgd &= ~_PAGE_NX;
139 	}
140 
141 out:
142 	__flush_tlb_all();
143 
144 	return save_pgd;
145 }
146 
147 void __init efi_call_phys_epilog(pgd_t *save_pgd)
148 {
149 	/*
150 	 * After the lock is released, the original page table is restored.
151 	 */
152 	int pgd_idx, i;
153 	int nr_pgds;
154 	pgd_t *pgd;
155 	p4d_t *p4d;
156 	pud_t *pud;
157 
158 	if (!efi_enabled(EFI_OLD_MEMMAP)) {
159 		efi_switch_mm(efi_scratch.prev_mm);
160 		return;
161 	}
162 
163 	nr_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT) , PGDIR_SIZE);
164 
165 	for (pgd_idx = 0; pgd_idx < nr_pgds; pgd_idx++) {
166 		pgd = pgd_offset_k(pgd_idx * PGDIR_SIZE);
167 		set_pgd(pgd_offset_k(pgd_idx * PGDIR_SIZE), save_pgd[pgd_idx]);
168 
169 		if (!pgd_present(*pgd))
170 			continue;
171 
172 		for (i = 0; i < PTRS_PER_P4D; i++) {
173 			p4d = p4d_offset(pgd,
174 					 pgd_idx * PGDIR_SIZE + i * P4D_SIZE);
175 
176 			if (!p4d_present(*p4d))
177 				continue;
178 
179 			pud = (pud_t *)p4d_page_vaddr(*p4d);
180 			pud_free(&init_mm, pud);
181 		}
182 
183 		p4d = (p4d_t *)pgd_page_vaddr(*pgd);
184 		p4d_free(&init_mm, p4d);
185 	}
186 
187 	kfree(save_pgd);
188 
189 	__flush_tlb_all();
190 	early_code_mapping_set_exec(0);
191 }
192 
193 EXPORT_SYMBOL_GPL(efi_mm);
194 
195 /*
196  * We need our own copy of the higher levels of the page tables
197  * because we want to avoid inserting EFI region mappings (EFI_VA_END
198  * to EFI_VA_START) into the standard kernel page tables. Everything
199  * else can be shared, see efi_sync_low_kernel_mappings().
200  *
201  * We don't want the pgd on the pgd_list and cannot use pgd_alloc() for the
202  * allocation.
203  */
204 int __init efi_alloc_page_tables(void)
205 {
206 	pgd_t *pgd, *efi_pgd;
207 	p4d_t *p4d;
208 	pud_t *pud;
209 	gfp_t gfp_mask;
210 
211 	if (efi_enabled(EFI_OLD_MEMMAP))
212 		return 0;
213 
214 	gfp_mask = GFP_KERNEL | __GFP_ZERO;
215 	efi_pgd = (pgd_t *)__get_free_pages(gfp_mask, PGD_ALLOCATION_ORDER);
216 	if (!efi_pgd)
217 		return -ENOMEM;
218 
219 	pgd = efi_pgd + pgd_index(EFI_VA_END);
220 	p4d = p4d_alloc(&init_mm, pgd, EFI_VA_END);
221 	if (!p4d) {
222 		free_page((unsigned long)efi_pgd);
223 		return -ENOMEM;
224 	}
225 
226 	pud = pud_alloc(&init_mm, p4d, EFI_VA_END);
227 	if (!pud) {
228 		if (pgtable_l5_enabled())
229 			free_page((unsigned long) pgd_page_vaddr(*pgd));
230 		free_pages((unsigned long)efi_pgd, PGD_ALLOCATION_ORDER);
231 		return -ENOMEM;
232 	}
233 
234 	efi_mm.pgd = efi_pgd;
235 	mm_init_cpumask(&efi_mm);
236 	init_new_context(NULL, &efi_mm);
237 
238 	return 0;
239 }
240 
241 /*
242  * Add low kernel mappings for passing arguments to EFI functions.
243  */
244 void efi_sync_low_kernel_mappings(void)
245 {
246 	unsigned num_entries;
247 	pgd_t *pgd_k, *pgd_efi;
248 	p4d_t *p4d_k, *p4d_efi;
249 	pud_t *pud_k, *pud_efi;
250 	pgd_t *efi_pgd = efi_mm.pgd;
251 
252 	if (efi_enabled(EFI_OLD_MEMMAP))
253 		return;
254 
255 	/*
256 	 * We can share all PGD entries apart from the one entry that
257 	 * covers the EFI runtime mapping space.
258 	 *
259 	 * Make sure the EFI runtime region mappings are guaranteed to
260 	 * only span a single PGD entry and that the entry also maps
261 	 * other important kernel regions.
262 	 */
263 	MAYBE_BUILD_BUG_ON(pgd_index(EFI_VA_END) != pgd_index(MODULES_END));
264 	MAYBE_BUILD_BUG_ON((EFI_VA_START & PGDIR_MASK) !=
265 			(EFI_VA_END & PGDIR_MASK));
266 
267 	pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET);
268 	pgd_k = pgd_offset_k(PAGE_OFFSET);
269 
270 	num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET);
271 	memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries);
272 
273 	/*
274 	 * As with PGDs, we share all P4D entries apart from the one entry
275 	 * that covers the EFI runtime mapping space.
276 	 */
277 	BUILD_BUG_ON(p4d_index(EFI_VA_END) != p4d_index(MODULES_END));
278 	BUILD_BUG_ON((EFI_VA_START & P4D_MASK) != (EFI_VA_END & P4D_MASK));
279 
280 	pgd_efi = efi_pgd + pgd_index(EFI_VA_END);
281 	pgd_k = pgd_offset_k(EFI_VA_END);
282 	p4d_efi = p4d_offset(pgd_efi, 0);
283 	p4d_k = p4d_offset(pgd_k, 0);
284 
285 	num_entries = p4d_index(EFI_VA_END);
286 	memcpy(p4d_efi, p4d_k, sizeof(p4d_t) * num_entries);
287 
288 	/*
289 	 * We share all the PUD entries apart from those that map the
290 	 * EFI regions. Copy around them.
291 	 */
292 	BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0);
293 	BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0);
294 
295 	p4d_efi = p4d_offset(pgd_efi, EFI_VA_END);
296 	p4d_k = p4d_offset(pgd_k, EFI_VA_END);
297 	pud_efi = pud_offset(p4d_efi, 0);
298 	pud_k = pud_offset(p4d_k, 0);
299 
300 	num_entries = pud_index(EFI_VA_END);
301 	memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
302 
303 	pud_efi = pud_offset(p4d_efi, EFI_VA_START);
304 	pud_k = pud_offset(p4d_k, EFI_VA_START);
305 
306 	num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START);
307 	memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
308 }
309 
310 /*
311  * Wrapper for slow_virt_to_phys() that handles NULL addresses.
312  */
313 static inline phys_addr_t
314 virt_to_phys_or_null_size(void *va, unsigned long size)
315 {
316 	bool bad_size;
317 
318 	if (!va)
319 		return 0;
320 
321 	if (virt_addr_valid(va))
322 		return virt_to_phys(va);
323 
324 	/*
325 	 * A fully aligned variable on the stack is guaranteed not to
326 	 * cross a page bounary. Try to catch strings on the stack by
327 	 * checking that 'size' is a power of two.
328 	 */
329 	bad_size = size > PAGE_SIZE || !is_power_of_2(size);
330 
331 	WARN_ON(!IS_ALIGNED((unsigned long)va, size) || bad_size);
332 
333 	return slow_virt_to_phys(va);
334 }
335 
336 #define virt_to_phys_or_null(addr)				\
337 	virt_to_phys_or_null_size((addr), sizeof(*(addr)))
338 
339 int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
340 {
341 	unsigned long pfn, text, pf;
342 	struct page *page;
343 	unsigned npages;
344 	pgd_t *pgd = efi_mm.pgd;
345 
346 	if (efi_enabled(EFI_OLD_MEMMAP))
347 		return 0;
348 
349 	/*
350 	 * It can happen that the physical address of new_memmap lands in memory
351 	 * which is not mapped in the EFI page table. Therefore we need to go
352 	 * and ident-map those pages containing the map before calling
353 	 * phys_efi_set_virtual_address_map().
354 	 */
355 	pfn = pa_memmap >> PAGE_SHIFT;
356 	pf = _PAGE_NX | _PAGE_RW | _PAGE_ENC;
357 	if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, pf)) {
358 		pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap);
359 		return 1;
360 	}
361 
362 	/*
363 	 * Certain firmware versions are way too sentimential and still believe
364 	 * they are exclusive and unquestionable owners of the first physical page,
365 	 * even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY
366 	 * (but then write-access it later during SetVirtualAddressMap()).
367 	 *
368 	 * Create a 1:1 mapping for this page, to avoid triple faults during early
369 	 * boot with such firmware. We are free to hand this page to the BIOS,
370 	 * as trim_bios_range() will reserve the first page and isolate it away
371 	 * from memory allocators anyway.
372 	 */
373 	pf = _PAGE_RW;
374 	if (sev_active())
375 		pf |= _PAGE_ENC;
376 
377 	if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, pf)) {
378 		pr_err("Failed to create 1:1 mapping for the first page!\n");
379 		return 1;
380 	}
381 
382 	/*
383 	 * When making calls to the firmware everything needs to be 1:1
384 	 * mapped and addressable with 32-bit pointers. Map the kernel
385 	 * text and allocate a new stack because we can't rely on the
386 	 * stack pointer being < 4GB.
387 	 */
388 	if (!IS_ENABLED(CONFIG_EFI_MIXED) || efi_is_native())
389 		return 0;
390 
391 	page = alloc_page(GFP_KERNEL|__GFP_DMA32);
392 	if (!page)
393 		panic("Unable to allocate EFI runtime stack < 4GB\n");
394 
395 	efi_scratch.phys_stack = virt_to_phys(page_address(page));
396 	efi_scratch.phys_stack += PAGE_SIZE; /* stack grows down */
397 
398 	npages = (_etext - _text) >> PAGE_SHIFT;
399 	text = __pa(_text);
400 	pfn = text >> PAGE_SHIFT;
401 
402 	pf = _PAGE_RW | _PAGE_ENC;
403 	if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, pf)) {
404 		pr_err("Failed to map kernel text 1:1\n");
405 		return 1;
406 	}
407 
408 	return 0;
409 }
410 
411 static void __init __map_region(efi_memory_desc_t *md, u64 va)
412 {
413 	unsigned long flags = _PAGE_RW;
414 	unsigned long pfn;
415 	pgd_t *pgd = efi_mm.pgd;
416 
417 	if (!(md->attribute & EFI_MEMORY_WB))
418 		flags |= _PAGE_PCD;
419 
420 	if (sev_active() && md->type != EFI_MEMORY_MAPPED_IO)
421 		flags |= _PAGE_ENC;
422 
423 	pfn = md->phys_addr >> PAGE_SHIFT;
424 	if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags))
425 		pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
426 			   md->phys_addr, va);
427 }
428 
429 void __init efi_map_region(efi_memory_desc_t *md)
430 {
431 	unsigned long size = md->num_pages << PAGE_SHIFT;
432 	u64 pa = md->phys_addr;
433 
434 	if (efi_enabled(EFI_OLD_MEMMAP))
435 		return old_map_region(md);
436 
437 	/*
438 	 * Make sure the 1:1 mappings are present as a catch-all for b0rked
439 	 * firmware which doesn't update all internal pointers after switching
440 	 * to virtual mode and would otherwise crap on us.
441 	 */
442 	__map_region(md, md->phys_addr);
443 
444 	/*
445 	 * Enforce the 1:1 mapping as the default virtual address when
446 	 * booting in EFI mixed mode, because even though we may be
447 	 * running a 64-bit kernel, the firmware may only be 32-bit.
448 	 */
449 	if (!efi_is_native () && IS_ENABLED(CONFIG_EFI_MIXED)) {
450 		md->virt_addr = md->phys_addr;
451 		return;
452 	}
453 
454 	efi_va -= size;
455 
456 	/* Is PA 2M-aligned? */
457 	if (!(pa & (PMD_SIZE - 1))) {
458 		efi_va &= PMD_MASK;
459 	} else {
460 		u64 pa_offset = pa & (PMD_SIZE - 1);
461 		u64 prev_va = efi_va;
462 
463 		/* get us the same offset within this 2M page */
464 		efi_va = (efi_va & PMD_MASK) + pa_offset;
465 
466 		if (efi_va > prev_va)
467 			efi_va -= PMD_SIZE;
468 	}
469 
470 	if (efi_va < EFI_VA_END) {
471 		pr_warn(FW_WARN "VA address range overflow!\n");
472 		return;
473 	}
474 
475 	/* Do the VA map */
476 	__map_region(md, efi_va);
477 	md->virt_addr = efi_va;
478 }
479 
480 /*
481  * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges.
482  * md->virt_addr is the original virtual address which had been mapped in kexec
483  * 1st kernel.
484  */
485 void __init efi_map_region_fixed(efi_memory_desc_t *md)
486 {
487 	__map_region(md, md->phys_addr);
488 	__map_region(md, md->virt_addr);
489 }
490 
491 void __iomem *__init efi_ioremap(unsigned long phys_addr, unsigned long size,
492 				 u32 type, u64 attribute)
493 {
494 	unsigned long last_map_pfn;
495 
496 	if (type == EFI_MEMORY_MAPPED_IO)
497 		return ioremap(phys_addr, size);
498 
499 	last_map_pfn = init_memory_mapping(phys_addr, phys_addr + size);
500 	if ((last_map_pfn << PAGE_SHIFT) < phys_addr + size) {
501 		unsigned long top = last_map_pfn << PAGE_SHIFT;
502 		efi_ioremap(top, size - (top - phys_addr), type, attribute);
503 	}
504 
505 	if (!(attribute & EFI_MEMORY_WB))
506 		efi_memory_uc((u64)(unsigned long)__va(phys_addr), size);
507 
508 	return (void __iomem *)__va(phys_addr);
509 }
510 
511 void __init parse_efi_setup(u64 phys_addr, u32 data_len)
512 {
513 	efi_setup = phys_addr + sizeof(struct setup_data);
514 }
515 
516 static int __init efi_update_mappings(efi_memory_desc_t *md, unsigned long pf)
517 {
518 	unsigned long pfn;
519 	pgd_t *pgd = efi_mm.pgd;
520 	int err1, err2;
521 
522 	/* Update the 1:1 mapping */
523 	pfn = md->phys_addr >> PAGE_SHIFT;
524 	err1 = kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf);
525 	if (err1) {
526 		pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n",
527 			   md->phys_addr, md->virt_addr);
528 	}
529 
530 	err2 = kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf);
531 	if (err2) {
532 		pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n",
533 			   md->phys_addr, md->virt_addr);
534 	}
535 
536 	return err1 || err2;
537 }
538 
539 static int __init efi_update_mem_attr(struct mm_struct *mm, efi_memory_desc_t *md)
540 {
541 	unsigned long pf = 0;
542 
543 	if (md->attribute & EFI_MEMORY_XP)
544 		pf |= _PAGE_NX;
545 
546 	if (!(md->attribute & EFI_MEMORY_RO))
547 		pf |= _PAGE_RW;
548 
549 	if (sev_active())
550 		pf |= _PAGE_ENC;
551 
552 	return efi_update_mappings(md, pf);
553 }
554 
555 void __init efi_runtime_update_mappings(void)
556 {
557 	efi_memory_desc_t *md;
558 
559 	if (efi_enabled(EFI_OLD_MEMMAP)) {
560 		if (__supported_pte_mask & _PAGE_NX)
561 			runtime_code_page_mkexec();
562 		return;
563 	}
564 
565 	/*
566 	 * Use the EFI Memory Attribute Table for mapping permissions if it
567 	 * exists, since it is intended to supersede EFI_PROPERTIES_TABLE.
568 	 */
569 	if (efi_enabled(EFI_MEM_ATTR)) {
570 		efi_memattr_apply_permissions(NULL, efi_update_mem_attr);
571 		return;
572 	}
573 
574 	/*
575 	 * EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace
576 	 * EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update
577 	 * permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not
578 	 * published by the firmware. Even if we find a buggy implementation of
579 	 * EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to
580 	 * EFI_PROPERTIES_TABLE, because of the same reason.
581 	 */
582 
583 	if (!efi_enabled(EFI_NX_PE_DATA))
584 		return;
585 
586 	for_each_efi_memory_desc(md) {
587 		unsigned long pf = 0;
588 
589 		if (!(md->attribute & EFI_MEMORY_RUNTIME))
590 			continue;
591 
592 		if (!(md->attribute & EFI_MEMORY_WB))
593 			pf |= _PAGE_PCD;
594 
595 		if ((md->attribute & EFI_MEMORY_XP) ||
596 			(md->type == EFI_RUNTIME_SERVICES_DATA))
597 			pf |= _PAGE_NX;
598 
599 		if (!(md->attribute & EFI_MEMORY_RO) &&
600 			(md->type != EFI_RUNTIME_SERVICES_CODE))
601 			pf |= _PAGE_RW;
602 
603 		if (sev_active())
604 			pf |= _PAGE_ENC;
605 
606 		efi_update_mappings(md, pf);
607 	}
608 }
609 
610 void __init efi_dump_pagetable(void)
611 {
612 #ifdef CONFIG_EFI_PGT_DUMP
613 	if (efi_enabled(EFI_OLD_MEMMAP))
614 		ptdump_walk_pgd_level(NULL, swapper_pg_dir);
615 	else
616 		ptdump_walk_pgd_level(NULL, efi_mm.pgd);
617 #endif
618 }
619 
620 /*
621  * Makes the calling thread switch to/from efi_mm context. Can be used
622  * in a kernel thread and user context. Preemption needs to remain disabled
623  * while the EFI-mm is borrowed. mmgrab()/mmdrop() is not used because the mm
624  * can not change under us.
625  * It should be ensured that there are no concurent calls to this function.
626  */
627 void efi_switch_mm(struct mm_struct *mm)
628 {
629 	efi_scratch.prev_mm = current->active_mm;
630 	current->active_mm = mm;
631 	switch_mm(efi_scratch.prev_mm, mm, NULL);
632 }
633 
634 #ifdef CONFIG_EFI_MIXED
635 extern efi_status_t efi64_thunk(u32, ...);
636 
637 static DEFINE_SPINLOCK(efi_runtime_lock);
638 
639 #define runtime_service32(func)						 \
640 ({									 \
641 	u32 table = (u32)(unsigned long)efi.systab;			 \
642 	u32 *rt, *___f;							 \
643 									 \
644 	rt = (u32 *)(table + offsetof(efi_system_table_32_t, runtime));	 \
645 	___f = (u32 *)(*rt + offsetof(efi_runtime_services_32_t, func)); \
646 	*___f;								 \
647 })
648 
649 /*
650  * Switch to the EFI page tables early so that we can access the 1:1
651  * runtime services mappings which are not mapped in any other page
652  * tables. This function must be called before runtime_service32().
653  *
654  * Also, disable interrupts because the IDT points to 64-bit handlers,
655  * which aren't going to function correctly when we switch to 32-bit.
656  */
657 #define efi_thunk(f, ...)						\
658 ({									\
659 	efi_status_t __s;						\
660 	u32 __func;							\
661 									\
662 	arch_efi_call_virt_setup();					\
663 									\
664 	__func = runtime_service32(f);					\
665 	__s = efi64_thunk(__func, __VA_ARGS__);				\
666 									\
667 	arch_efi_call_virt_teardown();					\
668 									\
669 	__s;								\
670 })
671 
672 efi_status_t efi_thunk_set_virtual_address_map(
673 	void *phys_set_virtual_address_map,
674 	unsigned long memory_map_size,
675 	unsigned long descriptor_size,
676 	u32 descriptor_version,
677 	efi_memory_desc_t *virtual_map)
678 {
679 	efi_status_t status;
680 	unsigned long flags;
681 	u32 func;
682 
683 	efi_sync_low_kernel_mappings();
684 	local_irq_save(flags);
685 
686 	efi_switch_mm(&efi_mm);
687 
688 	func = (u32)(unsigned long)phys_set_virtual_address_map;
689 	status = efi64_thunk(func, memory_map_size, descriptor_size,
690 			     descriptor_version, virtual_map);
691 
692 	efi_switch_mm(efi_scratch.prev_mm);
693 	local_irq_restore(flags);
694 
695 	return status;
696 }
697 
698 static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc)
699 {
700 	efi_status_t status;
701 	u32 phys_tm, phys_tc;
702 	unsigned long flags;
703 
704 	spin_lock(&rtc_lock);
705 	spin_lock_irqsave(&efi_runtime_lock, flags);
706 
707 	phys_tm = virt_to_phys_or_null(tm);
708 	phys_tc = virt_to_phys_or_null(tc);
709 
710 	status = efi_thunk(get_time, phys_tm, phys_tc);
711 
712 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
713 	spin_unlock(&rtc_lock);
714 
715 	return status;
716 }
717 
718 static efi_status_t efi_thunk_set_time(efi_time_t *tm)
719 {
720 	efi_status_t status;
721 	u32 phys_tm;
722 	unsigned long flags;
723 
724 	spin_lock(&rtc_lock);
725 	spin_lock_irqsave(&efi_runtime_lock, flags);
726 
727 	phys_tm = virt_to_phys_or_null(tm);
728 
729 	status = efi_thunk(set_time, phys_tm);
730 
731 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
732 	spin_unlock(&rtc_lock);
733 
734 	return status;
735 }
736 
737 static efi_status_t
738 efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending,
739 			  efi_time_t *tm)
740 {
741 	efi_status_t status;
742 	u32 phys_enabled, phys_pending, phys_tm;
743 	unsigned long flags;
744 
745 	spin_lock(&rtc_lock);
746 	spin_lock_irqsave(&efi_runtime_lock, flags);
747 
748 	phys_enabled = virt_to_phys_or_null(enabled);
749 	phys_pending = virt_to_phys_or_null(pending);
750 	phys_tm = virt_to_phys_or_null(tm);
751 
752 	status = efi_thunk(get_wakeup_time, phys_enabled,
753 			     phys_pending, phys_tm);
754 
755 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
756 	spin_unlock(&rtc_lock);
757 
758 	return status;
759 }
760 
761 static efi_status_t
762 efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
763 {
764 	efi_status_t status;
765 	u32 phys_tm;
766 	unsigned long flags;
767 
768 	spin_lock(&rtc_lock);
769 	spin_lock_irqsave(&efi_runtime_lock, flags);
770 
771 	phys_tm = virt_to_phys_or_null(tm);
772 
773 	status = efi_thunk(set_wakeup_time, enabled, phys_tm);
774 
775 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
776 	spin_unlock(&rtc_lock);
777 
778 	return status;
779 }
780 
781 static unsigned long efi_name_size(efi_char16_t *name)
782 {
783 	return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1;
784 }
785 
786 static efi_status_t
787 efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor,
788 		       u32 *attr, unsigned long *data_size, void *data)
789 {
790 	efi_status_t status;
791 	u32 phys_name, phys_vendor, phys_attr;
792 	u32 phys_data_size, phys_data;
793 	unsigned long flags;
794 
795 	spin_lock_irqsave(&efi_runtime_lock, flags);
796 
797 	phys_data_size = virt_to_phys_or_null(data_size);
798 	phys_vendor = virt_to_phys_or_null(vendor);
799 	phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
800 	phys_attr = virt_to_phys_or_null(attr);
801 	phys_data = virt_to_phys_or_null_size(data, *data_size);
802 
803 	status = efi_thunk(get_variable, phys_name, phys_vendor,
804 			   phys_attr, phys_data_size, phys_data);
805 
806 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
807 
808 	return status;
809 }
810 
811 static efi_status_t
812 efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor,
813 		       u32 attr, unsigned long data_size, void *data)
814 {
815 	u32 phys_name, phys_vendor, phys_data;
816 	efi_status_t status;
817 	unsigned long flags;
818 
819 	spin_lock_irqsave(&efi_runtime_lock, flags);
820 
821 	phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
822 	phys_vendor = virt_to_phys_or_null(vendor);
823 	phys_data = virt_to_phys_or_null_size(data, data_size);
824 
825 	/* If data_size is > sizeof(u32) we've got problems */
826 	status = efi_thunk(set_variable, phys_name, phys_vendor,
827 			   attr, data_size, phys_data);
828 
829 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
830 
831 	return status;
832 }
833 
834 static efi_status_t
835 efi_thunk_set_variable_nonblocking(efi_char16_t *name, efi_guid_t *vendor,
836 				   u32 attr, unsigned long data_size,
837 				   void *data)
838 {
839 	u32 phys_name, phys_vendor, phys_data;
840 	efi_status_t status;
841 	unsigned long flags;
842 
843 	if (!spin_trylock_irqsave(&efi_runtime_lock, flags))
844 		return EFI_NOT_READY;
845 
846 	phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
847 	phys_vendor = virt_to_phys_or_null(vendor);
848 	phys_data = virt_to_phys_or_null_size(data, data_size);
849 
850 	/* If data_size is > sizeof(u32) we've got problems */
851 	status = efi_thunk(set_variable, phys_name, phys_vendor,
852 			   attr, data_size, phys_data);
853 
854 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
855 
856 	return status;
857 }
858 
859 static efi_status_t
860 efi_thunk_get_next_variable(unsigned long *name_size,
861 			    efi_char16_t *name,
862 			    efi_guid_t *vendor)
863 {
864 	efi_status_t status;
865 	u32 phys_name_size, phys_name, phys_vendor;
866 	unsigned long flags;
867 
868 	spin_lock_irqsave(&efi_runtime_lock, flags);
869 
870 	phys_name_size = virt_to_phys_or_null(name_size);
871 	phys_vendor = virt_to_phys_or_null(vendor);
872 	phys_name = virt_to_phys_or_null_size(name, *name_size);
873 
874 	status = efi_thunk(get_next_variable, phys_name_size,
875 			   phys_name, phys_vendor);
876 
877 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
878 
879 	return status;
880 }
881 
882 static efi_status_t
883 efi_thunk_get_next_high_mono_count(u32 *count)
884 {
885 	efi_status_t status;
886 	u32 phys_count;
887 	unsigned long flags;
888 
889 	spin_lock_irqsave(&efi_runtime_lock, flags);
890 
891 	phys_count = virt_to_phys_or_null(count);
892 	status = efi_thunk(get_next_high_mono_count, phys_count);
893 
894 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
895 
896 	return status;
897 }
898 
899 static void
900 efi_thunk_reset_system(int reset_type, efi_status_t status,
901 		       unsigned long data_size, efi_char16_t *data)
902 {
903 	u32 phys_data;
904 	unsigned long flags;
905 
906 	spin_lock_irqsave(&efi_runtime_lock, flags);
907 
908 	phys_data = virt_to_phys_or_null_size(data, data_size);
909 
910 	efi_thunk(reset_system, reset_type, status, data_size, phys_data);
911 
912 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
913 }
914 
915 static efi_status_t
916 efi_thunk_update_capsule(efi_capsule_header_t **capsules,
917 			 unsigned long count, unsigned long sg_list)
918 {
919 	/*
920 	 * To properly support this function we would need to repackage
921 	 * 'capsules' because the firmware doesn't understand 64-bit
922 	 * pointers.
923 	 */
924 	return EFI_UNSUPPORTED;
925 }
926 
927 static efi_status_t
928 efi_thunk_query_variable_info(u32 attr, u64 *storage_space,
929 			      u64 *remaining_space,
930 			      u64 *max_variable_size)
931 {
932 	efi_status_t status;
933 	u32 phys_storage, phys_remaining, phys_max;
934 	unsigned long flags;
935 
936 	if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
937 		return EFI_UNSUPPORTED;
938 
939 	spin_lock_irqsave(&efi_runtime_lock, flags);
940 
941 	phys_storage = virt_to_phys_or_null(storage_space);
942 	phys_remaining = virt_to_phys_or_null(remaining_space);
943 	phys_max = virt_to_phys_or_null(max_variable_size);
944 
945 	status = efi_thunk(query_variable_info, attr, phys_storage,
946 			   phys_remaining, phys_max);
947 
948 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
949 
950 	return status;
951 }
952 
953 static efi_status_t
954 efi_thunk_query_variable_info_nonblocking(u32 attr, u64 *storage_space,
955 					  u64 *remaining_space,
956 					  u64 *max_variable_size)
957 {
958 	efi_status_t status;
959 	u32 phys_storage, phys_remaining, phys_max;
960 	unsigned long flags;
961 
962 	if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
963 		return EFI_UNSUPPORTED;
964 
965 	if (!spin_trylock_irqsave(&efi_runtime_lock, flags))
966 		return EFI_NOT_READY;
967 
968 	phys_storage = virt_to_phys_or_null(storage_space);
969 	phys_remaining = virt_to_phys_or_null(remaining_space);
970 	phys_max = virt_to_phys_or_null(max_variable_size);
971 
972 	status = efi_thunk(query_variable_info, attr, phys_storage,
973 			   phys_remaining, phys_max);
974 
975 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
976 
977 	return status;
978 }
979 
980 static efi_status_t
981 efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules,
982 			     unsigned long count, u64 *max_size,
983 			     int *reset_type)
984 {
985 	/*
986 	 * To properly support this function we would need to repackage
987 	 * 'capsules' because the firmware doesn't understand 64-bit
988 	 * pointers.
989 	 */
990 	return EFI_UNSUPPORTED;
991 }
992 
993 void efi_thunk_runtime_setup(void)
994 {
995 	efi.get_time = efi_thunk_get_time;
996 	efi.set_time = efi_thunk_set_time;
997 	efi.get_wakeup_time = efi_thunk_get_wakeup_time;
998 	efi.set_wakeup_time = efi_thunk_set_wakeup_time;
999 	efi.get_variable = efi_thunk_get_variable;
1000 	efi.get_next_variable = efi_thunk_get_next_variable;
1001 	efi.set_variable = efi_thunk_set_variable;
1002 	efi.set_variable_nonblocking = efi_thunk_set_variable_nonblocking;
1003 	efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count;
1004 	efi.reset_system = efi_thunk_reset_system;
1005 	efi.query_variable_info = efi_thunk_query_variable_info;
1006 	efi.query_variable_info_nonblocking = efi_thunk_query_variable_info_nonblocking;
1007 	efi.update_capsule = efi_thunk_update_capsule;
1008 	efi.query_capsule_caps = efi_thunk_query_capsule_caps;
1009 }
1010 #endif /* CONFIG_EFI_MIXED */
1011