1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * x86_64 specific EFI support functions 4 * Based on Extensible Firmware Interface Specification version 1.0 5 * 6 * Copyright (C) 2005-2008 Intel Co. 7 * Fenghua Yu <fenghua.yu@intel.com> 8 * Bibo Mao <bibo.mao@intel.com> 9 * Chandramouli Narayanan <mouli@linux.intel.com> 10 * Huang Ying <ying.huang@intel.com> 11 * 12 * Code to convert EFI to E820 map has been implemented in elilo bootloader 13 * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table 14 * is setup appropriately for EFI runtime code. 15 * - mouli 06/14/2007. 16 * 17 */ 18 19 #define pr_fmt(fmt) "efi: " fmt 20 21 #include <linux/kernel.h> 22 #include <linux/init.h> 23 #include <linux/mm.h> 24 #include <linux/types.h> 25 #include <linux/spinlock.h> 26 #include <linux/memblock.h> 27 #include <linux/ioport.h> 28 #include <linux/mc146818rtc.h> 29 #include <linux/efi.h> 30 #include <linux/export.h> 31 #include <linux/uaccess.h> 32 #include <linux/io.h> 33 #include <linux/reboot.h> 34 #include <linux/slab.h> 35 #include <linux/ucs2_string.h> 36 #include <linux/mem_encrypt.h> 37 #include <linux/sched/task.h> 38 39 #include <asm/setup.h> 40 #include <asm/page.h> 41 #include <asm/e820/api.h> 42 #include <asm/tlbflush.h> 43 #include <asm/proto.h> 44 #include <asm/efi.h> 45 #include <asm/cacheflush.h> 46 #include <asm/fixmap.h> 47 #include <asm/realmode.h> 48 #include <asm/time.h> 49 #include <asm/pgalloc.h> 50 #include <asm/sev-es.h> 51 52 /* 53 * We allocate runtime services regions top-down, starting from -4G, i.e. 54 * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G. 55 */ 56 static u64 efi_va = EFI_VA_START; 57 58 struct efi_scratch efi_scratch; 59 60 EXPORT_SYMBOL_GPL(efi_mm); 61 62 /* 63 * We need our own copy of the higher levels of the page tables 64 * because we want to avoid inserting EFI region mappings (EFI_VA_END 65 * to EFI_VA_START) into the standard kernel page tables. Everything 66 * else can be shared, see efi_sync_low_kernel_mappings(). 67 * 68 * We don't want the pgd on the pgd_list and cannot use pgd_alloc() for the 69 * allocation. 70 */ 71 int __init efi_alloc_page_tables(void) 72 { 73 pgd_t *pgd, *efi_pgd; 74 p4d_t *p4d; 75 pud_t *pud; 76 gfp_t gfp_mask; 77 78 gfp_mask = GFP_KERNEL | __GFP_ZERO; 79 efi_pgd = (pgd_t *)__get_free_pages(gfp_mask, PGD_ALLOCATION_ORDER); 80 if (!efi_pgd) 81 goto fail; 82 83 pgd = efi_pgd + pgd_index(EFI_VA_END); 84 p4d = p4d_alloc(&init_mm, pgd, EFI_VA_END); 85 if (!p4d) 86 goto free_pgd; 87 88 pud = pud_alloc(&init_mm, p4d, EFI_VA_END); 89 if (!pud) 90 goto free_p4d; 91 92 efi_mm.pgd = efi_pgd; 93 mm_init_cpumask(&efi_mm); 94 init_new_context(NULL, &efi_mm); 95 96 return 0; 97 98 free_p4d: 99 if (pgtable_l5_enabled()) 100 free_page((unsigned long)pgd_page_vaddr(*pgd)); 101 free_pgd: 102 free_pages((unsigned long)efi_pgd, PGD_ALLOCATION_ORDER); 103 fail: 104 return -ENOMEM; 105 } 106 107 /* 108 * Add low kernel mappings for passing arguments to EFI functions. 109 */ 110 void efi_sync_low_kernel_mappings(void) 111 { 112 unsigned num_entries; 113 pgd_t *pgd_k, *pgd_efi; 114 p4d_t *p4d_k, *p4d_efi; 115 pud_t *pud_k, *pud_efi; 116 pgd_t *efi_pgd = efi_mm.pgd; 117 118 /* 119 * We can share all PGD entries apart from the one entry that 120 * covers the EFI runtime mapping space. 121 * 122 * Make sure the EFI runtime region mappings are guaranteed to 123 * only span a single PGD entry and that the entry also maps 124 * other important kernel regions. 125 */ 126 MAYBE_BUILD_BUG_ON(pgd_index(EFI_VA_END) != pgd_index(MODULES_END)); 127 MAYBE_BUILD_BUG_ON((EFI_VA_START & PGDIR_MASK) != 128 (EFI_VA_END & PGDIR_MASK)); 129 130 pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET); 131 pgd_k = pgd_offset_k(PAGE_OFFSET); 132 133 num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET); 134 memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries); 135 136 /* 137 * As with PGDs, we share all P4D entries apart from the one entry 138 * that covers the EFI runtime mapping space. 139 */ 140 BUILD_BUG_ON(p4d_index(EFI_VA_END) != p4d_index(MODULES_END)); 141 BUILD_BUG_ON((EFI_VA_START & P4D_MASK) != (EFI_VA_END & P4D_MASK)); 142 143 pgd_efi = efi_pgd + pgd_index(EFI_VA_END); 144 pgd_k = pgd_offset_k(EFI_VA_END); 145 p4d_efi = p4d_offset(pgd_efi, 0); 146 p4d_k = p4d_offset(pgd_k, 0); 147 148 num_entries = p4d_index(EFI_VA_END); 149 memcpy(p4d_efi, p4d_k, sizeof(p4d_t) * num_entries); 150 151 /* 152 * We share all the PUD entries apart from those that map the 153 * EFI regions. Copy around them. 154 */ 155 BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0); 156 BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0); 157 158 p4d_efi = p4d_offset(pgd_efi, EFI_VA_END); 159 p4d_k = p4d_offset(pgd_k, EFI_VA_END); 160 pud_efi = pud_offset(p4d_efi, 0); 161 pud_k = pud_offset(p4d_k, 0); 162 163 num_entries = pud_index(EFI_VA_END); 164 memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries); 165 166 pud_efi = pud_offset(p4d_efi, EFI_VA_START); 167 pud_k = pud_offset(p4d_k, EFI_VA_START); 168 169 num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START); 170 memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries); 171 } 172 173 /* 174 * Wrapper for slow_virt_to_phys() that handles NULL addresses. 175 */ 176 static inline phys_addr_t 177 virt_to_phys_or_null_size(void *va, unsigned long size) 178 { 179 phys_addr_t pa; 180 181 if (!va) 182 return 0; 183 184 if (virt_addr_valid(va)) 185 return virt_to_phys(va); 186 187 pa = slow_virt_to_phys(va); 188 189 /* check if the object crosses a page boundary */ 190 if (WARN_ON((pa ^ (pa + size - 1)) & PAGE_MASK)) 191 return 0; 192 193 return pa; 194 } 195 196 #define virt_to_phys_or_null(addr) \ 197 virt_to_phys_or_null_size((addr), sizeof(*(addr))) 198 199 int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages) 200 { 201 unsigned long pfn, text, pf, rodata; 202 struct page *page; 203 unsigned npages; 204 pgd_t *pgd = efi_mm.pgd; 205 206 /* 207 * It can happen that the physical address of new_memmap lands in memory 208 * which is not mapped in the EFI page table. Therefore we need to go 209 * and ident-map those pages containing the map before calling 210 * phys_efi_set_virtual_address_map(). 211 */ 212 pfn = pa_memmap >> PAGE_SHIFT; 213 pf = _PAGE_NX | _PAGE_RW | _PAGE_ENC; 214 if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, pf)) { 215 pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap); 216 return 1; 217 } 218 219 /* 220 * Certain firmware versions are way too sentimential and still believe 221 * they are exclusive and unquestionable owners of the first physical page, 222 * even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY 223 * (but then write-access it later during SetVirtualAddressMap()). 224 * 225 * Create a 1:1 mapping for this page, to avoid triple faults during early 226 * boot with such firmware. We are free to hand this page to the BIOS, 227 * as trim_bios_range() will reserve the first page and isolate it away 228 * from memory allocators anyway. 229 */ 230 if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, pf)) { 231 pr_err("Failed to create 1:1 mapping for the first page!\n"); 232 return 1; 233 } 234 235 /* 236 * When SEV-ES is active, the GHCB as set by the kernel will be used 237 * by firmware. Create a 1:1 unencrypted mapping for each GHCB. 238 */ 239 if (sev_es_efi_map_ghcbs(pgd)) { 240 pr_err("Failed to create 1:1 mapping for the GHCBs!\n"); 241 return 1; 242 } 243 244 /* 245 * When making calls to the firmware everything needs to be 1:1 246 * mapped and addressable with 32-bit pointers. Map the kernel 247 * text and allocate a new stack because we can't rely on the 248 * stack pointer being < 4GB. 249 */ 250 if (!efi_is_mixed()) 251 return 0; 252 253 page = alloc_page(GFP_KERNEL|__GFP_DMA32); 254 if (!page) { 255 pr_err("Unable to allocate EFI runtime stack < 4GB\n"); 256 return 1; 257 } 258 259 efi_scratch.phys_stack = page_to_phys(page + 1); /* stack grows down */ 260 261 npages = (_etext - _text) >> PAGE_SHIFT; 262 text = __pa(_text); 263 pfn = text >> PAGE_SHIFT; 264 265 pf = _PAGE_ENC; 266 if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, pf)) { 267 pr_err("Failed to map kernel text 1:1\n"); 268 return 1; 269 } 270 271 npages = (__end_rodata - __start_rodata) >> PAGE_SHIFT; 272 rodata = __pa(__start_rodata); 273 pfn = rodata >> PAGE_SHIFT; 274 275 pf = _PAGE_NX | _PAGE_ENC; 276 if (kernel_map_pages_in_pgd(pgd, pfn, rodata, npages, pf)) { 277 pr_err("Failed to map kernel rodata 1:1\n"); 278 return 1; 279 } 280 281 return 0; 282 } 283 284 static void __init __map_region(efi_memory_desc_t *md, u64 va) 285 { 286 unsigned long flags = _PAGE_RW; 287 unsigned long pfn; 288 pgd_t *pgd = efi_mm.pgd; 289 290 /* 291 * EFI_RUNTIME_SERVICES_CODE regions typically cover PE/COFF 292 * executable images in memory that consist of both R-X and 293 * RW- sections, so we cannot apply read-only or non-exec 294 * permissions just yet. However, modern EFI systems provide 295 * a memory attributes table that describes those sections 296 * with the appropriate restricted permissions, which are 297 * applied in efi_runtime_update_mappings() below. All other 298 * regions can be mapped non-executable at this point, with 299 * the exception of boot services code regions, but those will 300 * be unmapped again entirely in efi_free_boot_services(). 301 */ 302 if (md->type != EFI_BOOT_SERVICES_CODE && 303 md->type != EFI_RUNTIME_SERVICES_CODE) 304 flags |= _PAGE_NX; 305 306 if (!(md->attribute & EFI_MEMORY_WB)) 307 flags |= _PAGE_PCD; 308 309 if (sev_active() && md->type != EFI_MEMORY_MAPPED_IO) 310 flags |= _PAGE_ENC; 311 312 pfn = md->phys_addr >> PAGE_SHIFT; 313 if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags)) 314 pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n", 315 md->phys_addr, va); 316 } 317 318 void __init efi_map_region(efi_memory_desc_t *md) 319 { 320 unsigned long size = md->num_pages << PAGE_SHIFT; 321 u64 pa = md->phys_addr; 322 323 /* 324 * Make sure the 1:1 mappings are present as a catch-all for b0rked 325 * firmware which doesn't update all internal pointers after switching 326 * to virtual mode and would otherwise crap on us. 327 */ 328 __map_region(md, md->phys_addr); 329 330 /* 331 * Enforce the 1:1 mapping as the default virtual address when 332 * booting in EFI mixed mode, because even though we may be 333 * running a 64-bit kernel, the firmware may only be 32-bit. 334 */ 335 if (efi_is_mixed()) { 336 md->virt_addr = md->phys_addr; 337 return; 338 } 339 340 efi_va -= size; 341 342 /* Is PA 2M-aligned? */ 343 if (!(pa & (PMD_SIZE - 1))) { 344 efi_va &= PMD_MASK; 345 } else { 346 u64 pa_offset = pa & (PMD_SIZE - 1); 347 u64 prev_va = efi_va; 348 349 /* get us the same offset within this 2M page */ 350 efi_va = (efi_va & PMD_MASK) + pa_offset; 351 352 if (efi_va > prev_va) 353 efi_va -= PMD_SIZE; 354 } 355 356 if (efi_va < EFI_VA_END) { 357 pr_warn(FW_WARN "VA address range overflow!\n"); 358 return; 359 } 360 361 /* Do the VA map */ 362 __map_region(md, efi_va); 363 md->virt_addr = efi_va; 364 } 365 366 /* 367 * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges. 368 * md->virt_addr is the original virtual address which had been mapped in kexec 369 * 1st kernel. 370 */ 371 void __init efi_map_region_fixed(efi_memory_desc_t *md) 372 { 373 __map_region(md, md->phys_addr); 374 __map_region(md, md->virt_addr); 375 } 376 377 void __init parse_efi_setup(u64 phys_addr, u32 data_len) 378 { 379 efi_setup = phys_addr + sizeof(struct setup_data); 380 } 381 382 static int __init efi_update_mappings(efi_memory_desc_t *md, unsigned long pf) 383 { 384 unsigned long pfn; 385 pgd_t *pgd = efi_mm.pgd; 386 int err1, err2; 387 388 /* Update the 1:1 mapping */ 389 pfn = md->phys_addr >> PAGE_SHIFT; 390 err1 = kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf); 391 if (err1) { 392 pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n", 393 md->phys_addr, md->virt_addr); 394 } 395 396 err2 = kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf); 397 if (err2) { 398 pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n", 399 md->phys_addr, md->virt_addr); 400 } 401 402 return err1 || err2; 403 } 404 405 static int __init efi_update_mem_attr(struct mm_struct *mm, efi_memory_desc_t *md) 406 { 407 unsigned long pf = 0; 408 409 if (md->attribute & EFI_MEMORY_XP) 410 pf |= _PAGE_NX; 411 412 if (!(md->attribute & EFI_MEMORY_RO)) 413 pf |= _PAGE_RW; 414 415 if (sev_active()) 416 pf |= _PAGE_ENC; 417 418 return efi_update_mappings(md, pf); 419 } 420 421 void __init efi_runtime_update_mappings(void) 422 { 423 efi_memory_desc_t *md; 424 425 /* 426 * Use the EFI Memory Attribute Table for mapping permissions if it 427 * exists, since it is intended to supersede EFI_PROPERTIES_TABLE. 428 */ 429 if (efi_enabled(EFI_MEM_ATTR)) { 430 efi_memattr_apply_permissions(NULL, efi_update_mem_attr); 431 return; 432 } 433 434 /* 435 * EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace 436 * EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update 437 * permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not 438 * published by the firmware. Even if we find a buggy implementation of 439 * EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to 440 * EFI_PROPERTIES_TABLE, because of the same reason. 441 */ 442 443 if (!efi_enabled(EFI_NX_PE_DATA)) 444 return; 445 446 for_each_efi_memory_desc(md) { 447 unsigned long pf = 0; 448 449 if (!(md->attribute & EFI_MEMORY_RUNTIME)) 450 continue; 451 452 if (!(md->attribute & EFI_MEMORY_WB)) 453 pf |= _PAGE_PCD; 454 455 if ((md->attribute & EFI_MEMORY_XP) || 456 (md->type == EFI_RUNTIME_SERVICES_DATA)) 457 pf |= _PAGE_NX; 458 459 if (!(md->attribute & EFI_MEMORY_RO) && 460 (md->type != EFI_RUNTIME_SERVICES_CODE)) 461 pf |= _PAGE_RW; 462 463 if (sev_active()) 464 pf |= _PAGE_ENC; 465 466 efi_update_mappings(md, pf); 467 } 468 } 469 470 void __init efi_dump_pagetable(void) 471 { 472 #ifdef CONFIG_EFI_PGT_DUMP 473 ptdump_walk_pgd_level(NULL, &efi_mm); 474 #endif 475 } 476 477 /* 478 * Makes the calling thread switch to/from efi_mm context. Can be used 479 * in a kernel thread and user context. Preemption needs to remain disabled 480 * while the EFI-mm is borrowed. mmgrab()/mmdrop() is not used because the mm 481 * can not change under us. 482 * It should be ensured that there are no concurent calls to this function. 483 */ 484 void efi_switch_mm(struct mm_struct *mm) 485 { 486 efi_scratch.prev_mm = current->active_mm; 487 current->active_mm = mm; 488 switch_mm(efi_scratch.prev_mm, mm, NULL); 489 } 490 491 static DEFINE_SPINLOCK(efi_runtime_lock); 492 493 /* 494 * DS and ES contain user values. We need to save them. 495 * The 32-bit EFI code needs a valid DS, ES, and SS. There's no 496 * need to save the old SS: __KERNEL_DS is always acceptable. 497 */ 498 #define __efi_thunk(func, ...) \ 499 ({ \ 500 unsigned short __ds, __es; \ 501 efi_status_t ____s; \ 502 \ 503 savesegment(ds, __ds); \ 504 savesegment(es, __es); \ 505 \ 506 loadsegment(ss, __KERNEL_DS); \ 507 loadsegment(ds, __KERNEL_DS); \ 508 loadsegment(es, __KERNEL_DS); \ 509 \ 510 ____s = efi64_thunk(efi.runtime->mixed_mode.func, __VA_ARGS__); \ 511 \ 512 loadsegment(ds, __ds); \ 513 loadsegment(es, __es); \ 514 \ 515 ____s ^= (____s & BIT(31)) | (____s & BIT_ULL(31)) << 32; \ 516 ____s; \ 517 }) 518 519 /* 520 * Switch to the EFI page tables early so that we can access the 1:1 521 * runtime services mappings which are not mapped in any other page 522 * tables. 523 * 524 * Also, disable interrupts because the IDT points to 64-bit handlers, 525 * which aren't going to function correctly when we switch to 32-bit. 526 */ 527 #define efi_thunk(func...) \ 528 ({ \ 529 efi_status_t __s; \ 530 \ 531 arch_efi_call_virt_setup(); \ 532 \ 533 __s = __efi_thunk(func); \ 534 \ 535 arch_efi_call_virt_teardown(); \ 536 \ 537 __s; \ 538 }) 539 540 static efi_status_t __init __no_sanitize_address 541 efi_thunk_set_virtual_address_map(unsigned long memory_map_size, 542 unsigned long descriptor_size, 543 u32 descriptor_version, 544 efi_memory_desc_t *virtual_map) 545 { 546 efi_status_t status; 547 unsigned long flags; 548 549 efi_sync_low_kernel_mappings(); 550 local_irq_save(flags); 551 552 efi_switch_mm(&efi_mm); 553 554 status = __efi_thunk(set_virtual_address_map, memory_map_size, 555 descriptor_size, descriptor_version, virtual_map); 556 557 efi_switch_mm(efi_scratch.prev_mm); 558 local_irq_restore(flags); 559 560 return status; 561 } 562 563 static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc) 564 { 565 return EFI_UNSUPPORTED; 566 } 567 568 static efi_status_t efi_thunk_set_time(efi_time_t *tm) 569 { 570 return EFI_UNSUPPORTED; 571 } 572 573 static efi_status_t 574 efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending, 575 efi_time_t *tm) 576 { 577 return EFI_UNSUPPORTED; 578 } 579 580 static efi_status_t 581 efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm) 582 { 583 return EFI_UNSUPPORTED; 584 } 585 586 static unsigned long efi_name_size(efi_char16_t *name) 587 { 588 return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1; 589 } 590 591 static efi_status_t 592 efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor, 593 u32 *attr, unsigned long *data_size, void *data) 594 { 595 u8 buf[24] __aligned(8); 596 efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd)); 597 efi_status_t status; 598 u32 phys_name, phys_vendor, phys_attr; 599 u32 phys_data_size, phys_data; 600 unsigned long flags; 601 602 spin_lock_irqsave(&efi_runtime_lock, flags); 603 604 *vnd = *vendor; 605 606 phys_data_size = virt_to_phys_or_null(data_size); 607 phys_vendor = virt_to_phys_or_null(vnd); 608 phys_name = virt_to_phys_or_null_size(name, efi_name_size(name)); 609 phys_attr = virt_to_phys_or_null(attr); 610 phys_data = virt_to_phys_or_null_size(data, *data_size); 611 612 if (!phys_name || (data && !phys_data)) 613 status = EFI_INVALID_PARAMETER; 614 else 615 status = efi_thunk(get_variable, phys_name, phys_vendor, 616 phys_attr, phys_data_size, phys_data); 617 618 spin_unlock_irqrestore(&efi_runtime_lock, flags); 619 620 return status; 621 } 622 623 static efi_status_t 624 efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor, 625 u32 attr, unsigned long data_size, void *data) 626 { 627 u8 buf[24] __aligned(8); 628 efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd)); 629 u32 phys_name, phys_vendor, phys_data; 630 efi_status_t status; 631 unsigned long flags; 632 633 spin_lock_irqsave(&efi_runtime_lock, flags); 634 635 *vnd = *vendor; 636 637 phys_name = virt_to_phys_or_null_size(name, efi_name_size(name)); 638 phys_vendor = virt_to_phys_or_null(vnd); 639 phys_data = virt_to_phys_or_null_size(data, data_size); 640 641 if (!phys_name || (data && !phys_data)) 642 status = EFI_INVALID_PARAMETER; 643 else 644 status = efi_thunk(set_variable, phys_name, phys_vendor, 645 attr, data_size, phys_data); 646 647 spin_unlock_irqrestore(&efi_runtime_lock, flags); 648 649 return status; 650 } 651 652 static efi_status_t 653 efi_thunk_set_variable_nonblocking(efi_char16_t *name, efi_guid_t *vendor, 654 u32 attr, unsigned long data_size, 655 void *data) 656 { 657 u8 buf[24] __aligned(8); 658 efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd)); 659 u32 phys_name, phys_vendor, phys_data; 660 efi_status_t status; 661 unsigned long flags; 662 663 if (!spin_trylock_irqsave(&efi_runtime_lock, flags)) 664 return EFI_NOT_READY; 665 666 *vnd = *vendor; 667 668 phys_name = virt_to_phys_or_null_size(name, efi_name_size(name)); 669 phys_vendor = virt_to_phys_or_null(vnd); 670 phys_data = virt_to_phys_or_null_size(data, data_size); 671 672 if (!phys_name || (data && !phys_data)) 673 status = EFI_INVALID_PARAMETER; 674 else 675 status = efi_thunk(set_variable, phys_name, phys_vendor, 676 attr, data_size, phys_data); 677 678 spin_unlock_irqrestore(&efi_runtime_lock, flags); 679 680 return status; 681 } 682 683 static efi_status_t 684 efi_thunk_get_next_variable(unsigned long *name_size, 685 efi_char16_t *name, 686 efi_guid_t *vendor) 687 { 688 u8 buf[24] __aligned(8); 689 efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd)); 690 efi_status_t status; 691 u32 phys_name_size, phys_name, phys_vendor; 692 unsigned long flags; 693 694 spin_lock_irqsave(&efi_runtime_lock, flags); 695 696 *vnd = *vendor; 697 698 phys_name_size = virt_to_phys_or_null(name_size); 699 phys_vendor = virt_to_phys_or_null(vnd); 700 phys_name = virt_to_phys_or_null_size(name, *name_size); 701 702 if (!phys_name) 703 status = EFI_INVALID_PARAMETER; 704 else 705 status = efi_thunk(get_next_variable, phys_name_size, 706 phys_name, phys_vendor); 707 708 spin_unlock_irqrestore(&efi_runtime_lock, flags); 709 710 *vendor = *vnd; 711 return status; 712 } 713 714 static efi_status_t 715 efi_thunk_get_next_high_mono_count(u32 *count) 716 { 717 return EFI_UNSUPPORTED; 718 } 719 720 static void 721 efi_thunk_reset_system(int reset_type, efi_status_t status, 722 unsigned long data_size, efi_char16_t *data) 723 { 724 u32 phys_data; 725 unsigned long flags; 726 727 spin_lock_irqsave(&efi_runtime_lock, flags); 728 729 phys_data = virt_to_phys_or_null_size(data, data_size); 730 731 efi_thunk(reset_system, reset_type, status, data_size, phys_data); 732 733 spin_unlock_irqrestore(&efi_runtime_lock, flags); 734 } 735 736 static efi_status_t 737 efi_thunk_update_capsule(efi_capsule_header_t **capsules, 738 unsigned long count, unsigned long sg_list) 739 { 740 /* 741 * To properly support this function we would need to repackage 742 * 'capsules' because the firmware doesn't understand 64-bit 743 * pointers. 744 */ 745 return EFI_UNSUPPORTED; 746 } 747 748 static efi_status_t 749 efi_thunk_query_variable_info(u32 attr, u64 *storage_space, 750 u64 *remaining_space, 751 u64 *max_variable_size) 752 { 753 efi_status_t status; 754 u32 phys_storage, phys_remaining, phys_max; 755 unsigned long flags; 756 757 if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION) 758 return EFI_UNSUPPORTED; 759 760 spin_lock_irqsave(&efi_runtime_lock, flags); 761 762 phys_storage = virt_to_phys_or_null(storage_space); 763 phys_remaining = virt_to_phys_or_null(remaining_space); 764 phys_max = virt_to_phys_or_null(max_variable_size); 765 766 status = efi_thunk(query_variable_info, attr, phys_storage, 767 phys_remaining, phys_max); 768 769 spin_unlock_irqrestore(&efi_runtime_lock, flags); 770 771 return status; 772 } 773 774 static efi_status_t 775 efi_thunk_query_variable_info_nonblocking(u32 attr, u64 *storage_space, 776 u64 *remaining_space, 777 u64 *max_variable_size) 778 { 779 efi_status_t status; 780 u32 phys_storage, phys_remaining, phys_max; 781 unsigned long flags; 782 783 if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION) 784 return EFI_UNSUPPORTED; 785 786 if (!spin_trylock_irqsave(&efi_runtime_lock, flags)) 787 return EFI_NOT_READY; 788 789 phys_storage = virt_to_phys_or_null(storage_space); 790 phys_remaining = virt_to_phys_or_null(remaining_space); 791 phys_max = virt_to_phys_or_null(max_variable_size); 792 793 status = efi_thunk(query_variable_info, attr, phys_storage, 794 phys_remaining, phys_max); 795 796 spin_unlock_irqrestore(&efi_runtime_lock, flags); 797 798 return status; 799 } 800 801 static efi_status_t 802 efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules, 803 unsigned long count, u64 *max_size, 804 int *reset_type) 805 { 806 /* 807 * To properly support this function we would need to repackage 808 * 'capsules' because the firmware doesn't understand 64-bit 809 * pointers. 810 */ 811 return EFI_UNSUPPORTED; 812 } 813 814 void __init efi_thunk_runtime_setup(void) 815 { 816 if (!IS_ENABLED(CONFIG_EFI_MIXED)) 817 return; 818 819 efi.get_time = efi_thunk_get_time; 820 efi.set_time = efi_thunk_set_time; 821 efi.get_wakeup_time = efi_thunk_get_wakeup_time; 822 efi.set_wakeup_time = efi_thunk_set_wakeup_time; 823 efi.get_variable = efi_thunk_get_variable; 824 efi.get_next_variable = efi_thunk_get_next_variable; 825 efi.set_variable = efi_thunk_set_variable; 826 efi.set_variable_nonblocking = efi_thunk_set_variable_nonblocking; 827 efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count; 828 efi.reset_system = efi_thunk_reset_system; 829 efi.query_variable_info = efi_thunk_query_variable_info; 830 efi.query_variable_info_nonblocking = efi_thunk_query_variable_info_nonblocking; 831 efi.update_capsule = efi_thunk_update_capsule; 832 efi.query_capsule_caps = efi_thunk_query_capsule_caps; 833 } 834 835 efi_status_t __init __no_sanitize_address 836 efi_set_virtual_address_map(unsigned long memory_map_size, 837 unsigned long descriptor_size, 838 u32 descriptor_version, 839 efi_memory_desc_t *virtual_map, 840 unsigned long systab_phys) 841 { 842 const efi_system_table_t *systab = (efi_system_table_t *)systab_phys; 843 efi_status_t status; 844 unsigned long flags; 845 846 if (efi_is_mixed()) 847 return efi_thunk_set_virtual_address_map(memory_map_size, 848 descriptor_size, 849 descriptor_version, 850 virtual_map); 851 efi_switch_mm(&efi_mm); 852 853 kernel_fpu_begin(); 854 855 /* Disable interrupts around EFI calls: */ 856 local_irq_save(flags); 857 status = efi_call(efi.runtime->set_virtual_address_map, 858 memory_map_size, descriptor_size, 859 descriptor_version, virtual_map); 860 local_irq_restore(flags); 861 862 kernel_fpu_end(); 863 864 /* grab the virtually remapped EFI runtime services table pointer */ 865 efi.runtime = READ_ONCE(systab->runtime); 866 867 efi_switch_mm(efi_scratch.prev_mm); 868 869 return status; 870 } 871