1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * x86_64 specific EFI support functions 4 * Based on Extensible Firmware Interface Specification version 1.0 5 * 6 * Copyright (C) 2005-2008 Intel Co. 7 * Fenghua Yu <fenghua.yu@intel.com> 8 * Bibo Mao <bibo.mao@intel.com> 9 * Chandramouli Narayanan <mouli@linux.intel.com> 10 * Huang Ying <ying.huang@intel.com> 11 * 12 * Code to convert EFI to E820 map has been implemented in elilo bootloader 13 * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table 14 * is setup appropriately for EFI runtime code. 15 * - mouli 06/14/2007. 16 * 17 */ 18 19 #define pr_fmt(fmt) "efi: " fmt 20 21 #include <linux/kernel.h> 22 #include <linux/init.h> 23 #include <linux/mm.h> 24 #include <linux/types.h> 25 #include <linux/spinlock.h> 26 #include <linux/memblock.h> 27 #include <linux/ioport.h> 28 #include <linux/mc146818rtc.h> 29 #include <linux/efi.h> 30 #include <linux/export.h> 31 #include <linux/uaccess.h> 32 #include <linux/io.h> 33 #include <linux/reboot.h> 34 #include <linux/slab.h> 35 #include <linux/ucs2_string.h> 36 #include <linux/mem_encrypt.h> 37 #include <linux/sched/task.h> 38 39 #include <asm/setup.h> 40 #include <asm/page.h> 41 #include <asm/e820/api.h> 42 #include <asm/pgtable.h> 43 #include <asm/tlbflush.h> 44 #include <asm/proto.h> 45 #include <asm/efi.h> 46 #include <asm/cacheflush.h> 47 #include <asm/fixmap.h> 48 #include <asm/realmode.h> 49 #include <asm/time.h> 50 #include <asm/pgalloc.h> 51 52 /* 53 * We allocate runtime services regions top-down, starting from -4G, i.e. 54 * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G. 55 */ 56 static u64 efi_va = EFI_VA_START; 57 58 struct efi_scratch efi_scratch; 59 60 EXPORT_SYMBOL_GPL(efi_mm); 61 62 /* 63 * We need our own copy of the higher levels of the page tables 64 * because we want to avoid inserting EFI region mappings (EFI_VA_END 65 * to EFI_VA_START) into the standard kernel page tables. Everything 66 * else can be shared, see efi_sync_low_kernel_mappings(). 67 * 68 * We don't want the pgd on the pgd_list and cannot use pgd_alloc() for the 69 * allocation. 70 */ 71 int __init efi_alloc_page_tables(void) 72 { 73 pgd_t *pgd, *efi_pgd; 74 p4d_t *p4d; 75 pud_t *pud; 76 gfp_t gfp_mask; 77 78 if (efi_have_uv1_memmap()) 79 return 0; 80 81 gfp_mask = GFP_KERNEL | __GFP_ZERO; 82 efi_pgd = (pgd_t *)__get_free_pages(gfp_mask, PGD_ALLOCATION_ORDER); 83 if (!efi_pgd) 84 return -ENOMEM; 85 86 pgd = efi_pgd + pgd_index(EFI_VA_END); 87 p4d = p4d_alloc(&init_mm, pgd, EFI_VA_END); 88 if (!p4d) { 89 free_page((unsigned long)efi_pgd); 90 return -ENOMEM; 91 } 92 93 pud = pud_alloc(&init_mm, p4d, EFI_VA_END); 94 if (!pud) { 95 if (pgtable_l5_enabled()) 96 free_page((unsigned long) pgd_page_vaddr(*pgd)); 97 free_pages((unsigned long)efi_pgd, PGD_ALLOCATION_ORDER); 98 return -ENOMEM; 99 } 100 101 efi_mm.pgd = efi_pgd; 102 mm_init_cpumask(&efi_mm); 103 init_new_context(NULL, &efi_mm); 104 105 return 0; 106 } 107 108 /* 109 * Add low kernel mappings for passing arguments to EFI functions. 110 */ 111 void efi_sync_low_kernel_mappings(void) 112 { 113 unsigned num_entries; 114 pgd_t *pgd_k, *pgd_efi; 115 p4d_t *p4d_k, *p4d_efi; 116 pud_t *pud_k, *pud_efi; 117 pgd_t *efi_pgd = efi_mm.pgd; 118 119 if (efi_have_uv1_memmap()) 120 return; 121 122 /* 123 * We can share all PGD entries apart from the one entry that 124 * covers the EFI runtime mapping space. 125 * 126 * Make sure the EFI runtime region mappings are guaranteed to 127 * only span a single PGD entry and that the entry also maps 128 * other important kernel regions. 129 */ 130 MAYBE_BUILD_BUG_ON(pgd_index(EFI_VA_END) != pgd_index(MODULES_END)); 131 MAYBE_BUILD_BUG_ON((EFI_VA_START & PGDIR_MASK) != 132 (EFI_VA_END & PGDIR_MASK)); 133 134 pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET); 135 pgd_k = pgd_offset_k(PAGE_OFFSET); 136 137 num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET); 138 memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries); 139 140 /* 141 * As with PGDs, we share all P4D entries apart from the one entry 142 * that covers the EFI runtime mapping space. 143 */ 144 BUILD_BUG_ON(p4d_index(EFI_VA_END) != p4d_index(MODULES_END)); 145 BUILD_BUG_ON((EFI_VA_START & P4D_MASK) != (EFI_VA_END & P4D_MASK)); 146 147 pgd_efi = efi_pgd + pgd_index(EFI_VA_END); 148 pgd_k = pgd_offset_k(EFI_VA_END); 149 p4d_efi = p4d_offset(pgd_efi, 0); 150 p4d_k = p4d_offset(pgd_k, 0); 151 152 num_entries = p4d_index(EFI_VA_END); 153 memcpy(p4d_efi, p4d_k, sizeof(p4d_t) * num_entries); 154 155 /* 156 * We share all the PUD entries apart from those that map the 157 * EFI regions. Copy around them. 158 */ 159 BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0); 160 BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0); 161 162 p4d_efi = p4d_offset(pgd_efi, EFI_VA_END); 163 p4d_k = p4d_offset(pgd_k, EFI_VA_END); 164 pud_efi = pud_offset(p4d_efi, 0); 165 pud_k = pud_offset(p4d_k, 0); 166 167 num_entries = pud_index(EFI_VA_END); 168 memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries); 169 170 pud_efi = pud_offset(p4d_efi, EFI_VA_START); 171 pud_k = pud_offset(p4d_k, EFI_VA_START); 172 173 num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START); 174 memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries); 175 } 176 177 /* 178 * Wrapper for slow_virt_to_phys() that handles NULL addresses. 179 */ 180 static inline phys_addr_t 181 virt_to_phys_or_null_size(void *va, unsigned long size) 182 { 183 bool bad_size; 184 185 if (!va) 186 return 0; 187 188 if (virt_addr_valid(va)) 189 return virt_to_phys(va); 190 191 /* 192 * A fully aligned variable on the stack is guaranteed not to 193 * cross a page bounary. Try to catch strings on the stack by 194 * checking that 'size' is a power of two. 195 */ 196 bad_size = size > PAGE_SIZE || !is_power_of_2(size); 197 198 WARN_ON(!IS_ALIGNED((unsigned long)va, size) || bad_size); 199 200 return slow_virt_to_phys(va); 201 } 202 203 #define virt_to_phys_or_null(addr) \ 204 virt_to_phys_or_null_size((addr), sizeof(*(addr))) 205 206 int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages) 207 { 208 unsigned long pfn, text, pf; 209 struct page *page; 210 unsigned npages; 211 pgd_t *pgd = efi_mm.pgd; 212 213 if (efi_have_uv1_memmap()) 214 return 0; 215 216 /* 217 * It can happen that the physical address of new_memmap lands in memory 218 * which is not mapped in the EFI page table. Therefore we need to go 219 * and ident-map those pages containing the map before calling 220 * phys_efi_set_virtual_address_map(). 221 */ 222 pfn = pa_memmap >> PAGE_SHIFT; 223 pf = _PAGE_NX | _PAGE_RW | _PAGE_ENC; 224 if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, pf)) { 225 pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap); 226 return 1; 227 } 228 229 /* 230 * Certain firmware versions are way too sentimential and still believe 231 * they are exclusive and unquestionable owners of the first physical page, 232 * even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY 233 * (but then write-access it later during SetVirtualAddressMap()). 234 * 235 * Create a 1:1 mapping for this page, to avoid triple faults during early 236 * boot with such firmware. We are free to hand this page to the BIOS, 237 * as trim_bios_range() will reserve the first page and isolate it away 238 * from memory allocators anyway. 239 */ 240 if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, pf)) { 241 pr_err("Failed to create 1:1 mapping for the first page!\n"); 242 return 1; 243 } 244 245 /* 246 * When making calls to the firmware everything needs to be 1:1 247 * mapped and addressable with 32-bit pointers. Map the kernel 248 * text and allocate a new stack because we can't rely on the 249 * stack pointer being < 4GB. 250 */ 251 if (!efi_is_mixed()) 252 return 0; 253 254 page = alloc_page(GFP_KERNEL|__GFP_DMA32); 255 if (!page) { 256 pr_err("Unable to allocate EFI runtime stack < 4GB\n"); 257 return 1; 258 } 259 260 efi_scratch.phys_stack = page_to_phys(page + 1); /* stack grows down */ 261 262 npages = (__end_rodata_aligned - _text) >> PAGE_SHIFT; 263 text = __pa(_text); 264 pfn = text >> PAGE_SHIFT; 265 266 pf = _PAGE_ENC; 267 if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, pf)) { 268 pr_err("Failed to map kernel text 1:1\n"); 269 return 1; 270 } 271 272 return 0; 273 } 274 275 static void __init __map_region(efi_memory_desc_t *md, u64 va) 276 { 277 unsigned long flags = _PAGE_RW; 278 unsigned long pfn; 279 pgd_t *pgd = efi_mm.pgd; 280 281 /* 282 * EFI_RUNTIME_SERVICES_CODE regions typically cover PE/COFF 283 * executable images in memory that consist of both R-X and 284 * RW- sections, so we cannot apply read-only or non-exec 285 * permissions just yet. However, modern EFI systems provide 286 * a memory attributes table that describes those sections 287 * with the appropriate restricted permissions, which are 288 * applied in efi_runtime_update_mappings() below. All other 289 * regions can be mapped non-executable at this point, with 290 * the exception of boot services code regions, but those will 291 * be unmapped again entirely in efi_free_boot_services(). 292 */ 293 if (md->type != EFI_BOOT_SERVICES_CODE && 294 md->type != EFI_RUNTIME_SERVICES_CODE) 295 flags |= _PAGE_NX; 296 297 if (!(md->attribute & EFI_MEMORY_WB)) 298 flags |= _PAGE_PCD; 299 300 if (sev_active() && md->type != EFI_MEMORY_MAPPED_IO) 301 flags |= _PAGE_ENC; 302 303 pfn = md->phys_addr >> PAGE_SHIFT; 304 if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags)) 305 pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n", 306 md->phys_addr, va); 307 } 308 309 void __init efi_map_region(efi_memory_desc_t *md) 310 { 311 unsigned long size = md->num_pages << PAGE_SHIFT; 312 u64 pa = md->phys_addr; 313 314 if (efi_have_uv1_memmap()) 315 return old_map_region(md); 316 317 /* 318 * Make sure the 1:1 mappings are present as a catch-all for b0rked 319 * firmware which doesn't update all internal pointers after switching 320 * to virtual mode and would otherwise crap on us. 321 */ 322 __map_region(md, md->phys_addr); 323 324 /* 325 * Enforce the 1:1 mapping as the default virtual address when 326 * booting in EFI mixed mode, because even though we may be 327 * running a 64-bit kernel, the firmware may only be 32-bit. 328 */ 329 if (efi_is_mixed()) { 330 md->virt_addr = md->phys_addr; 331 return; 332 } 333 334 efi_va -= size; 335 336 /* Is PA 2M-aligned? */ 337 if (!(pa & (PMD_SIZE - 1))) { 338 efi_va &= PMD_MASK; 339 } else { 340 u64 pa_offset = pa & (PMD_SIZE - 1); 341 u64 prev_va = efi_va; 342 343 /* get us the same offset within this 2M page */ 344 efi_va = (efi_va & PMD_MASK) + pa_offset; 345 346 if (efi_va > prev_va) 347 efi_va -= PMD_SIZE; 348 } 349 350 if (efi_va < EFI_VA_END) { 351 pr_warn(FW_WARN "VA address range overflow!\n"); 352 return; 353 } 354 355 /* Do the VA map */ 356 __map_region(md, efi_va); 357 md->virt_addr = efi_va; 358 } 359 360 /* 361 * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges. 362 * md->virt_addr is the original virtual address which had been mapped in kexec 363 * 1st kernel. 364 */ 365 void __init efi_map_region_fixed(efi_memory_desc_t *md) 366 { 367 __map_region(md, md->phys_addr); 368 __map_region(md, md->virt_addr); 369 } 370 371 void __init parse_efi_setup(u64 phys_addr, u32 data_len) 372 { 373 efi_setup = phys_addr + sizeof(struct setup_data); 374 } 375 376 static int __init efi_update_mappings(efi_memory_desc_t *md, unsigned long pf) 377 { 378 unsigned long pfn; 379 pgd_t *pgd = efi_mm.pgd; 380 int err1, err2; 381 382 /* Update the 1:1 mapping */ 383 pfn = md->phys_addr >> PAGE_SHIFT; 384 err1 = kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf); 385 if (err1) { 386 pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n", 387 md->phys_addr, md->virt_addr); 388 } 389 390 err2 = kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf); 391 if (err2) { 392 pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n", 393 md->phys_addr, md->virt_addr); 394 } 395 396 return err1 || err2; 397 } 398 399 static int __init efi_update_mem_attr(struct mm_struct *mm, efi_memory_desc_t *md) 400 { 401 unsigned long pf = 0; 402 403 if (md->attribute & EFI_MEMORY_XP) 404 pf |= _PAGE_NX; 405 406 if (!(md->attribute & EFI_MEMORY_RO)) 407 pf |= _PAGE_RW; 408 409 if (sev_active()) 410 pf |= _PAGE_ENC; 411 412 return efi_update_mappings(md, pf); 413 } 414 415 void __init efi_runtime_update_mappings(void) 416 { 417 efi_memory_desc_t *md; 418 419 if (efi_have_uv1_memmap()) { 420 if (__supported_pte_mask & _PAGE_NX) 421 runtime_code_page_mkexec(); 422 return; 423 } 424 425 /* 426 * Use the EFI Memory Attribute Table for mapping permissions if it 427 * exists, since it is intended to supersede EFI_PROPERTIES_TABLE. 428 */ 429 if (efi_enabled(EFI_MEM_ATTR)) { 430 efi_memattr_apply_permissions(NULL, efi_update_mem_attr); 431 return; 432 } 433 434 /* 435 * EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace 436 * EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update 437 * permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not 438 * published by the firmware. Even if we find a buggy implementation of 439 * EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to 440 * EFI_PROPERTIES_TABLE, because of the same reason. 441 */ 442 443 if (!efi_enabled(EFI_NX_PE_DATA)) 444 return; 445 446 for_each_efi_memory_desc(md) { 447 unsigned long pf = 0; 448 449 if (!(md->attribute & EFI_MEMORY_RUNTIME)) 450 continue; 451 452 if (!(md->attribute & EFI_MEMORY_WB)) 453 pf |= _PAGE_PCD; 454 455 if ((md->attribute & EFI_MEMORY_XP) || 456 (md->type == EFI_RUNTIME_SERVICES_DATA)) 457 pf |= _PAGE_NX; 458 459 if (!(md->attribute & EFI_MEMORY_RO) && 460 (md->type != EFI_RUNTIME_SERVICES_CODE)) 461 pf |= _PAGE_RW; 462 463 if (sev_active()) 464 pf |= _PAGE_ENC; 465 466 efi_update_mappings(md, pf); 467 } 468 } 469 470 void __init efi_dump_pagetable(void) 471 { 472 #ifdef CONFIG_EFI_PGT_DUMP 473 if (efi_have_uv1_memmap()) 474 ptdump_walk_pgd_level(NULL, &init_mm); 475 else 476 ptdump_walk_pgd_level(NULL, &efi_mm); 477 #endif 478 } 479 480 /* 481 * Makes the calling thread switch to/from efi_mm context. Can be used 482 * in a kernel thread and user context. Preemption needs to remain disabled 483 * while the EFI-mm is borrowed. mmgrab()/mmdrop() is not used because the mm 484 * can not change under us. 485 * It should be ensured that there are no concurent calls to this function. 486 */ 487 void efi_switch_mm(struct mm_struct *mm) 488 { 489 efi_scratch.prev_mm = current->active_mm; 490 current->active_mm = mm; 491 switch_mm(efi_scratch.prev_mm, mm, NULL); 492 } 493 494 static DEFINE_SPINLOCK(efi_runtime_lock); 495 496 /* 497 * DS and ES contain user values. We need to save them. 498 * The 32-bit EFI code needs a valid DS, ES, and SS. There's no 499 * need to save the old SS: __KERNEL_DS is always acceptable. 500 */ 501 #define __efi_thunk(func, ...) \ 502 ({ \ 503 efi_runtime_services_32_t *__rt; \ 504 unsigned short __ds, __es; \ 505 efi_status_t ____s; \ 506 \ 507 __rt = (void *)(unsigned long)efi.systab->mixed_mode.runtime; \ 508 \ 509 savesegment(ds, __ds); \ 510 savesegment(es, __es); \ 511 \ 512 loadsegment(ss, __KERNEL_DS); \ 513 loadsegment(ds, __KERNEL_DS); \ 514 loadsegment(es, __KERNEL_DS); \ 515 \ 516 ____s = efi64_thunk(__rt->func, __VA_ARGS__); \ 517 \ 518 loadsegment(ds, __ds); \ 519 loadsegment(es, __es); \ 520 \ 521 ____s ^= (____s & BIT(31)) | (____s & BIT_ULL(31)) << 32; \ 522 ____s; \ 523 }) 524 525 /* 526 * Switch to the EFI page tables early so that we can access the 1:1 527 * runtime services mappings which are not mapped in any other page 528 * tables. 529 * 530 * Also, disable interrupts because the IDT points to 64-bit handlers, 531 * which aren't going to function correctly when we switch to 32-bit. 532 */ 533 #define efi_thunk(func...) \ 534 ({ \ 535 efi_status_t __s; \ 536 \ 537 arch_efi_call_virt_setup(); \ 538 \ 539 __s = __efi_thunk(func); \ 540 \ 541 arch_efi_call_virt_teardown(); \ 542 \ 543 __s; \ 544 }) 545 546 static efi_status_t __init __no_sanitize_address 547 efi_thunk_set_virtual_address_map(unsigned long memory_map_size, 548 unsigned long descriptor_size, 549 u32 descriptor_version, 550 efi_memory_desc_t *virtual_map) 551 { 552 efi_status_t status; 553 unsigned long flags; 554 555 efi_sync_low_kernel_mappings(); 556 local_irq_save(flags); 557 558 efi_switch_mm(&efi_mm); 559 560 status = __efi_thunk(set_virtual_address_map, memory_map_size, 561 descriptor_size, descriptor_version, virtual_map); 562 563 efi_switch_mm(efi_scratch.prev_mm); 564 local_irq_restore(flags); 565 566 return status; 567 } 568 569 static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc) 570 { 571 efi_status_t status; 572 u32 phys_tm, phys_tc; 573 unsigned long flags; 574 575 spin_lock(&rtc_lock); 576 spin_lock_irqsave(&efi_runtime_lock, flags); 577 578 phys_tm = virt_to_phys_or_null(tm); 579 phys_tc = virt_to_phys_or_null(tc); 580 581 status = efi_thunk(get_time, phys_tm, phys_tc); 582 583 spin_unlock_irqrestore(&efi_runtime_lock, flags); 584 spin_unlock(&rtc_lock); 585 586 return status; 587 } 588 589 static efi_status_t efi_thunk_set_time(efi_time_t *tm) 590 { 591 efi_status_t status; 592 u32 phys_tm; 593 unsigned long flags; 594 595 spin_lock(&rtc_lock); 596 spin_lock_irqsave(&efi_runtime_lock, flags); 597 598 phys_tm = virt_to_phys_or_null(tm); 599 600 status = efi_thunk(set_time, phys_tm); 601 602 spin_unlock_irqrestore(&efi_runtime_lock, flags); 603 spin_unlock(&rtc_lock); 604 605 return status; 606 } 607 608 static efi_status_t 609 efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending, 610 efi_time_t *tm) 611 { 612 efi_status_t status; 613 u32 phys_enabled, phys_pending, phys_tm; 614 unsigned long flags; 615 616 spin_lock(&rtc_lock); 617 spin_lock_irqsave(&efi_runtime_lock, flags); 618 619 phys_enabled = virt_to_phys_or_null(enabled); 620 phys_pending = virt_to_phys_or_null(pending); 621 phys_tm = virt_to_phys_or_null(tm); 622 623 status = efi_thunk(get_wakeup_time, phys_enabled, 624 phys_pending, phys_tm); 625 626 spin_unlock_irqrestore(&efi_runtime_lock, flags); 627 spin_unlock(&rtc_lock); 628 629 return status; 630 } 631 632 static efi_status_t 633 efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm) 634 { 635 efi_status_t status; 636 u32 phys_tm; 637 unsigned long flags; 638 639 spin_lock(&rtc_lock); 640 spin_lock_irqsave(&efi_runtime_lock, flags); 641 642 phys_tm = virt_to_phys_or_null(tm); 643 644 status = efi_thunk(set_wakeup_time, enabled, phys_tm); 645 646 spin_unlock_irqrestore(&efi_runtime_lock, flags); 647 spin_unlock(&rtc_lock); 648 649 return status; 650 } 651 652 static unsigned long efi_name_size(efi_char16_t *name) 653 { 654 return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1; 655 } 656 657 static efi_status_t 658 efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor, 659 u32 *attr, unsigned long *data_size, void *data) 660 { 661 efi_status_t status; 662 u32 phys_name, phys_vendor, phys_attr; 663 u32 phys_data_size, phys_data; 664 unsigned long flags; 665 666 spin_lock_irqsave(&efi_runtime_lock, flags); 667 668 phys_data_size = virt_to_phys_or_null(data_size); 669 phys_vendor = virt_to_phys_or_null(vendor); 670 phys_name = virt_to_phys_or_null_size(name, efi_name_size(name)); 671 phys_attr = virt_to_phys_or_null(attr); 672 phys_data = virt_to_phys_or_null_size(data, *data_size); 673 674 status = efi_thunk(get_variable, phys_name, phys_vendor, 675 phys_attr, phys_data_size, phys_data); 676 677 spin_unlock_irqrestore(&efi_runtime_lock, flags); 678 679 return status; 680 } 681 682 static efi_status_t 683 efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor, 684 u32 attr, unsigned long data_size, void *data) 685 { 686 u32 phys_name, phys_vendor, phys_data; 687 efi_status_t status; 688 unsigned long flags; 689 690 spin_lock_irqsave(&efi_runtime_lock, flags); 691 692 phys_name = virt_to_phys_or_null_size(name, efi_name_size(name)); 693 phys_vendor = virt_to_phys_or_null(vendor); 694 phys_data = virt_to_phys_or_null_size(data, data_size); 695 696 /* If data_size is > sizeof(u32) we've got problems */ 697 status = efi_thunk(set_variable, phys_name, phys_vendor, 698 attr, data_size, phys_data); 699 700 spin_unlock_irqrestore(&efi_runtime_lock, flags); 701 702 return status; 703 } 704 705 static efi_status_t 706 efi_thunk_set_variable_nonblocking(efi_char16_t *name, efi_guid_t *vendor, 707 u32 attr, unsigned long data_size, 708 void *data) 709 { 710 u32 phys_name, phys_vendor, phys_data; 711 efi_status_t status; 712 unsigned long flags; 713 714 if (!spin_trylock_irqsave(&efi_runtime_lock, flags)) 715 return EFI_NOT_READY; 716 717 phys_name = virt_to_phys_or_null_size(name, efi_name_size(name)); 718 phys_vendor = virt_to_phys_or_null(vendor); 719 phys_data = virt_to_phys_or_null_size(data, data_size); 720 721 /* If data_size is > sizeof(u32) we've got problems */ 722 status = efi_thunk(set_variable, phys_name, phys_vendor, 723 attr, data_size, phys_data); 724 725 spin_unlock_irqrestore(&efi_runtime_lock, flags); 726 727 return status; 728 } 729 730 static efi_status_t 731 efi_thunk_get_next_variable(unsigned long *name_size, 732 efi_char16_t *name, 733 efi_guid_t *vendor) 734 { 735 efi_status_t status; 736 u32 phys_name_size, phys_name, phys_vendor; 737 unsigned long flags; 738 739 spin_lock_irqsave(&efi_runtime_lock, flags); 740 741 phys_name_size = virt_to_phys_or_null(name_size); 742 phys_vendor = virt_to_phys_or_null(vendor); 743 phys_name = virt_to_phys_or_null_size(name, *name_size); 744 745 status = efi_thunk(get_next_variable, phys_name_size, 746 phys_name, phys_vendor); 747 748 spin_unlock_irqrestore(&efi_runtime_lock, flags); 749 750 return status; 751 } 752 753 static efi_status_t 754 efi_thunk_get_next_high_mono_count(u32 *count) 755 { 756 efi_status_t status; 757 u32 phys_count; 758 unsigned long flags; 759 760 spin_lock_irqsave(&efi_runtime_lock, flags); 761 762 phys_count = virt_to_phys_or_null(count); 763 status = efi_thunk(get_next_high_mono_count, phys_count); 764 765 spin_unlock_irqrestore(&efi_runtime_lock, flags); 766 767 return status; 768 } 769 770 static void 771 efi_thunk_reset_system(int reset_type, efi_status_t status, 772 unsigned long data_size, efi_char16_t *data) 773 { 774 u32 phys_data; 775 unsigned long flags; 776 777 spin_lock_irqsave(&efi_runtime_lock, flags); 778 779 phys_data = virt_to_phys_or_null_size(data, data_size); 780 781 efi_thunk(reset_system, reset_type, status, data_size, phys_data); 782 783 spin_unlock_irqrestore(&efi_runtime_lock, flags); 784 } 785 786 static efi_status_t 787 efi_thunk_update_capsule(efi_capsule_header_t **capsules, 788 unsigned long count, unsigned long sg_list) 789 { 790 /* 791 * To properly support this function we would need to repackage 792 * 'capsules' because the firmware doesn't understand 64-bit 793 * pointers. 794 */ 795 return EFI_UNSUPPORTED; 796 } 797 798 static efi_status_t 799 efi_thunk_query_variable_info(u32 attr, u64 *storage_space, 800 u64 *remaining_space, 801 u64 *max_variable_size) 802 { 803 efi_status_t status; 804 u32 phys_storage, phys_remaining, phys_max; 805 unsigned long flags; 806 807 if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION) 808 return EFI_UNSUPPORTED; 809 810 spin_lock_irqsave(&efi_runtime_lock, flags); 811 812 phys_storage = virt_to_phys_or_null(storage_space); 813 phys_remaining = virt_to_phys_or_null(remaining_space); 814 phys_max = virt_to_phys_or_null(max_variable_size); 815 816 status = efi_thunk(query_variable_info, attr, phys_storage, 817 phys_remaining, phys_max); 818 819 spin_unlock_irqrestore(&efi_runtime_lock, flags); 820 821 return status; 822 } 823 824 static efi_status_t 825 efi_thunk_query_variable_info_nonblocking(u32 attr, u64 *storage_space, 826 u64 *remaining_space, 827 u64 *max_variable_size) 828 { 829 efi_status_t status; 830 u32 phys_storage, phys_remaining, phys_max; 831 unsigned long flags; 832 833 if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION) 834 return EFI_UNSUPPORTED; 835 836 if (!spin_trylock_irqsave(&efi_runtime_lock, flags)) 837 return EFI_NOT_READY; 838 839 phys_storage = virt_to_phys_or_null(storage_space); 840 phys_remaining = virt_to_phys_or_null(remaining_space); 841 phys_max = virt_to_phys_or_null(max_variable_size); 842 843 status = efi_thunk(query_variable_info, attr, phys_storage, 844 phys_remaining, phys_max); 845 846 spin_unlock_irqrestore(&efi_runtime_lock, flags); 847 848 return status; 849 } 850 851 static efi_status_t 852 efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules, 853 unsigned long count, u64 *max_size, 854 int *reset_type) 855 { 856 /* 857 * To properly support this function we would need to repackage 858 * 'capsules' because the firmware doesn't understand 64-bit 859 * pointers. 860 */ 861 return EFI_UNSUPPORTED; 862 } 863 864 void __init efi_thunk_runtime_setup(void) 865 { 866 if (!IS_ENABLED(CONFIG_EFI_MIXED)) 867 return; 868 869 efi.get_time = efi_thunk_get_time; 870 efi.set_time = efi_thunk_set_time; 871 efi.get_wakeup_time = efi_thunk_get_wakeup_time; 872 efi.set_wakeup_time = efi_thunk_set_wakeup_time; 873 efi.get_variable = efi_thunk_get_variable; 874 efi.get_next_variable = efi_thunk_get_next_variable; 875 efi.set_variable = efi_thunk_set_variable; 876 efi.set_variable_nonblocking = efi_thunk_set_variable_nonblocking; 877 efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count; 878 efi.reset_system = efi_thunk_reset_system; 879 efi.query_variable_info = efi_thunk_query_variable_info; 880 efi.query_variable_info_nonblocking = efi_thunk_query_variable_info_nonblocking; 881 efi.update_capsule = efi_thunk_update_capsule; 882 efi.query_capsule_caps = efi_thunk_query_capsule_caps; 883 } 884 885 efi_status_t __init __no_sanitize_address 886 efi_set_virtual_address_map(unsigned long memory_map_size, 887 unsigned long descriptor_size, 888 u32 descriptor_version, 889 efi_memory_desc_t *virtual_map) 890 { 891 efi_status_t status; 892 unsigned long flags; 893 pgd_t *save_pgd = NULL; 894 895 if (efi_is_mixed()) 896 return efi_thunk_set_virtual_address_map(memory_map_size, 897 descriptor_size, 898 descriptor_version, 899 virtual_map); 900 901 if (efi_have_uv1_memmap()) { 902 save_pgd = efi_uv1_memmap_phys_prolog(); 903 if (!save_pgd) 904 return EFI_ABORTED; 905 } else { 906 efi_switch_mm(&efi_mm); 907 } 908 909 kernel_fpu_begin(); 910 911 /* Disable interrupts around EFI calls: */ 912 local_irq_save(flags); 913 status = efi_call(efi.systab->runtime->set_virtual_address_map, 914 memory_map_size, descriptor_size, 915 descriptor_version, virtual_map); 916 local_irq_restore(flags); 917 918 kernel_fpu_end(); 919 920 if (save_pgd) 921 efi_uv1_memmap_phys_epilog(save_pgd); 922 else 923 efi_switch_mm(efi_scratch.prev_mm); 924 925 return status; 926 } 927