xref: /openbmc/linux/arch/x86/platform/efi/efi_64.c (revision bc05aa6e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * x86_64 specific EFI support functions
4  * Based on Extensible Firmware Interface Specification version 1.0
5  *
6  * Copyright (C) 2005-2008 Intel Co.
7  *	Fenghua Yu <fenghua.yu@intel.com>
8  *	Bibo Mao <bibo.mao@intel.com>
9  *	Chandramouli Narayanan <mouli@linux.intel.com>
10  *	Huang Ying <ying.huang@intel.com>
11  *
12  * Code to convert EFI to E820 map has been implemented in elilo bootloader
13  * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table
14  * is setup appropriately for EFI runtime code.
15  * - mouli 06/14/2007.
16  *
17  */
18 
19 #define pr_fmt(fmt) "efi: " fmt
20 
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/mm.h>
24 #include <linux/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/bootmem.h>
27 #include <linux/ioport.h>
28 #include <linux/mc146818rtc.h>
29 #include <linux/efi.h>
30 #include <linux/uaccess.h>
31 #include <linux/io.h>
32 #include <linux/reboot.h>
33 #include <linux/slab.h>
34 #include <linux/ucs2_string.h>
35 #include <linux/mem_encrypt.h>
36 
37 #include <asm/setup.h>
38 #include <asm/page.h>
39 #include <asm/e820/api.h>
40 #include <asm/pgtable.h>
41 #include <asm/tlbflush.h>
42 #include <asm/proto.h>
43 #include <asm/efi.h>
44 #include <asm/cacheflush.h>
45 #include <asm/fixmap.h>
46 #include <asm/realmode.h>
47 #include <asm/time.h>
48 #include <asm/pgalloc.h>
49 
50 /*
51  * We allocate runtime services regions top-down, starting from -4G, i.e.
52  * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G.
53  */
54 static u64 efi_va = EFI_VA_START;
55 
56 struct efi_scratch efi_scratch;
57 
58 static void __init early_code_mapping_set_exec(int executable)
59 {
60 	efi_memory_desc_t *md;
61 
62 	if (!(__supported_pte_mask & _PAGE_NX))
63 		return;
64 
65 	/* Make EFI service code area executable */
66 	for_each_efi_memory_desc(md) {
67 		if (md->type == EFI_RUNTIME_SERVICES_CODE ||
68 		    md->type == EFI_BOOT_SERVICES_CODE)
69 			efi_set_executable(md, executable);
70 	}
71 }
72 
73 pgd_t * __init efi_call_phys_prolog(void)
74 {
75 	unsigned long vaddr, addr_pgd, addr_p4d, addr_pud;
76 	pgd_t *save_pgd, *pgd_k, *pgd_efi;
77 	p4d_t *p4d, *p4d_k, *p4d_efi;
78 	pud_t *pud;
79 
80 	int pgd;
81 	int n_pgds, i, j;
82 
83 	if (!efi_enabled(EFI_OLD_MEMMAP)) {
84 		save_pgd = (pgd_t *)__read_cr3();
85 		write_cr3((unsigned long)efi_scratch.efi_pgt);
86 		goto out;
87 	}
88 
89 	early_code_mapping_set_exec(1);
90 
91 	n_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT), PGDIR_SIZE);
92 	save_pgd = kmalloc_array(n_pgds, sizeof(*save_pgd), GFP_KERNEL);
93 
94 	/*
95 	 * Build 1:1 identity mapping for efi=old_map usage. Note that
96 	 * PAGE_OFFSET is PGDIR_SIZE aligned when KASLR is disabled, while
97 	 * it is PUD_SIZE ALIGNED with KASLR enabled. So for a given physical
98 	 * address X, the pud_index(X) != pud_index(__va(X)), we can only copy
99 	 * PUD entry of __va(X) to fill in pud entry of X to build 1:1 mapping.
100 	 * This means here we can only reuse the PMD tables of the direct mapping.
101 	 */
102 	for (pgd = 0; pgd < n_pgds; pgd++) {
103 		addr_pgd = (unsigned long)(pgd * PGDIR_SIZE);
104 		vaddr = (unsigned long)__va(pgd * PGDIR_SIZE);
105 		pgd_efi = pgd_offset_k(addr_pgd);
106 		save_pgd[pgd] = *pgd_efi;
107 
108 		p4d = p4d_alloc(&init_mm, pgd_efi, addr_pgd);
109 		if (!p4d) {
110 			pr_err("Failed to allocate p4d table!\n");
111 			goto out;
112 		}
113 
114 		for (i = 0; i < PTRS_PER_P4D; i++) {
115 			addr_p4d = addr_pgd + i * P4D_SIZE;
116 			p4d_efi = p4d + p4d_index(addr_p4d);
117 
118 			pud = pud_alloc(&init_mm, p4d_efi, addr_p4d);
119 			if (!pud) {
120 				pr_err("Failed to allocate pud table!\n");
121 				goto out;
122 			}
123 
124 			for (j = 0; j < PTRS_PER_PUD; j++) {
125 				addr_pud = addr_p4d + j * PUD_SIZE;
126 
127 				if (addr_pud > (max_pfn << PAGE_SHIFT))
128 					break;
129 
130 				vaddr = (unsigned long)__va(addr_pud);
131 
132 				pgd_k = pgd_offset_k(vaddr);
133 				p4d_k = p4d_offset(pgd_k, vaddr);
134 				pud[j] = *pud_offset(p4d_k, vaddr);
135 			}
136 		}
137 		pgd_offset_k(pgd * PGDIR_SIZE)->pgd &= ~_PAGE_NX;
138 	}
139 
140 out:
141 	__flush_tlb_all();
142 
143 	return save_pgd;
144 }
145 
146 void __init efi_call_phys_epilog(pgd_t *save_pgd)
147 {
148 	/*
149 	 * After the lock is released, the original page table is restored.
150 	 */
151 	int pgd_idx, i;
152 	int nr_pgds;
153 	pgd_t *pgd;
154 	p4d_t *p4d;
155 	pud_t *pud;
156 
157 	if (!efi_enabled(EFI_OLD_MEMMAP)) {
158 		write_cr3((unsigned long)save_pgd);
159 		__flush_tlb_all();
160 		return;
161 	}
162 
163 	nr_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT) , PGDIR_SIZE);
164 
165 	for (pgd_idx = 0; pgd_idx < nr_pgds; pgd_idx++) {
166 		pgd = pgd_offset_k(pgd_idx * PGDIR_SIZE);
167 		set_pgd(pgd_offset_k(pgd_idx * PGDIR_SIZE), save_pgd[pgd_idx]);
168 
169 		if (!(pgd_val(*pgd) & _PAGE_PRESENT))
170 			continue;
171 
172 		for (i = 0; i < PTRS_PER_P4D; i++) {
173 			p4d = p4d_offset(pgd,
174 					 pgd_idx * PGDIR_SIZE + i * P4D_SIZE);
175 
176 			if (!(p4d_val(*p4d) & _PAGE_PRESENT))
177 				continue;
178 
179 			pud = (pud_t *)p4d_page_vaddr(*p4d);
180 			pud_free(&init_mm, pud);
181 		}
182 
183 		p4d = (p4d_t *)pgd_page_vaddr(*pgd);
184 		p4d_free(&init_mm, p4d);
185 	}
186 
187 	kfree(save_pgd);
188 
189 	__flush_tlb_all();
190 	early_code_mapping_set_exec(0);
191 }
192 
193 static pgd_t *efi_pgd;
194 
195 /*
196  * We need our own copy of the higher levels of the page tables
197  * because we want to avoid inserting EFI region mappings (EFI_VA_END
198  * to EFI_VA_START) into the standard kernel page tables. Everything
199  * else can be shared, see efi_sync_low_kernel_mappings().
200  *
201  * We don't want the pgd on the pgd_list and cannot use pgd_alloc() for the
202  * allocation.
203  */
204 int __init efi_alloc_page_tables(void)
205 {
206 	pgd_t *pgd;
207 	p4d_t *p4d;
208 	pud_t *pud;
209 	gfp_t gfp_mask;
210 
211 	if (efi_enabled(EFI_OLD_MEMMAP))
212 		return 0;
213 
214 	gfp_mask = GFP_KERNEL | __GFP_ZERO;
215 	efi_pgd = (pgd_t *)__get_free_pages(gfp_mask, PGD_ALLOCATION_ORDER);
216 	if (!efi_pgd)
217 		return -ENOMEM;
218 
219 	pgd = efi_pgd + pgd_index(EFI_VA_END);
220 	p4d = p4d_alloc(&init_mm, pgd, EFI_VA_END);
221 	if (!p4d) {
222 		free_page((unsigned long)efi_pgd);
223 		return -ENOMEM;
224 	}
225 
226 	pud = pud_alloc(&init_mm, p4d, EFI_VA_END);
227 	if (!pud) {
228 		if (CONFIG_PGTABLE_LEVELS > 4)
229 			free_page((unsigned long) pgd_page_vaddr(*pgd));
230 		free_pages((unsigned long)efi_pgd, PGD_ALLOCATION_ORDER);
231 		return -ENOMEM;
232 	}
233 
234 	return 0;
235 }
236 
237 /*
238  * Add low kernel mappings for passing arguments to EFI functions.
239  */
240 void efi_sync_low_kernel_mappings(void)
241 {
242 	unsigned num_entries;
243 	pgd_t *pgd_k, *pgd_efi;
244 	p4d_t *p4d_k, *p4d_efi;
245 	pud_t *pud_k, *pud_efi;
246 
247 	if (efi_enabled(EFI_OLD_MEMMAP))
248 		return;
249 
250 	/*
251 	 * We can share all PGD entries apart from the one entry that
252 	 * covers the EFI runtime mapping space.
253 	 *
254 	 * Make sure the EFI runtime region mappings are guaranteed to
255 	 * only span a single PGD entry and that the entry also maps
256 	 * other important kernel regions.
257 	 */
258 	BUILD_BUG_ON(pgd_index(EFI_VA_END) != pgd_index(MODULES_END));
259 	BUILD_BUG_ON((EFI_VA_START & PGDIR_MASK) !=
260 			(EFI_VA_END & PGDIR_MASK));
261 
262 	pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET);
263 	pgd_k = pgd_offset_k(PAGE_OFFSET);
264 
265 	num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET);
266 	memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries);
267 
268 	/*
269 	 * As with PGDs, we share all P4D entries apart from the one entry
270 	 * that covers the EFI runtime mapping space.
271 	 */
272 	BUILD_BUG_ON(p4d_index(EFI_VA_END) != p4d_index(MODULES_END));
273 	BUILD_BUG_ON((EFI_VA_START & P4D_MASK) != (EFI_VA_END & P4D_MASK));
274 
275 	pgd_efi = efi_pgd + pgd_index(EFI_VA_END);
276 	pgd_k = pgd_offset_k(EFI_VA_END);
277 	p4d_efi = p4d_offset(pgd_efi, 0);
278 	p4d_k = p4d_offset(pgd_k, 0);
279 
280 	num_entries = p4d_index(EFI_VA_END);
281 	memcpy(p4d_efi, p4d_k, sizeof(p4d_t) * num_entries);
282 
283 	/*
284 	 * We share all the PUD entries apart from those that map the
285 	 * EFI regions. Copy around them.
286 	 */
287 	BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0);
288 	BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0);
289 
290 	p4d_efi = p4d_offset(pgd_efi, EFI_VA_END);
291 	p4d_k = p4d_offset(pgd_k, EFI_VA_END);
292 	pud_efi = pud_offset(p4d_efi, 0);
293 	pud_k = pud_offset(p4d_k, 0);
294 
295 	num_entries = pud_index(EFI_VA_END);
296 	memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
297 
298 	pud_efi = pud_offset(p4d_efi, EFI_VA_START);
299 	pud_k = pud_offset(p4d_k, EFI_VA_START);
300 
301 	num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START);
302 	memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
303 }
304 
305 /*
306  * Wrapper for slow_virt_to_phys() that handles NULL addresses.
307  */
308 static inline phys_addr_t
309 virt_to_phys_or_null_size(void *va, unsigned long size)
310 {
311 	bool bad_size;
312 
313 	if (!va)
314 		return 0;
315 
316 	if (virt_addr_valid(va))
317 		return virt_to_phys(va);
318 
319 	/*
320 	 * A fully aligned variable on the stack is guaranteed not to
321 	 * cross a page bounary. Try to catch strings on the stack by
322 	 * checking that 'size' is a power of two.
323 	 */
324 	bad_size = size > PAGE_SIZE || !is_power_of_2(size);
325 
326 	WARN_ON(!IS_ALIGNED((unsigned long)va, size) || bad_size);
327 
328 	return slow_virt_to_phys(va);
329 }
330 
331 #define virt_to_phys_or_null(addr)				\
332 	virt_to_phys_or_null_size((addr), sizeof(*(addr)))
333 
334 int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
335 {
336 	unsigned long pfn, text, pf;
337 	struct page *page;
338 	unsigned npages;
339 	pgd_t *pgd;
340 
341 	if (efi_enabled(EFI_OLD_MEMMAP))
342 		return 0;
343 
344 	/*
345 	 * Since the PGD is encrypted, set the encryption mask so that when
346 	 * this value is loaded into cr3 the PGD will be decrypted during
347 	 * the pagetable walk.
348 	 */
349 	efi_scratch.efi_pgt = (pgd_t *)__sme_pa(efi_pgd);
350 	pgd = efi_pgd;
351 
352 	/*
353 	 * It can happen that the physical address of new_memmap lands in memory
354 	 * which is not mapped in the EFI page table. Therefore we need to go
355 	 * and ident-map those pages containing the map before calling
356 	 * phys_efi_set_virtual_address_map().
357 	 */
358 	pfn = pa_memmap >> PAGE_SHIFT;
359 	pf = _PAGE_NX | _PAGE_RW | _PAGE_ENC;
360 	if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, pf)) {
361 		pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap);
362 		return 1;
363 	}
364 
365 	efi_scratch.use_pgd = true;
366 
367 	/*
368 	 * Certain firmware versions are way too sentimential and still believe
369 	 * they are exclusive and unquestionable owners of the first physical page,
370 	 * even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY
371 	 * (but then write-access it later during SetVirtualAddressMap()).
372 	 *
373 	 * Create a 1:1 mapping for this page, to avoid triple faults during early
374 	 * boot with such firmware. We are free to hand this page to the BIOS,
375 	 * as trim_bios_range() will reserve the first page and isolate it away
376 	 * from memory allocators anyway.
377 	 */
378 	pf = _PAGE_RW;
379 	if (sev_active())
380 		pf |= _PAGE_ENC;
381 
382 	if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, pf)) {
383 		pr_err("Failed to create 1:1 mapping for the first page!\n");
384 		return 1;
385 	}
386 
387 	/*
388 	 * When making calls to the firmware everything needs to be 1:1
389 	 * mapped and addressable with 32-bit pointers. Map the kernel
390 	 * text and allocate a new stack because we can't rely on the
391 	 * stack pointer being < 4GB.
392 	 */
393 	if (!IS_ENABLED(CONFIG_EFI_MIXED) || efi_is_native())
394 		return 0;
395 
396 	page = alloc_page(GFP_KERNEL|__GFP_DMA32);
397 	if (!page)
398 		panic("Unable to allocate EFI runtime stack < 4GB\n");
399 
400 	efi_scratch.phys_stack = virt_to_phys(page_address(page));
401 	efi_scratch.phys_stack += PAGE_SIZE; /* stack grows down */
402 
403 	npages = (_etext - _text) >> PAGE_SHIFT;
404 	text = __pa(_text);
405 	pfn = text >> PAGE_SHIFT;
406 
407 	pf = _PAGE_RW | _PAGE_ENC;
408 	if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, pf)) {
409 		pr_err("Failed to map kernel text 1:1\n");
410 		return 1;
411 	}
412 
413 	return 0;
414 }
415 
416 static void __init __map_region(efi_memory_desc_t *md, u64 va)
417 {
418 	unsigned long flags = _PAGE_RW;
419 	unsigned long pfn;
420 	pgd_t *pgd = efi_pgd;
421 
422 	if (!(md->attribute & EFI_MEMORY_WB))
423 		flags |= _PAGE_PCD;
424 
425 	if (sev_active())
426 		flags |= _PAGE_ENC;
427 
428 	pfn = md->phys_addr >> PAGE_SHIFT;
429 	if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags))
430 		pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
431 			   md->phys_addr, va);
432 }
433 
434 void __init efi_map_region(efi_memory_desc_t *md)
435 {
436 	unsigned long size = md->num_pages << PAGE_SHIFT;
437 	u64 pa = md->phys_addr;
438 
439 	if (efi_enabled(EFI_OLD_MEMMAP))
440 		return old_map_region(md);
441 
442 	/*
443 	 * Make sure the 1:1 mappings are present as a catch-all for b0rked
444 	 * firmware which doesn't update all internal pointers after switching
445 	 * to virtual mode and would otherwise crap on us.
446 	 */
447 	__map_region(md, md->phys_addr);
448 
449 	/*
450 	 * Enforce the 1:1 mapping as the default virtual address when
451 	 * booting in EFI mixed mode, because even though we may be
452 	 * running a 64-bit kernel, the firmware may only be 32-bit.
453 	 */
454 	if (!efi_is_native () && IS_ENABLED(CONFIG_EFI_MIXED)) {
455 		md->virt_addr = md->phys_addr;
456 		return;
457 	}
458 
459 	efi_va -= size;
460 
461 	/* Is PA 2M-aligned? */
462 	if (!(pa & (PMD_SIZE - 1))) {
463 		efi_va &= PMD_MASK;
464 	} else {
465 		u64 pa_offset = pa & (PMD_SIZE - 1);
466 		u64 prev_va = efi_va;
467 
468 		/* get us the same offset within this 2M page */
469 		efi_va = (efi_va & PMD_MASK) + pa_offset;
470 
471 		if (efi_va > prev_va)
472 			efi_va -= PMD_SIZE;
473 	}
474 
475 	if (efi_va < EFI_VA_END) {
476 		pr_warn(FW_WARN "VA address range overflow!\n");
477 		return;
478 	}
479 
480 	/* Do the VA map */
481 	__map_region(md, efi_va);
482 	md->virt_addr = efi_va;
483 }
484 
485 /*
486  * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges.
487  * md->virt_addr is the original virtual address which had been mapped in kexec
488  * 1st kernel.
489  */
490 void __init efi_map_region_fixed(efi_memory_desc_t *md)
491 {
492 	__map_region(md, md->phys_addr);
493 	__map_region(md, md->virt_addr);
494 }
495 
496 void __iomem *__init efi_ioremap(unsigned long phys_addr, unsigned long size,
497 				 u32 type, u64 attribute)
498 {
499 	unsigned long last_map_pfn;
500 
501 	if (type == EFI_MEMORY_MAPPED_IO)
502 		return ioremap(phys_addr, size);
503 
504 	last_map_pfn = init_memory_mapping(phys_addr, phys_addr + size);
505 	if ((last_map_pfn << PAGE_SHIFT) < phys_addr + size) {
506 		unsigned long top = last_map_pfn << PAGE_SHIFT;
507 		efi_ioremap(top, size - (top - phys_addr), type, attribute);
508 	}
509 
510 	if (!(attribute & EFI_MEMORY_WB))
511 		efi_memory_uc((u64)(unsigned long)__va(phys_addr), size);
512 
513 	return (void __iomem *)__va(phys_addr);
514 }
515 
516 void __init parse_efi_setup(u64 phys_addr, u32 data_len)
517 {
518 	efi_setup = phys_addr + sizeof(struct setup_data);
519 }
520 
521 static int __init efi_update_mappings(efi_memory_desc_t *md, unsigned long pf)
522 {
523 	unsigned long pfn;
524 	pgd_t *pgd = efi_pgd;
525 	int err1, err2;
526 
527 	/* Update the 1:1 mapping */
528 	pfn = md->phys_addr >> PAGE_SHIFT;
529 	err1 = kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf);
530 	if (err1) {
531 		pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n",
532 			   md->phys_addr, md->virt_addr);
533 	}
534 
535 	err2 = kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf);
536 	if (err2) {
537 		pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n",
538 			   md->phys_addr, md->virt_addr);
539 	}
540 
541 	return err1 || err2;
542 }
543 
544 static int __init efi_update_mem_attr(struct mm_struct *mm, efi_memory_desc_t *md)
545 {
546 	unsigned long pf = 0;
547 
548 	if (md->attribute & EFI_MEMORY_XP)
549 		pf |= _PAGE_NX;
550 
551 	if (!(md->attribute & EFI_MEMORY_RO))
552 		pf |= _PAGE_RW;
553 
554 	if (sev_active())
555 		pf |= _PAGE_ENC;
556 
557 	return efi_update_mappings(md, pf);
558 }
559 
560 void __init efi_runtime_update_mappings(void)
561 {
562 	efi_memory_desc_t *md;
563 
564 	if (efi_enabled(EFI_OLD_MEMMAP)) {
565 		if (__supported_pte_mask & _PAGE_NX)
566 			runtime_code_page_mkexec();
567 		return;
568 	}
569 
570 	/*
571 	 * Use the EFI Memory Attribute Table for mapping permissions if it
572 	 * exists, since it is intended to supersede EFI_PROPERTIES_TABLE.
573 	 */
574 	if (efi_enabled(EFI_MEM_ATTR)) {
575 		efi_memattr_apply_permissions(NULL, efi_update_mem_attr);
576 		return;
577 	}
578 
579 	/*
580 	 * EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace
581 	 * EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update
582 	 * permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not
583 	 * published by the firmware. Even if we find a buggy implementation of
584 	 * EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to
585 	 * EFI_PROPERTIES_TABLE, because of the same reason.
586 	 */
587 
588 	if (!efi_enabled(EFI_NX_PE_DATA))
589 		return;
590 
591 	for_each_efi_memory_desc(md) {
592 		unsigned long pf = 0;
593 
594 		if (!(md->attribute & EFI_MEMORY_RUNTIME))
595 			continue;
596 
597 		if (!(md->attribute & EFI_MEMORY_WB))
598 			pf |= _PAGE_PCD;
599 
600 		if ((md->attribute & EFI_MEMORY_XP) ||
601 			(md->type == EFI_RUNTIME_SERVICES_DATA))
602 			pf |= _PAGE_NX;
603 
604 		if (!(md->attribute & EFI_MEMORY_RO) &&
605 			(md->type != EFI_RUNTIME_SERVICES_CODE))
606 			pf |= _PAGE_RW;
607 
608 		if (sev_active())
609 			pf |= _PAGE_ENC;
610 
611 		efi_update_mappings(md, pf);
612 	}
613 }
614 
615 void __init efi_dump_pagetable(void)
616 {
617 #ifdef CONFIG_EFI_PGT_DUMP
618 	if (efi_enabled(EFI_OLD_MEMMAP))
619 		ptdump_walk_pgd_level(NULL, swapper_pg_dir);
620 	else
621 		ptdump_walk_pgd_level(NULL, efi_pgd);
622 #endif
623 }
624 
625 #ifdef CONFIG_EFI_MIXED
626 extern efi_status_t efi64_thunk(u32, ...);
627 
628 #define runtime_service32(func)						 \
629 ({									 \
630 	u32 table = (u32)(unsigned long)efi.systab;			 \
631 	u32 *rt, *___f;							 \
632 									 \
633 	rt = (u32 *)(table + offsetof(efi_system_table_32_t, runtime));	 \
634 	___f = (u32 *)(*rt + offsetof(efi_runtime_services_32_t, func)); \
635 	*___f;								 \
636 })
637 
638 /*
639  * Switch to the EFI page tables early so that we can access the 1:1
640  * runtime services mappings which are not mapped in any other page
641  * tables. This function must be called before runtime_service32().
642  *
643  * Also, disable interrupts because the IDT points to 64-bit handlers,
644  * which aren't going to function correctly when we switch to 32-bit.
645  */
646 #define efi_thunk(f, ...)						\
647 ({									\
648 	efi_status_t __s;						\
649 	unsigned long __flags;						\
650 	u32 __func;							\
651 									\
652 	local_irq_save(__flags);					\
653 	arch_efi_call_virt_setup();					\
654 									\
655 	__func = runtime_service32(f);					\
656 	__s = efi64_thunk(__func, __VA_ARGS__);				\
657 									\
658 	arch_efi_call_virt_teardown();					\
659 	local_irq_restore(__flags);					\
660 									\
661 	__s;								\
662 })
663 
664 efi_status_t efi_thunk_set_virtual_address_map(
665 	void *phys_set_virtual_address_map,
666 	unsigned long memory_map_size,
667 	unsigned long descriptor_size,
668 	u32 descriptor_version,
669 	efi_memory_desc_t *virtual_map)
670 {
671 	efi_status_t status;
672 	unsigned long flags;
673 	u32 func;
674 
675 	efi_sync_low_kernel_mappings();
676 	local_irq_save(flags);
677 
678 	efi_scratch.prev_cr3 = __read_cr3();
679 	write_cr3((unsigned long)efi_scratch.efi_pgt);
680 	__flush_tlb_all();
681 
682 	func = (u32)(unsigned long)phys_set_virtual_address_map;
683 	status = efi64_thunk(func, memory_map_size, descriptor_size,
684 			     descriptor_version, virtual_map);
685 
686 	write_cr3(efi_scratch.prev_cr3);
687 	__flush_tlb_all();
688 	local_irq_restore(flags);
689 
690 	return status;
691 }
692 
693 static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc)
694 {
695 	efi_status_t status;
696 	u32 phys_tm, phys_tc;
697 
698 	spin_lock(&rtc_lock);
699 
700 	phys_tm = virt_to_phys_or_null(tm);
701 	phys_tc = virt_to_phys_or_null(tc);
702 
703 	status = efi_thunk(get_time, phys_tm, phys_tc);
704 
705 	spin_unlock(&rtc_lock);
706 
707 	return status;
708 }
709 
710 static efi_status_t efi_thunk_set_time(efi_time_t *tm)
711 {
712 	efi_status_t status;
713 	u32 phys_tm;
714 
715 	spin_lock(&rtc_lock);
716 
717 	phys_tm = virt_to_phys_or_null(tm);
718 
719 	status = efi_thunk(set_time, phys_tm);
720 
721 	spin_unlock(&rtc_lock);
722 
723 	return status;
724 }
725 
726 static efi_status_t
727 efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending,
728 			  efi_time_t *tm)
729 {
730 	efi_status_t status;
731 	u32 phys_enabled, phys_pending, phys_tm;
732 
733 	spin_lock(&rtc_lock);
734 
735 	phys_enabled = virt_to_phys_or_null(enabled);
736 	phys_pending = virt_to_phys_or_null(pending);
737 	phys_tm = virt_to_phys_or_null(tm);
738 
739 	status = efi_thunk(get_wakeup_time, phys_enabled,
740 			     phys_pending, phys_tm);
741 
742 	spin_unlock(&rtc_lock);
743 
744 	return status;
745 }
746 
747 static efi_status_t
748 efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
749 {
750 	efi_status_t status;
751 	u32 phys_tm;
752 
753 	spin_lock(&rtc_lock);
754 
755 	phys_tm = virt_to_phys_or_null(tm);
756 
757 	status = efi_thunk(set_wakeup_time, enabled, phys_tm);
758 
759 	spin_unlock(&rtc_lock);
760 
761 	return status;
762 }
763 
764 static unsigned long efi_name_size(efi_char16_t *name)
765 {
766 	return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1;
767 }
768 
769 static efi_status_t
770 efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor,
771 		       u32 *attr, unsigned long *data_size, void *data)
772 {
773 	efi_status_t status;
774 	u32 phys_name, phys_vendor, phys_attr;
775 	u32 phys_data_size, phys_data;
776 
777 	phys_data_size = virt_to_phys_or_null(data_size);
778 	phys_vendor = virt_to_phys_or_null(vendor);
779 	phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
780 	phys_attr = virt_to_phys_or_null(attr);
781 	phys_data = virt_to_phys_or_null_size(data, *data_size);
782 
783 	status = efi_thunk(get_variable, phys_name, phys_vendor,
784 			   phys_attr, phys_data_size, phys_data);
785 
786 	return status;
787 }
788 
789 static efi_status_t
790 efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor,
791 		       u32 attr, unsigned long data_size, void *data)
792 {
793 	u32 phys_name, phys_vendor, phys_data;
794 	efi_status_t status;
795 
796 	phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
797 	phys_vendor = virt_to_phys_or_null(vendor);
798 	phys_data = virt_to_phys_or_null_size(data, data_size);
799 
800 	/* If data_size is > sizeof(u32) we've got problems */
801 	status = efi_thunk(set_variable, phys_name, phys_vendor,
802 			   attr, data_size, phys_data);
803 
804 	return status;
805 }
806 
807 static efi_status_t
808 efi_thunk_get_next_variable(unsigned long *name_size,
809 			    efi_char16_t *name,
810 			    efi_guid_t *vendor)
811 {
812 	efi_status_t status;
813 	u32 phys_name_size, phys_name, phys_vendor;
814 
815 	phys_name_size = virt_to_phys_or_null(name_size);
816 	phys_vendor = virt_to_phys_or_null(vendor);
817 	phys_name = virt_to_phys_or_null_size(name, *name_size);
818 
819 	status = efi_thunk(get_next_variable, phys_name_size,
820 			   phys_name, phys_vendor);
821 
822 	return status;
823 }
824 
825 static efi_status_t
826 efi_thunk_get_next_high_mono_count(u32 *count)
827 {
828 	efi_status_t status;
829 	u32 phys_count;
830 
831 	phys_count = virt_to_phys_or_null(count);
832 	status = efi_thunk(get_next_high_mono_count, phys_count);
833 
834 	return status;
835 }
836 
837 static void
838 efi_thunk_reset_system(int reset_type, efi_status_t status,
839 		       unsigned long data_size, efi_char16_t *data)
840 {
841 	u32 phys_data;
842 
843 	phys_data = virt_to_phys_or_null_size(data, data_size);
844 
845 	efi_thunk(reset_system, reset_type, status, data_size, phys_data);
846 }
847 
848 static efi_status_t
849 efi_thunk_update_capsule(efi_capsule_header_t **capsules,
850 			 unsigned long count, unsigned long sg_list)
851 {
852 	/*
853 	 * To properly support this function we would need to repackage
854 	 * 'capsules' because the firmware doesn't understand 64-bit
855 	 * pointers.
856 	 */
857 	return EFI_UNSUPPORTED;
858 }
859 
860 static efi_status_t
861 efi_thunk_query_variable_info(u32 attr, u64 *storage_space,
862 			      u64 *remaining_space,
863 			      u64 *max_variable_size)
864 {
865 	efi_status_t status;
866 	u32 phys_storage, phys_remaining, phys_max;
867 
868 	if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
869 		return EFI_UNSUPPORTED;
870 
871 	phys_storage = virt_to_phys_or_null(storage_space);
872 	phys_remaining = virt_to_phys_or_null(remaining_space);
873 	phys_max = virt_to_phys_or_null(max_variable_size);
874 
875 	status = efi_thunk(query_variable_info, attr, phys_storage,
876 			   phys_remaining, phys_max);
877 
878 	return status;
879 }
880 
881 static efi_status_t
882 efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules,
883 			     unsigned long count, u64 *max_size,
884 			     int *reset_type)
885 {
886 	/*
887 	 * To properly support this function we would need to repackage
888 	 * 'capsules' because the firmware doesn't understand 64-bit
889 	 * pointers.
890 	 */
891 	return EFI_UNSUPPORTED;
892 }
893 
894 void efi_thunk_runtime_setup(void)
895 {
896 	efi.get_time = efi_thunk_get_time;
897 	efi.set_time = efi_thunk_set_time;
898 	efi.get_wakeup_time = efi_thunk_get_wakeup_time;
899 	efi.set_wakeup_time = efi_thunk_set_wakeup_time;
900 	efi.get_variable = efi_thunk_get_variable;
901 	efi.get_next_variable = efi_thunk_get_next_variable;
902 	efi.set_variable = efi_thunk_set_variable;
903 	efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count;
904 	efi.reset_system = efi_thunk_reset_system;
905 	efi.query_variable_info = efi_thunk_query_variable_info;
906 	efi.update_capsule = efi_thunk_update_capsule;
907 	efi.query_capsule_caps = efi_thunk_query_capsule_caps;
908 }
909 #endif /* CONFIG_EFI_MIXED */
910