1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * x86_64 specific EFI support functions 4 * Based on Extensible Firmware Interface Specification version 1.0 5 * 6 * Copyright (C) 2005-2008 Intel Co. 7 * Fenghua Yu <fenghua.yu@intel.com> 8 * Bibo Mao <bibo.mao@intel.com> 9 * Chandramouli Narayanan <mouli@linux.intel.com> 10 * Huang Ying <ying.huang@intel.com> 11 * 12 * Code to convert EFI to E820 map has been implemented in elilo bootloader 13 * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table 14 * is setup appropriately for EFI runtime code. 15 * - mouli 06/14/2007. 16 * 17 */ 18 19 #define pr_fmt(fmt) "efi: " fmt 20 21 #include <linux/kernel.h> 22 #include <linux/init.h> 23 #include <linux/mm.h> 24 #include <linux/types.h> 25 #include <linux/spinlock.h> 26 #include <linux/bootmem.h> 27 #include <linux/ioport.h> 28 #include <linux/mc146818rtc.h> 29 #include <linux/efi.h> 30 #include <linux/uaccess.h> 31 #include <linux/io.h> 32 #include <linux/reboot.h> 33 #include <linux/slab.h> 34 #include <linux/ucs2_string.h> 35 #include <linux/mem_encrypt.h> 36 37 #include <asm/setup.h> 38 #include <asm/page.h> 39 #include <asm/e820/api.h> 40 #include <asm/pgtable.h> 41 #include <asm/tlbflush.h> 42 #include <asm/proto.h> 43 #include <asm/efi.h> 44 #include <asm/cacheflush.h> 45 #include <asm/fixmap.h> 46 #include <asm/realmode.h> 47 #include <asm/time.h> 48 #include <asm/pgalloc.h> 49 50 /* 51 * We allocate runtime services regions top-down, starting from -4G, i.e. 52 * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G. 53 */ 54 static u64 efi_va = EFI_VA_START; 55 56 struct efi_scratch efi_scratch; 57 58 static void __init early_code_mapping_set_exec(int executable) 59 { 60 efi_memory_desc_t *md; 61 62 if (!(__supported_pte_mask & _PAGE_NX)) 63 return; 64 65 /* Make EFI service code area executable */ 66 for_each_efi_memory_desc(md) { 67 if (md->type == EFI_RUNTIME_SERVICES_CODE || 68 md->type == EFI_BOOT_SERVICES_CODE) 69 efi_set_executable(md, executable); 70 } 71 } 72 73 pgd_t * __init efi_call_phys_prolog(void) 74 { 75 unsigned long vaddr, addr_pgd, addr_p4d, addr_pud; 76 pgd_t *save_pgd, *pgd_k, *pgd_efi; 77 p4d_t *p4d, *p4d_k, *p4d_efi; 78 pud_t *pud; 79 80 int pgd; 81 int n_pgds, i, j; 82 83 if (!efi_enabled(EFI_OLD_MEMMAP)) { 84 save_pgd = (pgd_t *)__read_cr3(); 85 write_cr3((unsigned long)efi_scratch.efi_pgt); 86 goto out; 87 } 88 89 early_code_mapping_set_exec(1); 90 91 n_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT), PGDIR_SIZE); 92 save_pgd = kmalloc_array(n_pgds, sizeof(*save_pgd), GFP_KERNEL); 93 94 /* 95 * Build 1:1 identity mapping for efi=old_map usage. Note that 96 * PAGE_OFFSET is PGDIR_SIZE aligned when KASLR is disabled, while 97 * it is PUD_SIZE ALIGNED with KASLR enabled. So for a given physical 98 * address X, the pud_index(X) != pud_index(__va(X)), we can only copy 99 * PUD entry of __va(X) to fill in pud entry of X to build 1:1 mapping. 100 * This means here we can only reuse the PMD tables of the direct mapping. 101 */ 102 for (pgd = 0; pgd < n_pgds; pgd++) { 103 addr_pgd = (unsigned long)(pgd * PGDIR_SIZE); 104 vaddr = (unsigned long)__va(pgd * PGDIR_SIZE); 105 pgd_efi = pgd_offset_k(addr_pgd); 106 save_pgd[pgd] = *pgd_efi; 107 108 p4d = p4d_alloc(&init_mm, pgd_efi, addr_pgd); 109 if (!p4d) { 110 pr_err("Failed to allocate p4d table!\n"); 111 goto out; 112 } 113 114 for (i = 0; i < PTRS_PER_P4D; i++) { 115 addr_p4d = addr_pgd + i * P4D_SIZE; 116 p4d_efi = p4d + p4d_index(addr_p4d); 117 118 pud = pud_alloc(&init_mm, p4d_efi, addr_p4d); 119 if (!pud) { 120 pr_err("Failed to allocate pud table!\n"); 121 goto out; 122 } 123 124 for (j = 0; j < PTRS_PER_PUD; j++) { 125 addr_pud = addr_p4d + j * PUD_SIZE; 126 127 if (addr_pud > (max_pfn << PAGE_SHIFT)) 128 break; 129 130 vaddr = (unsigned long)__va(addr_pud); 131 132 pgd_k = pgd_offset_k(vaddr); 133 p4d_k = p4d_offset(pgd_k, vaddr); 134 pud[j] = *pud_offset(p4d_k, vaddr); 135 } 136 } 137 pgd_offset_k(pgd * PGDIR_SIZE)->pgd &= ~_PAGE_NX; 138 } 139 140 out: 141 __flush_tlb_all(); 142 143 return save_pgd; 144 } 145 146 void __init efi_call_phys_epilog(pgd_t *save_pgd) 147 { 148 /* 149 * After the lock is released, the original page table is restored. 150 */ 151 int pgd_idx, i; 152 int nr_pgds; 153 pgd_t *pgd; 154 p4d_t *p4d; 155 pud_t *pud; 156 157 if (!efi_enabled(EFI_OLD_MEMMAP)) { 158 write_cr3((unsigned long)save_pgd); 159 __flush_tlb_all(); 160 return; 161 } 162 163 nr_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT) , PGDIR_SIZE); 164 165 for (pgd_idx = 0; pgd_idx < nr_pgds; pgd_idx++) { 166 pgd = pgd_offset_k(pgd_idx * PGDIR_SIZE); 167 set_pgd(pgd_offset_k(pgd_idx * PGDIR_SIZE), save_pgd[pgd_idx]); 168 169 if (!(pgd_val(*pgd) & _PAGE_PRESENT)) 170 continue; 171 172 for (i = 0; i < PTRS_PER_P4D; i++) { 173 p4d = p4d_offset(pgd, 174 pgd_idx * PGDIR_SIZE + i * P4D_SIZE); 175 176 if (!(p4d_val(*p4d) & _PAGE_PRESENT)) 177 continue; 178 179 pud = (pud_t *)p4d_page_vaddr(*p4d); 180 pud_free(&init_mm, pud); 181 } 182 183 p4d = (p4d_t *)pgd_page_vaddr(*pgd); 184 p4d_free(&init_mm, p4d); 185 } 186 187 kfree(save_pgd); 188 189 __flush_tlb_all(); 190 early_code_mapping_set_exec(0); 191 } 192 193 static pgd_t *efi_pgd; 194 195 /* 196 * We need our own copy of the higher levels of the page tables 197 * because we want to avoid inserting EFI region mappings (EFI_VA_END 198 * to EFI_VA_START) into the standard kernel page tables. Everything 199 * else can be shared, see efi_sync_low_kernel_mappings(). 200 * 201 * We don't want the pgd on the pgd_list and cannot use pgd_alloc() for the 202 * allocation. 203 */ 204 int __init efi_alloc_page_tables(void) 205 { 206 pgd_t *pgd; 207 p4d_t *p4d; 208 pud_t *pud; 209 gfp_t gfp_mask; 210 211 if (efi_enabled(EFI_OLD_MEMMAP)) 212 return 0; 213 214 gfp_mask = GFP_KERNEL | __GFP_ZERO; 215 efi_pgd = (pgd_t *)__get_free_pages(gfp_mask, PGD_ALLOCATION_ORDER); 216 if (!efi_pgd) 217 return -ENOMEM; 218 219 pgd = efi_pgd + pgd_index(EFI_VA_END); 220 p4d = p4d_alloc(&init_mm, pgd, EFI_VA_END); 221 if (!p4d) { 222 free_page((unsigned long)efi_pgd); 223 return -ENOMEM; 224 } 225 226 pud = pud_alloc(&init_mm, p4d, EFI_VA_END); 227 if (!pud) { 228 if (CONFIG_PGTABLE_LEVELS > 4) 229 free_page((unsigned long) pgd_page_vaddr(*pgd)); 230 free_pages((unsigned long)efi_pgd, PGD_ALLOCATION_ORDER); 231 return -ENOMEM; 232 } 233 234 return 0; 235 } 236 237 /* 238 * Add low kernel mappings for passing arguments to EFI functions. 239 */ 240 void efi_sync_low_kernel_mappings(void) 241 { 242 unsigned num_entries; 243 pgd_t *pgd_k, *pgd_efi; 244 p4d_t *p4d_k, *p4d_efi; 245 pud_t *pud_k, *pud_efi; 246 247 if (efi_enabled(EFI_OLD_MEMMAP)) 248 return; 249 250 /* 251 * We can share all PGD entries apart from the one entry that 252 * covers the EFI runtime mapping space. 253 * 254 * Make sure the EFI runtime region mappings are guaranteed to 255 * only span a single PGD entry and that the entry also maps 256 * other important kernel regions. 257 */ 258 BUILD_BUG_ON(pgd_index(EFI_VA_END) != pgd_index(MODULES_END)); 259 BUILD_BUG_ON((EFI_VA_START & PGDIR_MASK) != 260 (EFI_VA_END & PGDIR_MASK)); 261 262 pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET); 263 pgd_k = pgd_offset_k(PAGE_OFFSET); 264 265 num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET); 266 memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries); 267 268 /* 269 * As with PGDs, we share all P4D entries apart from the one entry 270 * that covers the EFI runtime mapping space. 271 */ 272 BUILD_BUG_ON(p4d_index(EFI_VA_END) != p4d_index(MODULES_END)); 273 BUILD_BUG_ON((EFI_VA_START & P4D_MASK) != (EFI_VA_END & P4D_MASK)); 274 275 pgd_efi = efi_pgd + pgd_index(EFI_VA_END); 276 pgd_k = pgd_offset_k(EFI_VA_END); 277 p4d_efi = p4d_offset(pgd_efi, 0); 278 p4d_k = p4d_offset(pgd_k, 0); 279 280 num_entries = p4d_index(EFI_VA_END); 281 memcpy(p4d_efi, p4d_k, sizeof(p4d_t) * num_entries); 282 283 /* 284 * We share all the PUD entries apart from those that map the 285 * EFI regions. Copy around them. 286 */ 287 BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0); 288 BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0); 289 290 p4d_efi = p4d_offset(pgd_efi, EFI_VA_END); 291 p4d_k = p4d_offset(pgd_k, EFI_VA_END); 292 pud_efi = pud_offset(p4d_efi, 0); 293 pud_k = pud_offset(p4d_k, 0); 294 295 num_entries = pud_index(EFI_VA_END); 296 memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries); 297 298 pud_efi = pud_offset(p4d_efi, EFI_VA_START); 299 pud_k = pud_offset(p4d_k, EFI_VA_START); 300 301 num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START); 302 memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries); 303 } 304 305 /* 306 * Wrapper for slow_virt_to_phys() that handles NULL addresses. 307 */ 308 static inline phys_addr_t 309 virt_to_phys_or_null_size(void *va, unsigned long size) 310 { 311 bool bad_size; 312 313 if (!va) 314 return 0; 315 316 if (virt_addr_valid(va)) 317 return virt_to_phys(va); 318 319 /* 320 * A fully aligned variable on the stack is guaranteed not to 321 * cross a page bounary. Try to catch strings on the stack by 322 * checking that 'size' is a power of two. 323 */ 324 bad_size = size > PAGE_SIZE || !is_power_of_2(size); 325 326 WARN_ON(!IS_ALIGNED((unsigned long)va, size) || bad_size); 327 328 return slow_virt_to_phys(va); 329 } 330 331 #define virt_to_phys_or_null(addr) \ 332 virt_to_phys_or_null_size((addr), sizeof(*(addr))) 333 334 int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages) 335 { 336 unsigned long pfn, text, pf; 337 struct page *page; 338 unsigned npages; 339 pgd_t *pgd; 340 341 if (efi_enabled(EFI_OLD_MEMMAP)) 342 return 0; 343 344 /* 345 * Since the PGD is encrypted, set the encryption mask so that when 346 * this value is loaded into cr3 the PGD will be decrypted during 347 * the pagetable walk. 348 */ 349 efi_scratch.efi_pgt = (pgd_t *)__sme_pa(efi_pgd); 350 pgd = efi_pgd; 351 352 /* 353 * It can happen that the physical address of new_memmap lands in memory 354 * which is not mapped in the EFI page table. Therefore we need to go 355 * and ident-map those pages containing the map before calling 356 * phys_efi_set_virtual_address_map(). 357 */ 358 pfn = pa_memmap >> PAGE_SHIFT; 359 pf = _PAGE_NX | _PAGE_RW | _PAGE_ENC; 360 if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, pf)) { 361 pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap); 362 return 1; 363 } 364 365 efi_scratch.use_pgd = true; 366 367 /* 368 * Certain firmware versions are way too sentimential and still believe 369 * they are exclusive and unquestionable owners of the first physical page, 370 * even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY 371 * (but then write-access it later during SetVirtualAddressMap()). 372 * 373 * Create a 1:1 mapping for this page, to avoid triple faults during early 374 * boot with such firmware. We are free to hand this page to the BIOS, 375 * as trim_bios_range() will reserve the first page and isolate it away 376 * from memory allocators anyway. 377 */ 378 pf = _PAGE_RW; 379 if (sev_active()) 380 pf |= _PAGE_ENC; 381 382 if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, pf)) { 383 pr_err("Failed to create 1:1 mapping for the first page!\n"); 384 return 1; 385 } 386 387 /* 388 * When making calls to the firmware everything needs to be 1:1 389 * mapped and addressable with 32-bit pointers. Map the kernel 390 * text and allocate a new stack because we can't rely on the 391 * stack pointer being < 4GB. 392 */ 393 if (!IS_ENABLED(CONFIG_EFI_MIXED) || efi_is_native()) 394 return 0; 395 396 page = alloc_page(GFP_KERNEL|__GFP_DMA32); 397 if (!page) 398 panic("Unable to allocate EFI runtime stack < 4GB\n"); 399 400 efi_scratch.phys_stack = virt_to_phys(page_address(page)); 401 efi_scratch.phys_stack += PAGE_SIZE; /* stack grows down */ 402 403 npages = (_etext - _text) >> PAGE_SHIFT; 404 text = __pa(_text); 405 pfn = text >> PAGE_SHIFT; 406 407 pf = _PAGE_RW | _PAGE_ENC; 408 if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, pf)) { 409 pr_err("Failed to map kernel text 1:1\n"); 410 return 1; 411 } 412 413 return 0; 414 } 415 416 static void __init __map_region(efi_memory_desc_t *md, u64 va) 417 { 418 unsigned long flags = _PAGE_RW; 419 unsigned long pfn; 420 pgd_t *pgd = efi_pgd; 421 422 if (!(md->attribute & EFI_MEMORY_WB)) 423 flags |= _PAGE_PCD; 424 425 if (sev_active()) 426 flags |= _PAGE_ENC; 427 428 pfn = md->phys_addr >> PAGE_SHIFT; 429 if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags)) 430 pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n", 431 md->phys_addr, va); 432 } 433 434 void __init efi_map_region(efi_memory_desc_t *md) 435 { 436 unsigned long size = md->num_pages << PAGE_SHIFT; 437 u64 pa = md->phys_addr; 438 439 if (efi_enabled(EFI_OLD_MEMMAP)) 440 return old_map_region(md); 441 442 /* 443 * Make sure the 1:1 mappings are present as a catch-all for b0rked 444 * firmware which doesn't update all internal pointers after switching 445 * to virtual mode and would otherwise crap on us. 446 */ 447 __map_region(md, md->phys_addr); 448 449 /* 450 * Enforce the 1:1 mapping as the default virtual address when 451 * booting in EFI mixed mode, because even though we may be 452 * running a 64-bit kernel, the firmware may only be 32-bit. 453 */ 454 if (!efi_is_native () && IS_ENABLED(CONFIG_EFI_MIXED)) { 455 md->virt_addr = md->phys_addr; 456 return; 457 } 458 459 efi_va -= size; 460 461 /* Is PA 2M-aligned? */ 462 if (!(pa & (PMD_SIZE - 1))) { 463 efi_va &= PMD_MASK; 464 } else { 465 u64 pa_offset = pa & (PMD_SIZE - 1); 466 u64 prev_va = efi_va; 467 468 /* get us the same offset within this 2M page */ 469 efi_va = (efi_va & PMD_MASK) + pa_offset; 470 471 if (efi_va > prev_va) 472 efi_va -= PMD_SIZE; 473 } 474 475 if (efi_va < EFI_VA_END) { 476 pr_warn(FW_WARN "VA address range overflow!\n"); 477 return; 478 } 479 480 /* Do the VA map */ 481 __map_region(md, efi_va); 482 md->virt_addr = efi_va; 483 } 484 485 /* 486 * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges. 487 * md->virt_addr is the original virtual address which had been mapped in kexec 488 * 1st kernel. 489 */ 490 void __init efi_map_region_fixed(efi_memory_desc_t *md) 491 { 492 __map_region(md, md->phys_addr); 493 __map_region(md, md->virt_addr); 494 } 495 496 void __iomem *__init efi_ioremap(unsigned long phys_addr, unsigned long size, 497 u32 type, u64 attribute) 498 { 499 unsigned long last_map_pfn; 500 501 if (type == EFI_MEMORY_MAPPED_IO) 502 return ioremap(phys_addr, size); 503 504 last_map_pfn = init_memory_mapping(phys_addr, phys_addr + size); 505 if ((last_map_pfn << PAGE_SHIFT) < phys_addr + size) { 506 unsigned long top = last_map_pfn << PAGE_SHIFT; 507 efi_ioremap(top, size - (top - phys_addr), type, attribute); 508 } 509 510 if (!(attribute & EFI_MEMORY_WB)) 511 efi_memory_uc((u64)(unsigned long)__va(phys_addr), size); 512 513 return (void __iomem *)__va(phys_addr); 514 } 515 516 void __init parse_efi_setup(u64 phys_addr, u32 data_len) 517 { 518 efi_setup = phys_addr + sizeof(struct setup_data); 519 } 520 521 static int __init efi_update_mappings(efi_memory_desc_t *md, unsigned long pf) 522 { 523 unsigned long pfn; 524 pgd_t *pgd = efi_pgd; 525 int err1, err2; 526 527 /* Update the 1:1 mapping */ 528 pfn = md->phys_addr >> PAGE_SHIFT; 529 err1 = kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf); 530 if (err1) { 531 pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n", 532 md->phys_addr, md->virt_addr); 533 } 534 535 err2 = kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf); 536 if (err2) { 537 pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n", 538 md->phys_addr, md->virt_addr); 539 } 540 541 return err1 || err2; 542 } 543 544 static int __init efi_update_mem_attr(struct mm_struct *mm, efi_memory_desc_t *md) 545 { 546 unsigned long pf = 0; 547 548 if (md->attribute & EFI_MEMORY_XP) 549 pf |= _PAGE_NX; 550 551 if (!(md->attribute & EFI_MEMORY_RO)) 552 pf |= _PAGE_RW; 553 554 if (sev_active()) 555 pf |= _PAGE_ENC; 556 557 return efi_update_mappings(md, pf); 558 } 559 560 void __init efi_runtime_update_mappings(void) 561 { 562 efi_memory_desc_t *md; 563 564 if (efi_enabled(EFI_OLD_MEMMAP)) { 565 if (__supported_pte_mask & _PAGE_NX) 566 runtime_code_page_mkexec(); 567 return; 568 } 569 570 /* 571 * Use the EFI Memory Attribute Table for mapping permissions if it 572 * exists, since it is intended to supersede EFI_PROPERTIES_TABLE. 573 */ 574 if (efi_enabled(EFI_MEM_ATTR)) { 575 efi_memattr_apply_permissions(NULL, efi_update_mem_attr); 576 return; 577 } 578 579 /* 580 * EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace 581 * EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update 582 * permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not 583 * published by the firmware. Even if we find a buggy implementation of 584 * EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to 585 * EFI_PROPERTIES_TABLE, because of the same reason. 586 */ 587 588 if (!efi_enabled(EFI_NX_PE_DATA)) 589 return; 590 591 for_each_efi_memory_desc(md) { 592 unsigned long pf = 0; 593 594 if (!(md->attribute & EFI_MEMORY_RUNTIME)) 595 continue; 596 597 if (!(md->attribute & EFI_MEMORY_WB)) 598 pf |= _PAGE_PCD; 599 600 if ((md->attribute & EFI_MEMORY_XP) || 601 (md->type == EFI_RUNTIME_SERVICES_DATA)) 602 pf |= _PAGE_NX; 603 604 if (!(md->attribute & EFI_MEMORY_RO) && 605 (md->type != EFI_RUNTIME_SERVICES_CODE)) 606 pf |= _PAGE_RW; 607 608 if (sev_active()) 609 pf |= _PAGE_ENC; 610 611 efi_update_mappings(md, pf); 612 } 613 } 614 615 void __init efi_dump_pagetable(void) 616 { 617 #ifdef CONFIG_EFI_PGT_DUMP 618 if (efi_enabled(EFI_OLD_MEMMAP)) 619 ptdump_walk_pgd_level(NULL, swapper_pg_dir); 620 else 621 ptdump_walk_pgd_level(NULL, efi_pgd); 622 #endif 623 } 624 625 #ifdef CONFIG_EFI_MIXED 626 extern efi_status_t efi64_thunk(u32, ...); 627 628 #define runtime_service32(func) \ 629 ({ \ 630 u32 table = (u32)(unsigned long)efi.systab; \ 631 u32 *rt, *___f; \ 632 \ 633 rt = (u32 *)(table + offsetof(efi_system_table_32_t, runtime)); \ 634 ___f = (u32 *)(*rt + offsetof(efi_runtime_services_32_t, func)); \ 635 *___f; \ 636 }) 637 638 /* 639 * Switch to the EFI page tables early so that we can access the 1:1 640 * runtime services mappings which are not mapped in any other page 641 * tables. This function must be called before runtime_service32(). 642 * 643 * Also, disable interrupts because the IDT points to 64-bit handlers, 644 * which aren't going to function correctly when we switch to 32-bit. 645 */ 646 #define efi_thunk(f, ...) \ 647 ({ \ 648 efi_status_t __s; \ 649 unsigned long __flags; \ 650 u32 __func; \ 651 \ 652 local_irq_save(__flags); \ 653 arch_efi_call_virt_setup(); \ 654 \ 655 __func = runtime_service32(f); \ 656 __s = efi64_thunk(__func, __VA_ARGS__); \ 657 \ 658 arch_efi_call_virt_teardown(); \ 659 local_irq_restore(__flags); \ 660 \ 661 __s; \ 662 }) 663 664 efi_status_t efi_thunk_set_virtual_address_map( 665 void *phys_set_virtual_address_map, 666 unsigned long memory_map_size, 667 unsigned long descriptor_size, 668 u32 descriptor_version, 669 efi_memory_desc_t *virtual_map) 670 { 671 efi_status_t status; 672 unsigned long flags; 673 u32 func; 674 675 efi_sync_low_kernel_mappings(); 676 local_irq_save(flags); 677 678 efi_scratch.prev_cr3 = __read_cr3(); 679 write_cr3((unsigned long)efi_scratch.efi_pgt); 680 __flush_tlb_all(); 681 682 func = (u32)(unsigned long)phys_set_virtual_address_map; 683 status = efi64_thunk(func, memory_map_size, descriptor_size, 684 descriptor_version, virtual_map); 685 686 write_cr3(efi_scratch.prev_cr3); 687 __flush_tlb_all(); 688 local_irq_restore(flags); 689 690 return status; 691 } 692 693 static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc) 694 { 695 efi_status_t status; 696 u32 phys_tm, phys_tc; 697 698 spin_lock(&rtc_lock); 699 700 phys_tm = virt_to_phys_or_null(tm); 701 phys_tc = virt_to_phys_or_null(tc); 702 703 status = efi_thunk(get_time, phys_tm, phys_tc); 704 705 spin_unlock(&rtc_lock); 706 707 return status; 708 } 709 710 static efi_status_t efi_thunk_set_time(efi_time_t *tm) 711 { 712 efi_status_t status; 713 u32 phys_tm; 714 715 spin_lock(&rtc_lock); 716 717 phys_tm = virt_to_phys_or_null(tm); 718 719 status = efi_thunk(set_time, phys_tm); 720 721 spin_unlock(&rtc_lock); 722 723 return status; 724 } 725 726 static efi_status_t 727 efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending, 728 efi_time_t *tm) 729 { 730 efi_status_t status; 731 u32 phys_enabled, phys_pending, phys_tm; 732 733 spin_lock(&rtc_lock); 734 735 phys_enabled = virt_to_phys_or_null(enabled); 736 phys_pending = virt_to_phys_or_null(pending); 737 phys_tm = virt_to_phys_or_null(tm); 738 739 status = efi_thunk(get_wakeup_time, phys_enabled, 740 phys_pending, phys_tm); 741 742 spin_unlock(&rtc_lock); 743 744 return status; 745 } 746 747 static efi_status_t 748 efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm) 749 { 750 efi_status_t status; 751 u32 phys_tm; 752 753 spin_lock(&rtc_lock); 754 755 phys_tm = virt_to_phys_or_null(tm); 756 757 status = efi_thunk(set_wakeup_time, enabled, phys_tm); 758 759 spin_unlock(&rtc_lock); 760 761 return status; 762 } 763 764 static unsigned long efi_name_size(efi_char16_t *name) 765 { 766 return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1; 767 } 768 769 static efi_status_t 770 efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor, 771 u32 *attr, unsigned long *data_size, void *data) 772 { 773 efi_status_t status; 774 u32 phys_name, phys_vendor, phys_attr; 775 u32 phys_data_size, phys_data; 776 777 phys_data_size = virt_to_phys_or_null(data_size); 778 phys_vendor = virt_to_phys_or_null(vendor); 779 phys_name = virt_to_phys_or_null_size(name, efi_name_size(name)); 780 phys_attr = virt_to_phys_or_null(attr); 781 phys_data = virt_to_phys_or_null_size(data, *data_size); 782 783 status = efi_thunk(get_variable, phys_name, phys_vendor, 784 phys_attr, phys_data_size, phys_data); 785 786 return status; 787 } 788 789 static efi_status_t 790 efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor, 791 u32 attr, unsigned long data_size, void *data) 792 { 793 u32 phys_name, phys_vendor, phys_data; 794 efi_status_t status; 795 796 phys_name = virt_to_phys_or_null_size(name, efi_name_size(name)); 797 phys_vendor = virt_to_phys_or_null(vendor); 798 phys_data = virt_to_phys_or_null_size(data, data_size); 799 800 /* If data_size is > sizeof(u32) we've got problems */ 801 status = efi_thunk(set_variable, phys_name, phys_vendor, 802 attr, data_size, phys_data); 803 804 return status; 805 } 806 807 static efi_status_t 808 efi_thunk_get_next_variable(unsigned long *name_size, 809 efi_char16_t *name, 810 efi_guid_t *vendor) 811 { 812 efi_status_t status; 813 u32 phys_name_size, phys_name, phys_vendor; 814 815 phys_name_size = virt_to_phys_or_null(name_size); 816 phys_vendor = virt_to_phys_or_null(vendor); 817 phys_name = virt_to_phys_or_null_size(name, *name_size); 818 819 status = efi_thunk(get_next_variable, phys_name_size, 820 phys_name, phys_vendor); 821 822 return status; 823 } 824 825 static efi_status_t 826 efi_thunk_get_next_high_mono_count(u32 *count) 827 { 828 efi_status_t status; 829 u32 phys_count; 830 831 phys_count = virt_to_phys_or_null(count); 832 status = efi_thunk(get_next_high_mono_count, phys_count); 833 834 return status; 835 } 836 837 static void 838 efi_thunk_reset_system(int reset_type, efi_status_t status, 839 unsigned long data_size, efi_char16_t *data) 840 { 841 u32 phys_data; 842 843 phys_data = virt_to_phys_or_null_size(data, data_size); 844 845 efi_thunk(reset_system, reset_type, status, data_size, phys_data); 846 } 847 848 static efi_status_t 849 efi_thunk_update_capsule(efi_capsule_header_t **capsules, 850 unsigned long count, unsigned long sg_list) 851 { 852 /* 853 * To properly support this function we would need to repackage 854 * 'capsules' because the firmware doesn't understand 64-bit 855 * pointers. 856 */ 857 return EFI_UNSUPPORTED; 858 } 859 860 static efi_status_t 861 efi_thunk_query_variable_info(u32 attr, u64 *storage_space, 862 u64 *remaining_space, 863 u64 *max_variable_size) 864 { 865 efi_status_t status; 866 u32 phys_storage, phys_remaining, phys_max; 867 868 if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION) 869 return EFI_UNSUPPORTED; 870 871 phys_storage = virt_to_phys_or_null(storage_space); 872 phys_remaining = virt_to_phys_or_null(remaining_space); 873 phys_max = virt_to_phys_or_null(max_variable_size); 874 875 status = efi_thunk(query_variable_info, attr, phys_storage, 876 phys_remaining, phys_max); 877 878 return status; 879 } 880 881 static efi_status_t 882 efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules, 883 unsigned long count, u64 *max_size, 884 int *reset_type) 885 { 886 /* 887 * To properly support this function we would need to repackage 888 * 'capsules' because the firmware doesn't understand 64-bit 889 * pointers. 890 */ 891 return EFI_UNSUPPORTED; 892 } 893 894 void efi_thunk_runtime_setup(void) 895 { 896 efi.get_time = efi_thunk_get_time; 897 efi.set_time = efi_thunk_set_time; 898 efi.get_wakeup_time = efi_thunk_get_wakeup_time; 899 efi.set_wakeup_time = efi_thunk_set_wakeup_time; 900 efi.get_variable = efi_thunk_get_variable; 901 efi.get_next_variable = efi_thunk_get_next_variable; 902 efi.set_variable = efi_thunk_set_variable; 903 efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count; 904 efi.reset_system = efi_thunk_reset_system; 905 efi.query_variable_info = efi_thunk_query_variable_info; 906 efi.update_capsule = efi_thunk_update_capsule; 907 efi.query_capsule_caps = efi_thunk_query_capsule_caps; 908 } 909 #endif /* CONFIG_EFI_MIXED */ 910