1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * x86_64 specific EFI support functions 4 * Based on Extensible Firmware Interface Specification version 1.0 5 * 6 * Copyright (C) 2005-2008 Intel Co. 7 * Fenghua Yu <fenghua.yu@intel.com> 8 * Bibo Mao <bibo.mao@intel.com> 9 * Chandramouli Narayanan <mouli@linux.intel.com> 10 * Huang Ying <ying.huang@intel.com> 11 * 12 * Code to convert EFI to E820 map has been implemented in elilo bootloader 13 * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table 14 * is setup appropriately for EFI runtime code. 15 * - mouli 06/14/2007. 16 * 17 */ 18 19 #define pr_fmt(fmt) "efi: " fmt 20 21 #include <linux/kernel.h> 22 #include <linux/init.h> 23 #include <linux/mm.h> 24 #include <linux/types.h> 25 #include <linux/spinlock.h> 26 #include <linux/memblock.h> 27 #include <linux/ioport.h> 28 #include <linux/mc146818rtc.h> 29 #include <linux/efi.h> 30 #include <linux/export.h> 31 #include <linux/uaccess.h> 32 #include <linux/io.h> 33 #include <linux/reboot.h> 34 #include <linux/slab.h> 35 #include <linux/ucs2_string.h> 36 #include <linux/mem_encrypt.h> 37 #include <linux/sched/task.h> 38 39 #include <asm/setup.h> 40 #include <asm/page.h> 41 #include <asm/e820/api.h> 42 #include <asm/pgtable.h> 43 #include <asm/tlbflush.h> 44 #include <asm/proto.h> 45 #include <asm/efi.h> 46 #include <asm/cacheflush.h> 47 #include <asm/fixmap.h> 48 #include <asm/realmode.h> 49 #include <asm/time.h> 50 #include <asm/pgalloc.h> 51 52 /* 53 * We allocate runtime services regions top-down, starting from -4G, i.e. 54 * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G. 55 */ 56 static u64 efi_va = EFI_VA_START; 57 58 struct efi_scratch efi_scratch; 59 60 EXPORT_SYMBOL_GPL(efi_mm); 61 62 /* 63 * We need our own copy of the higher levels of the page tables 64 * because we want to avoid inserting EFI region mappings (EFI_VA_END 65 * to EFI_VA_START) into the standard kernel page tables. Everything 66 * else can be shared, see efi_sync_low_kernel_mappings(). 67 * 68 * We don't want the pgd on the pgd_list and cannot use pgd_alloc() for the 69 * allocation. 70 */ 71 int __init efi_alloc_page_tables(void) 72 { 73 pgd_t *pgd, *efi_pgd; 74 p4d_t *p4d; 75 pud_t *pud; 76 gfp_t gfp_mask; 77 78 if (efi_have_uv1_memmap()) 79 return 0; 80 81 gfp_mask = GFP_KERNEL | __GFP_ZERO; 82 efi_pgd = (pgd_t *)__get_free_pages(gfp_mask, PGD_ALLOCATION_ORDER); 83 if (!efi_pgd) 84 return -ENOMEM; 85 86 pgd = efi_pgd + pgd_index(EFI_VA_END); 87 p4d = p4d_alloc(&init_mm, pgd, EFI_VA_END); 88 if (!p4d) { 89 free_page((unsigned long)efi_pgd); 90 return -ENOMEM; 91 } 92 93 pud = pud_alloc(&init_mm, p4d, EFI_VA_END); 94 if (!pud) { 95 if (pgtable_l5_enabled()) 96 free_page((unsigned long) pgd_page_vaddr(*pgd)); 97 free_pages((unsigned long)efi_pgd, PGD_ALLOCATION_ORDER); 98 return -ENOMEM; 99 } 100 101 efi_mm.pgd = efi_pgd; 102 mm_init_cpumask(&efi_mm); 103 init_new_context(NULL, &efi_mm); 104 105 return 0; 106 } 107 108 /* 109 * Add low kernel mappings for passing arguments to EFI functions. 110 */ 111 void efi_sync_low_kernel_mappings(void) 112 { 113 unsigned num_entries; 114 pgd_t *pgd_k, *pgd_efi; 115 p4d_t *p4d_k, *p4d_efi; 116 pud_t *pud_k, *pud_efi; 117 pgd_t *efi_pgd = efi_mm.pgd; 118 119 if (efi_have_uv1_memmap()) 120 return; 121 122 /* 123 * We can share all PGD entries apart from the one entry that 124 * covers the EFI runtime mapping space. 125 * 126 * Make sure the EFI runtime region mappings are guaranteed to 127 * only span a single PGD entry and that the entry also maps 128 * other important kernel regions. 129 */ 130 MAYBE_BUILD_BUG_ON(pgd_index(EFI_VA_END) != pgd_index(MODULES_END)); 131 MAYBE_BUILD_BUG_ON((EFI_VA_START & PGDIR_MASK) != 132 (EFI_VA_END & PGDIR_MASK)); 133 134 pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET); 135 pgd_k = pgd_offset_k(PAGE_OFFSET); 136 137 num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET); 138 memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries); 139 140 /* 141 * As with PGDs, we share all P4D entries apart from the one entry 142 * that covers the EFI runtime mapping space. 143 */ 144 BUILD_BUG_ON(p4d_index(EFI_VA_END) != p4d_index(MODULES_END)); 145 BUILD_BUG_ON((EFI_VA_START & P4D_MASK) != (EFI_VA_END & P4D_MASK)); 146 147 pgd_efi = efi_pgd + pgd_index(EFI_VA_END); 148 pgd_k = pgd_offset_k(EFI_VA_END); 149 p4d_efi = p4d_offset(pgd_efi, 0); 150 p4d_k = p4d_offset(pgd_k, 0); 151 152 num_entries = p4d_index(EFI_VA_END); 153 memcpy(p4d_efi, p4d_k, sizeof(p4d_t) * num_entries); 154 155 /* 156 * We share all the PUD entries apart from those that map the 157 * EFI regions. Copy around them. 158 */ 159 BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0); 160 BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0); 161 162 p4d_efi = p4d_offset(pgd_efi, EFI_VA_END); 163 p4d_k = p4d_offset(pgd_k, EFI_VA_END); 164 pud_efi = pud_offset(p4d_efi, 0); 165 pud_k = pud_offset(p4d_k, 0); 166 167 num_entries = pud_index(EFI_VA_END); 168 memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries); 169 170 pud_efi = pud_offset(p4d_efi, EFI_VA_START); 171 pud_k = pud_offset(p4d_k, EFI_VA_START); 172 173 num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START); 174 memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries); 175 } 176 177 /* 178 * Wrapper for slow_virt_to_phys() that handles NULL addresses. 179 */ 180 static inline phys_addr_t 181 virt_to_phys_or_null_size(void *va, unsigned long size) 182 { 183 phys_addr_t pa; 184 185 if (!va) 186 return 0; 187 188 if (virt_addr_valid(va)) 189 return virt_to_phys(va); 190 191 pa = slow_virt_to_phys(va); 192 193 /* check if the object crosses a page boundary */ 194 if (WARN_ON((pa ^ (pa + size - 1)) & PAGE_MASK)) 195 return 0; 196 197 return pa; 198 } 199 200 #define virt_to_phys_or_null(addr) \ 201 virt_to_phys_or_null_size((addr), sizeof(*(addr))) 202 203 int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages) 204 { 205 unsigned long pfn, text, pf, rodata; 206 struct page *page; 207 unsigned npages; 208 pgd_t *pgd = efi_mm.pgd; 209 210 if (efi_have_uv1_memmap()) 211 return 0; 212 213 /* 214 * It can happen that the physical address of new_memmap lands in memory 215 * which is not mapped in the EFI page table. Therefore we need to go 216 * and ident-map those pages containing the map before calling 217 * phys_efi_set_virtual_address_map(). 218 */ 219 pfn = pa_memmap >> PAGE_SHIFT; 220 pf = _PAGE_NX | _PAGE_RW | _PAGE_ENC; 221 if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, pf)) { 222 pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap); 223 return 1; 224 } 225 226 /* 227 * Certain firmware versions are way too sentimential and still believe 228 * they are exclusive and unquestionable owners of the first physical page, 229 * even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY 230 * (but then write-access it later during SetVirtualAddressMap()). 231 * 232 * Create a 1:1 mapping for this page, to avoid triple faults during early 233 * boot with such firmware. We are free to hand this page to the BIOS, 234 * as trim_bios_range() will reserve the first page and isolate it away 235 * from memory allocators anyway. 236 */ 237 if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, pf)) { 238 pr_err("Failed to create 1:1 mapping for the first page!\n"); 239 return 1; 240 } 241 242 /* 243 * When making calls to the firmware everything needs to be 1:1 244 * mapped and addressable with 32-bit pointers. Map the kernel 245 * text and allocate a new stack because we can't rely on the 246 * stack pointer being < 4GB. 247 */ 248 if (!efi_is_mixed()) 249 return 0; 250 251 page = alloc_page(GFP_KERNEL|__GFP_DMA32); 252 if (!page) { 253 pr_err("Unable to allocate EFI runtime stack < 4GB\n"); 254 return 1; 255 } 256 257 efi_scratch.phys_stack = page_to_phys(page + 1); /* stack grows down */ 258 259 npages = (_etext - _text) >> PAGE_SHIFT; 260 text = __pa(_text); 261 pfn = text >> PAGE_SHIFT; 262 263 pf = _PAGE_ENC; 264 if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, pf)) { 265 pr_err("Failed to map kernel text 1:1\n"); 266 return 1; 267 } 268 269 npages = (__end_rodata - __start_rodata) >> PAGE_SHIFT; 270 rodata = __pa(__start_rodata); 271 pfn = rodata >> PAGE_SHIFT; 272 if (kernel_map_pages_in_pgd(pgd, pfn, rodata, npages, pf)) { 273 pr_err("Failed to map kernel rodata 1:1\n"); 274 return 1; 275 } 276 277 return 0; 278 } 279 280 static void __init __map_region(efi_memory_desc_t *md, u64 va) 281 { 282 unsigned long flags = _PAGE_RW; 283 unsigned long pfn; 284 pgd_t *pgd = efi_mm.pgd; 285 286 /* 287 * EFI_RUNTIME_SERVICES_CODE regions typically cover PE/COFF 288 * executable images in memory that consist of both R-X and 289 * RW- sections, so we cannot apply read-only or non-exec 290 * permissions just yet. However, modern EFI systems provide 291 * a memory attributes table that describes those sections 292 * with the appropriate restricted permissions, which are 293 * applied in efi_runtime_update_mappings() below. All other 294 * regions can be mapped non-executable at this point, with 295 * the exception of boot services code regions, but those will 296 * be unmapped again entirely in efi_free_boot_services(). 297 */ 298 if (md->type != EFI_BOOT_SERVICES_CODE && 299 md->type != EFI_RUNTIME_SERVICES_CODE) 300 flags |= _PAGE_NX; 301 302 if (!(md->attribute & EFI_MEMORY_WB)) 303 flags |= _PAGE_PCD; 304 305 if (sev_active() && md->type != EFI_MEMORY_MAPPED_IO) 306 flags |= _PAGE_ENC; 307 308 pfn = md->phys_addr >> PAGE_SHIFT; 309 if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags)) 310 pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n", 311 md->phys_addr, va); 312 } 313 314 void __init efi_map_region(efi_memory_desc_t *md) 315 { 316 unsigned long size = md->num_pages << PAGE_SHIFT; 317 u64 pa = md->phys_addr; 318 319 if (efi_have_uv1_memmap()) 320 return old_map_region(md); 321 322 /* 323 * Make sure the 1:1 mappings are present as a catch-all for b0rked 324 * firmware which doesn't update all internal pointers after switching 325 * to virtual mode and would otherwise crap on us. 326 */ 327 __map_region(md, md->phys_addr); 328 329 /* 330 * Enforce the 1:1 mapping as the default virtual address when 331 * booting in EFI mixed mode, because even though we may be 332 * running a 64-bit kernel, the firmware may only be 32-bit. 333 */ 334 if (efi_is_mixed()) { 335 md->virt_addr = md->phys_addr; 336 return; 337 } 338 339 efi_va -= size; 340 341 /* Is PA 2M-aligned? */ 342 if (!(pa & (PMD_SIZE - 1))) { 343 efi_va &= PMD_MASK; 344 } else { 345 u64 pa_offset = pa & (PMD_SIZE - 1); 346 u64 prev_va = efi_va; 347 348 /* get us the same offset within this 2M page */ 349 efi_va = (efi_va & PMD_MASK) + pa_offset; 350 351 if (efi_va > prev_va) 352 efi_va -= PMD_SIZE; 353 } 354 355 if (efi_va < EFI_VA_END) { 356 pr_warn(FW_WARN "VA address range overflow!\n"); 357 return; 358 } 359 360 /* Do the VA map */ 361 __map_region(md, efi_va); 362 md->virt_addr = efi_va; 363 } 364 365 /* 366 * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges. 367 * md->virt_addr is the original virtual address which had been mapped in kexec 368 * 1st kernel. 369 */ 370 void __init efi_map_region_fixed(efi_memory_desc_t *md) 371 { 372 __map_region(md, md->phys_addr); 373 __map_region(md, md->virt_addr); 374 } 375 376 void __init parse_efi_setup(u64 phys_addr, u32 data_len) 377 { 378 efi_setup = phys_addr + sizeof(struct setup_data); 379 } 380 381 static int __init efi_update_mappings(efi_memory_desc_t *md, unsigned long pf) 382 { 383 unsigned long pfn; 384 pgd_t *pgd = efi_mm.pgd; 385 int err1, err2; 386 387 /* Update the 1:1 mapping */ 388 pfn = md->phys_addr >> PAGE_SHIFT; 389 err1 = kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf); 390 if (err1) { 391 pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n", 392 md->phys_addr, md->virt_addr); 393 } 394 395 err2 = kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf); 396 if (err2) { 397 pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n", 398 md->phys_addr, md->virt_addr); 399 } 400 401 return err1 || err2; 402 } 403 404 static int __init efi_update_mem_attr(struct mm_struct *mm, efi_memory_desc_t *md) 405 { 406 unsigned long pf = 0; 407 408 if (md->attribute & EFI_MEMORY_XP) 409 pf |= _PAGE_NX; 410 411 if (!(md->attribute & EFI_MEMORY_RO)) 412 pf |= _PAGE_RW; 413 414 if (sev_active()) 415 pf |= _PAGE_ENC; 416 417 return efi_update_mappings(md, pf); 418 } 419 420 void __init efi_runtime_update_mappings(void) 421 { 422 efi_memory_desc_t *md; 423 424 if (efi_have_uv1_memmap()) { 425 if (__supported_pte_mask & _PAGE_NX) 426 runtime_code_page_mkexec(); 427 return; 428 } 429 430 /* 431 * Use the EFI Memory Attribute Table for mapping permissions if it 432 * exists, since it is intended to supersede EFI_PROPERTIES_TABLE. 433 */ 434 if (efi_enabled(EFI_MEM_ATTR)) { 435 efi_memattr_apply_permissions(NULL, efi_update_mem_attr); 436 return; 437 } 438 439 /* 440 * EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace 441 * EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update 442 * permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not 443 * published by the firmware. Even if we find a buggy implementation of 444 * EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to 445 * EFI_PROPERTIES_TABLE, because of the same reason. 446 */ 447 448 if (!efi_enabled(EFI_NX_PE_DATA)) 449 return; 450 451 for_each_efi_memory_desc(md) { 452 unsigned long pf = 0; 453 454 if (!(md->attribute & EFI_MEMORY_RUNTIME)) 455 continue; 456 457 if (!(md->attribute & EFI_MEMORY_WB)) 458 pf |= _PAGE_PCD; 459 460 if ((md->attribute & EFI_MEMORY_XP) || 461 (md->type == EFI_RUNTIME_SERVICES_DATA)) 462 pf |= _PAGE_NX; 463 464 if (!(md->attribute & EFI_MEMORY_RO) && 465 (md->type != EFI_RUNTIME_SERVICES_CODE)) 466 pf |= _PAGE_RW; 467 468 if (sev_active()) 469 pf |= _PAGE_ENC; 470 471 efi_update_mappings(md, pf); 472 } 473 } 474 475 void __init efi_dump_pagetable(void) 476 { 477 #ifdef CONFIG_EFI_PGT_DUMP 478 if (efi_have_uv1_memmap()) 479 ptdump_walk_pgd_level(NULL, &init_mm); 480 else 481 ptdump_walk_pgd_level(NULL, &efi_mm); 482 #endif 483 } 484 485 /* 486 * Makes the calling thread switch to/from efi_mm context. Can be used 487 * in a kernel thread and user context. Preemption needs to remain disabled 488 * while the EFI-mm is borrowed. mmgrab()/mmdrop() is not used because the mm 489 * can not change under us. 490 * It should be ensured that there are no concurent calls to this function. 491 */ 492 void efi_switch_mm(struct mm_struct *mm) 493 { 494 efi_scratch.prev_mm = current->active_mm; 495 current->active_mm = mm; 496 switch_mm(efi_scratch.prev_mm, mm, NULL); 497 } 498 499 static DEFINE_SPINLOCK(efi_runtime_lock); 500 501 /* 502 * DS and ES contain user values. We need to save them. 503 * The 32-bit EFI code needs a valid DS, ES, and SS. There's no 504 * need to save the old SS: __KERNEL_DS is always acceptable. 505 */ 506 #define __efi_thunk(func, ...) \ 507 ({ \ 508 unsigned short __ds, __es; \ 509 efi_status_t ____s; \ 510 \ 511 savesegment(ds, __ds); \ 512 savesegment(es, __es); \ 513 \ 514 loadsegment(ss, __KERNEL_DS); \ 515 loadsegment(ds, __KERNEL_DS); \ 516 loadsegment(es, __KERNEL_DS); \ 517 \ 518 ____s = efi64_thunk(efi.runtime->mixed_mode.func, __VA_ARGS__); \ 519 \ 520 loadsegment(ds, __ds); \ 521 loadsegment(es, __es); \ 522 \ 523 ____s ^= (____s & BIT(31)) | (____s & BIT_ULL(31)) << 32; \ 524 ____s; \ 525 }) 526 527 /* 528 * Switch to the EFI page tables early so that we can access the 1:1 529 * runtime services mappings which are not mapped in any other page 530 * tables. 531 * 532 * Also, disable interrupts because the IDT points to 64-bit handlers, 533 * which aren't going to function correctly when we switch to 32-bit. 534 */ 535 #define efi_thunk(func...) \ 536 ({ \ 537 efi_status_t __s; \ 538 \ 539 arch_efi_call_virt_setup(); \ 540 \ 541 __s = __efi_thunk(func); \ 542 \ 543 arch_efi_call_virt_teardown(); \ 544 \ 545 __s; \ 546 }) 547 548 static efi_status_t __init __no_sanitize_address 549 efi_thunk_set_virtual_address_map(unsigned long memory_map_size, 550 unsigned long descriptor_size, 551 u32 descriptor_version, 552 efi_memory_desc_t *virtual_map) 553 { 554 efi_status_t status; 555 unsigned long flags; 556 557 efi_sync_low_kernel_mappings(); 558 local_irq_save(flags); 559 560 efi_switch_mm(&efi_mm); 561 562 status = __efi_thunk(set_virtual_address_map, memory_map_size, 563 descriptor_size, descriptor_version, virtual_map); 564 565 efi_switch_mm(efi_scratch.prev_mm); 566 local_irq_restore(flags); 567 568 return status; 569 } 570 571 static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc) 572 { 573 return EFI_UNSUPPORTED; 574 } 575 576 static efi_status_t efi_thunk_set_time(efi_time_t *tm) 577 { 578 return EFI_UNSUPPORTED; 579 } 580 581 static efi_status_t 582 efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending, 583 efi_time_t *tm) 584 { 585 return EFI_UNSUPPORTED; 586 } 587 588 static efi_status_t 589 efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm) 590 { 591 return EFI_UNSUPPORTED; 592 } 593 594 static unsigned long efi_name_size(efi_char16_t *name) 595 { 596 return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1; 597 } 598 599 static efi_status_t 600 efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor, 601 u32 *attr, unsigned long *data_size, void *data) 602 { 603 u8 buf[24] __aligned(8); 604 efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd)); 605 efi_status_t status; 606 u32 phys_name, phys_vendor, phys_attr; 607 u32 phys_data_size, phys_data; 608 unsigned long flags; 609 610 spin_lock_irqsave(&efi_runtime_lock, flags); 611 612 *vnd = *vendor; 613 614 phys_data_size = virt_to_phys_or_null(data_size); 615 phys_vendor = virt_to_phys_or_null(vnd); 616 phys_name = virt_to_phys_or_null_size(name, efi_name_size(name)); 617 phys_attr = virt_to_phys_or_null(attr); 618 phys_data = virt_to_phys_or_null_size(data, *data_size); 619 620 if (!phys_name || (data && !phys_data)) 621 status = EFI_INVALID_PARAMETER; 622 else 623 status = efi_thunk(get_variable, phys_name, phys_vendor, 624 phys_attr, phys_data_size, phys_data); 625 626 spin_unlock_irqrestore(&efi_runtime_lock, flags); 627 628 return status; 629 } 630 631 static efi_status_t 632 efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor, 633 u32 attr, unsigned long data_size, void *data) 634 { 635 u8 buf[24] __aligned(8); 636 efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd)); 637 u32 phys_name, phys_vendor, phys_data; 638 efi_status_t status; 639 unsigned long flags; 640 641 spin_lock_irqsave(&efi_runtime_lock, flags); 642 643 *vnd = *vendor; 644 645 phys_name = virt_to_phys_or_null_size(name, efi_name_size(name)); 646 phys_vendor = virt_to_phys_or_null(vnd); 647 phys_data = virt_to_phys_or_null_size(data, data_size); 648 649 if (!phys_name || (data && !phys_data)) 650 status = EFI_INVALID_PARAMETER; 651 else 652 status = efi_thunk(set_variable, phys_name, phys_vendor, 653 attr, data_size, phys_data); 654 655 spin_unlock_irqrestore(&efi_runtime_lock, flags); 656 657 return status; 658 } 659 660 static efi_status_t 661 efi_thunk_set_variable_nonblocking(efi_char16_t *name, efi_guid_t *vendor, 662 u32 attr, unsigned long data_size, 663 void *data) 664 { 665 u8 buf[24] __aligned(8); 666 efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd)); 667 u32 phys_name, phys_vendor, phys_data; 668 efi_status_t status; 669 unsigned long flags; 670 671 if (!spin_trylock_irqsave(&efi_runtime_lock, flags)) 672 return EFI_NOT_READY; 673 674 *vnd = *vendor; 675 676 phys_name = virt_to_phys_or_null_size(name, efi_name_size(name)); 677 phys_vendor = virt_to_phys_or_null(vnd); 678 phys_data = virt_to_phys_or_null_size(data, data_size); 679 680 if (!phys_name || (data && !phys_data)) 681 status = EFI_INVALID_PARAMETER; 682 else 683 status = efi_thunk(set_variable, phys_name, phys_vendor, 684 attr, data_size, phys_data); 685 686 spin_unlock_irqrestore(&efi_runtime_lock, flags); 687 688 return status; 689 } 690 691 static efi_status_t 692 efi_thunk_get_next_variable(unsigned long *name_size, 693 efi_char16_t *name, 694 efi_guid_t *vendor) 695 { 696 u8 buf[24] __aligned(8); 697 efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd)); 698 efi_status_t status; 699 u32 phys_name_size, phys_name, phys_vendor; 700 unsigned long flags; 701 702 spin_lock_irqsave(&efi_runtime_lock, flags); 703 704 *vnd = *vendor; 705 706 phys_name_size = virt_to_phys_or_null(name_size); 707 phys_vendor = virt_to_phys_or_null(vnd); 708 phys_name = virt_to_phys_or_null_size(name, *name_size); 709 710 if (!phys_name) 711 status = EFI_INVALID_PARAMETER; 712 else 713 status = efi_thunk(get_next_variable, phys_name_size, 714 phys_name, phys_vendor); 715 716 spin_unlock_irqrestore(&efi_runtime_lock, flags); 717 718 *vendor = *vnd; 719 return status; 720 } 721 722 static efi_status_t 723 efi_thunk_get_next_high_mono_count(u32 *count) 724 { 725 return EFI_UNSUPPORTED; 726 } 727 728 static void 729 efi_thunk_reset_system(int reset_type, efi_status_t status, 730 unsigned long data_size, efi_char16_t *data) 731 { 732 u32 phys_data; 733 unsigned long flags; 734 735 spin_lock_irqsave(&efi_runtime_lock, flags); 736 737 phys_data = virt_to_phys_or_null_size(data, data_size); 738 739 efi_thunk(reset_system, reset_type, status, data_size, phys_data); 740 741 spin_unlock_irqrestore(&efi_runtime_lock, flags); 742 } 743 744 static efi_status_t 745 efi_thunk_update_capsule(efi_capsule_header_t **capsules, 746 unsigned long count, unsigned long sg_list) 747 { 748 /* 749 * To properly support this function we would need to repackage 750 * 'capsules' because the firmware doesn't understand 64-bit 751 * pointers. 752 */ 753 return EFI_UNSUPPORTED; 754 } 755 756 static efi_status_t 757 efi_thunk_query_variable_info(u32 attr, u64 *storage_space, 758 u64 *remaining_space, 759 u64 *max_variable_size) 760 { 761 efi_status_t status; 762 u32 phys_storage, phys_remaining, phys_max; 763 unsigned long flags; 764 765 if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION) 766 return EFI_UNSUPPORTED; 767 768 spin_lock_irqsave(&efi_runtime_lock, flags); 769 770 phys_storage = virt_to_phys_or_null(storage_space); 771 phys_remaining = virt_to_phys_or_null(remaining_space); 772 phys_max = virt_to_phys_or_null(max_variable_size); 773 774 status = efi_thunk(query_variable_info, attr, phys_storage, 775 phys_remaining, phys_max); 776 777 spin_unlock_irqrestore(&efi_runtime_lock, flags); 778 779 return status; 780 } 781 782 static efi_status_t 783 efi_thunk_query_variable_info_nonblocking(u32 attr, u64 *storage_space, 784 u64 *remaining_space, 785 u64 *max_variable_size) 786 { 787 efi_status_t status; 788 u32 phys_storage, phys_remaining, phys_max; 789 unsigned long flags; 790 791 if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION) 792 return EFI_UNSUPPORTED; 793 794 if (!spin_trylock_irqsave(&efi_runtime_lock, flags)) 795 return EFI_NOT_READY; 796 797 phys_storage = virt_to_phys_or_null(storage_space); 798 phys_remaining = virt_to_phys_or_null(remaining_space); 799 phys_max = virt_to_phys_or_null(max_variable_size); 800 801 status = efi_thunk(query_variable_info, attr, phys_storage, 802 phys_remaining, phys_max); 803 804 spin_unlock_irqrestore(&efi_runtime_lock, flags); 805 806 return status; 807 } 808 809 static efi_status_t 810 efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules, 811 unsigned long count, u64 *max_size, 812 int *reset_type) 813 { 814 /* 815 * To properly support this function we would need to repackage 816 * 'capsules' because the firmware doesn't understand 64-bit 817 * pointers. 818 */ 819 return EFI_UNSUPPORTED; 820 } 821 822 void __init efi_thunk_runtime_setup(void) 823 { 824 if (!IS_ENABLED(CONFIG_EFI_MIXED)) 825 return; 826 827 efi.get_time = efi_thunk_get_time; 828 efi.set_time = efi_thunk_set_time; 829 efi.get_wakeup_time = efi_thunk_get_wakeup_time; 830 efi.set_wakeup_time = efi_thunk_set_wakeup_time; 831 efi.get_variable = efi_thunk_get_variable; 832 efi.get_next_variable = efi_thunk_get_next_variable; 833 efi.set_variable = efi_thunk_set_variable; 834 efi.set_variable_nonblocking = efi_thunk_set_variable_nonblocking; 835 efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count; 836 efi.reset_system = efi_thunk_reset_system; 837 efi.query_variable_info = efi_thunk_query_variable_info; 838 efi.query_variable_info_nonblocking = efi_thunk_query_variable_info_nonblocking; 839 efi.update_capsule = efi_thunk_update_capsule; 840 efi.query_capsule_caps = efi_thunk_query_capsule_caps; 841 } 842 843 efi_status_t __init __no_sanitize_address 844 efi_set_virtual_address_map(unsigned long memory_map_size, 845 unsigned long descriptor_size, 846 u32 descriptor_version, 847 efi_memory_desc_t *virtual_map, 848 unsigned long systab_phys) 849 { 850 const efi_system_table_t *systab = (efi_system_table_t *)systab_phys; 851 efi_status_t status; 852 unsigned long flags; 853 pgd_t *save_pgd = NULL; 854 855 if (efi_is_mixed()) 856 return efi_thunk_set_virtual_address_map(memory_map_size, 857 descriptor_size, 858 descriptor_version, 859 virtual_map); 860 861 if (efi_have_uv1_memmap()) { 862 save_pgd = efi_uv1_memmap_phys_prolog(); 863 if (!save_pgd) 864 return EFI_ABORTED; 865 } else { 866 efi_switch_mm(&efi_mm); 867 } 868 869 kernel_fpu_begin(); 870 871 /* Disable interrupts around EFI calls: */ 872 local_irq_save(flags); 873 status = efi_call(efi.runtime->set_virtual_address_map, 874 memory_map_size, descriptor_size, 875 descriptor_version, virtual_map); 876 local_irq_restore(flags); 877 878 kernel_fpu_end(); 879 880 /* grab the virtually remapped EFI runtime services table pointer */ 881 efi.runtime = READ_ONCE(systab->runtime); 882 883 if (save_pgd) 884 efi_uv1_memmap_phys_epilog(save_pgd); 885 else 886 efi_switch_mm(efi_scratch.prev_mm); 887 888 return status; 889 } 890