xref: /openbmc/linux/arch/x86/platform/efi/efi_64.c (revision a36954f5)
1 /*
2  * x86_64 specific EFI support functions
3  * Based on Extensible Firmware Interface Specification version 1.0
4  *
5  * Copyright (C) 2005-2008 Intel Co.
6  *	Fenghua Yu <fenghua.yu@intel.com>
7  *	Bibo Mao <bibo.mao@intel.com>
8  *	Chandramouli Narayanan <mouli@linux.intel.com>
9  *	Huang Ying <ying.huang@intel.com>
10  *
11  * Code to convert EFI to E820 map has been implemented in elilo bootloader
12  * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table
13  * is setup appropriately for EFI runtime code.
14  * - mouli 06/14/2007.
15  *
16  */
17 
18 #define pr_fmt(fmt) "efi: " fmt
19 
20 #include <linux/kernel.h>
21 #include <linux/init.h>
22 #include <linux/mm.h>
23 #include <linux/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/bootmem.h>
26 #include <linux/ioport.h>
27 #include <linux/init.h>
28 #include <linux/mc146818rtc.h>
29 #include <linux/efi.h>
30 #include <linux/uaccess.h>
31 #include <linux/io.h>
32 #include <linux/reboot.h>
33 #include <linux/slab.h>
34 #include <linux/ucs2_string.h>
35 
36 #include <asm/setup.h>
37 #include <asm/page.h>
38 #include <asm/e820/api.h>
39 #include <asm/pgtable.h>
40 #include <asm/tlbflush.h>
41 #include <asm/proto.h>
42 #include <asm/efi.h>
43 #include <asm/cacheflush.h>
44 #include <asm/fixmap.h>
45 #include <asm/realmode.h>
46 #include <asm/time.h>
47 #include <asm/pgalloc.h>
48 
49 /*
50  * We allocate runtime services regions top-down, starting from -4G, i.e.
51  * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G.
52  */
53 static u64 efi_va = EFI_VA_START;
54 
55 struct efi_scratch efi_scratch;
56 
57 static void __init early_code_mapping_set_exec(int executable)
58 {
59 	efi_memory_desc_t *md;
60 
61 	if (!(__supported_pte_mask & _PAGE_NX))
62 		return;
63 
64 	/* Make EFI service code area executable */
65 	for_each_efi_memory_desc(md) {
66 		if (md->type == EFI_RUNTIME_SERVICES_CODE ||
67 		    md->type == EFI_BOOT_SERVICES_CODE)
68 			efi_set_executable(md, executable);
69 	}
70 }
71 
72 pgd_t * __init efi_call_phys_prolog(void)
73 {
74 	unsigned long vaddress;
75 	pgd_t *save_pgd;
76 
77 	int pgd;
78 	int n_pgds;
79 
80 	if (!efi_enabled(EFI_OLD_MEMMAP)) {
81 		save_pgd = (pgd_t *)read_cr3();
82 		write_cr3((unsigned long)efi_scratch.efi_pgt);
83 		goto out;
84 	}
85 
86 	early_code_mapping_set_exec(1);
87 
88 	n_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT), PGDIR_SIZE);
89 	save_pgd = kmalloc_array(n_pgds, sizeof(*save_pgd), GFP_KERNEL);
90 
91 	for (pgd = 0; pgd < n_pgds; pgd++) {
92 		save_pgd[pgd] = *pgd_offset_k(pgd * PGDIR_SIZE);
93 		vaddress = (unsigned long)__va(pgd * PGDIR_SIZE);
94 		set_pgd(pgd_offset_k(pgd * PGDIR_SIZE), *pgd_offset_k(vaddress));
95 	}
96 out:
97 	__flush_tlb_all();
98 
99 	return save_pgd;
100 }
101 
102 void __init efi_call_phys_epilog(pgd_t *save_pgd)
103 {
104 	/*
105 	 * After the lock is released, the original page table is restored.
106 	 */
107 	int pgd_idx;
108 	int nr_pgds;
109 
110 	if (!efi_enabled(EFI_OLD_MEMMAP)) {
111 		write_cr3((unsigned long)save_pgd);
112 		__flush_tlb_all();
113 		return;
114 	}
115 
116 	nr_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT) , PGDIR_SIZE);
117 
118 	for (pgd_idx = 0; pgd_idx < nr_pgds; pgd_idx++)
119 		set_pgd(pgd_offset_k(pgd_idx * PGDIR_SIZE), save_pgd[pgd_idx]);
120 
121 	kfree(save_pgd);
122 
123 	__flush_tlb_all();
124 	early_code_mapping_set_exec(0);
125 }
126 
127 static pgd_t *efi_pgd;
128 
129 /*
130  * We need our own copy of the higher levels of the page tables
131  * because we want to avoid inserting EFI region mappings (EFI_VA_END
132  * to EFI_VA_START) into the standard kernel page tables. Everything
133  * else can be shared, see efi_sync_low_kernel_mappings().
134  */
135 int __init efi_alloc_page_tables(void)
136 {
137 	pgd_t *pgd;
138 	p4d_t *p4d;
139 	pud_t *pud;
140 	gfp_t gfp_mask;
141 
142 	if (efi_enabled(EFI_OLD_MEMMAP))
143 		return 0;
144 
145 	gfp_mask = GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO;
146 	efi_pgd = (pgd_t *)__get_free_page(gfp_mask);
147 	if (!efi_pgd)
148 		return -ENOMEM;
149 
150 	pgd = efi_pgd + pgd_index(EFI_VA_END);
151 	p4d = p4d_alloc(&init_mm, pgd, EFI_VA_END);
152 	if (!p4d) {
153 		free_page((unsigned long)efi_pgd);
154 		return -ENOMEM;
155 	}
156 
157 	pud = pud_alloc(&init_mm, p4d, EFI_VA_END);
158 	if (!pud) {
159 		if (CONFIG_PGTABLE_LEVELS > 4)
160 			free_page((unsigned long) pgd_page_vaddr(*pgd));
161 		free_page((unsigned long)efi_pgd);
162 		return -ENOMEM;
163 	}
164 
165 	return 0;
166 }
167 
168 /*
169  * Add low kernel mappings for passing arguments to EFI functions.
170  */
171 void efi_sync_low_kernel_mappings(void)
172 {
173 	unsigned num_entries;
174 	pgd_t *pgd_k, *pgd_efi;
175 	p4d_t *p4d_k, *p4d_efi;
176 	pud_t *pud_k, *pud_efi;
177 
178 	if (efi_enabled(EFI_OLD_MEMMAP))
179 		return;
180 
181 	/*
182 	 * We can share all PGD entries apart from the one entry that
183 	 * covers the EFI runtime mapping space.
184 	 *
185 	 * Make sure the EFI runtime region mappings are guaranteed to
186 	 * only span a single PGD entry and that the entry also maps
187 	 * other important kernel regions.
188 	 */
189 	BUILD_BUG_ON(pgd_index(EFI_VA_END) != pgd_index(MODULES_END));
190 	BUILD_BUG_ON((EFI_VA_START & PGDIR_MASK) !=
191 			(EFI_VA_END & PGDIR_MASK));
192 
193 	pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET);
194 	pgd_k = pgd_offset_k(PAGE_OFFSET);
195 
196 	num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET);
197 	memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries);
198 
199 	/*
200 	 * As with PGDs, we share all P4D entries apart from the one entry
201 	 * that covers the EFI runtime mapping space.
202 	 */
203 	BUILD_BUG_ON(p4d_index(EFI_VA_END) != p4d_index(MODULES_END));
204 	BUILD_BUG_ON((EFI_VA_START & P4D_MASK) != (EFI_VA_END & P4D_MASK));
205 
206 	pgd_efi = efi_pgd + pgd_index(EFI_VA_END);
207 	pgd_k = pgd_offset_k(EFI_VA_END);
208 	p4d_efi = p4d_offset(pgd_efi, 0);
209 	p4d_k = p4d_offset(pgd_k, 0);
210 
211 	num_entries = p4d_index(EFI_VA_END);
212 	memcpy(p4d_efi, p4d_k, sizeof(p4d_t) * num_entries);
213 
214 	/*
215 	 * We share all the PUD entries apart from those that map the
216 	 * EFI regions. Copy around them.
217 	 */
218 	BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0);
219 	BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0);
220 
221 	p4d_efi = p4d_offset(pgd_efi, EFI_VA_END);
222 	p4d_k = p4d_offset(pgd_k, EFI_VA_END);
223 	pud_efi = pud_offset(p4d_efi, 0);
224 	pud_k = pud_offset(p4d_k, 0);
225 
226 	num_entries = pud_index(EFI_VA_END);
227 	memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
228 
229 	pud_efi = pud_offset(p4d_efi, EFI_VA_START);
230 	pud_k = pud_offset(p4d_k, EFI_VA_START);
231 
232 	num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START);
233 	memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
234 }
235 
236 /*
237  * Wrapper for slow_virt_to_phys() that handles NULL addresses.
238  */
239 static inline phys_addr_t
240 virt_to_phys_or_null_size(void *va, unsigned long size)
241 {
242 	bool bad_size;
243 
244 	if (!va)
245 		return 0;
246 
247 	if (virt_addr_valid(va))
248 		return virt_to_phys(va);
249 
250 	/*
251 	 * A fully aligned variable on the stack is guaranteed not to
252 	 * cross a page bounary. Try to catch strings on the stack by
253 	 * checking that 'size' is a power of two.
254 	 */
255 	bad_size = size > PAGE_SIZE || !is_power_of_2(size);
256 
257 	WARN_ON(!IS_ALIGNED((unsigned long)va, size) || bad_size);
258 
259 	return slow_virt_to_phys(va);
260 }
261 
262 #define virt_to_phys_or_null(addr)				\
263 	virt_to_phys_or_null_size((addr), sizeof(*(addr)))
264 
265 int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
266 {
267 	unsigned long pfn, text;
268 	struct page *page;
269 	unsigned npages;
270 	pgd_t *pgd;
271 
272 	if (efi_enabled(EFI_OLD_MEMMAP))
273 		return 0;
274 
275 	efi_scratch.efi_pgt = (pgd_t *)__pa(efi_pgd);
276 	pgd = efi_pgd;
277 
278 	/*
279 	 * It can happen that the physical address of new_memmap lands in memory
280 	 * which is not mapped in the EFI page table. Therefore we need to go
281 	 * and ident-map those pages containing the map before calling
282 	 * phys_efi_set_virtual_address_map().
283 	 */
284 	pfn = pa_memmap >> PAGE_SHIFT;
285 	if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, _PAGE_NX | _PAGE_RW)) {
286 		pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap);
287 		return 1;
288 	}
289 
290 	efi_scratch.use_pgd = true;
291 
292 	/*
293 	 * Certain firmware versions are way too sentimential and still believe
294 	 * they are exclusive and unquestionable owners of the first physical page,
295 	 * even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY
296 	 * (but then write-access it later during SetVirtualAddressMap()).
297 	 *
298 	 * Create a 1:1 mapping for this page, to avoid triple faults during early
299 	 * boot with such firmware. We are free to hand this page to the BIOS,
300 	 * as trim_bios_range() will reserve the first page and isolate it away
301 	 * from memory allocators anyway.
302 	 */
303 	if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, _PAGE_RW)) {
304 		pr_err("Failed to create 1:1 mapping for the first page!\n");
305 		return 1;
306 	}
307 
308 	/*
309 	 * When making calls to the firmware everything needs to be 1:1
310 	 * mapped and addressable with 32-bit pointers. Map the kernel
311 	 * text and allocate a new stack because we can't rely on the
312 	 * stack pointer being < 4GB.
313 	 */
314 	if (!IS_ENABLED(CONFIG_EFI_MIXED) || efi_is_native())
315 		return 0;
316 
317 	page = alloc_page(GFP_KERNEL|__GFP_DMA32);
318 	if (!page)
319 		panic("Unable to allocate EFI runtime stack < 4GB\n");
320 
321 	efi_scratch.phys_stack = virt_to_phys(page_address(page));
322 	efi_scratch.phys_stack += PAGE_SIZE; /* stack grows down */
323 
324 	npages = (_etext - _text) >> PAGE_SHIFT;
325 	text = __pa(_text);
326 	pfn = text >> PAGE_SHIFT;
327 
328 	if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, _PAGE_RW)) {
329 		pr_err("Failed to map kernel text 1:1\n");
330 		return 1;
331 	}
332 
333 	return 0;
334 }
335 
336 static void __init __map_region(efi_memory_desc_t *md, u64 va)
337 {
338 	unsigned long flags = _PAGE_RW;
339 	unsigned long pfn;
340 	pgd_t *pgd = efi_pgd;
341 
342 	if (!(md->attribute & EFI_MEMORY_WB))
343 		flags |= _PAGE_PCD;
344 
345 	pfn = md->phys_addr >> PAGE_SHIFT;
346 	if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags))
347 		pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
348 			   md->phys_addr, va);
349 }
350 
351 void __init efi_map_region(efi_memory_desc_t *md)
352 {
353 	unsigned long size = md->num_pages << PAGE_SHIFT;
354 	u64 pa = md->phys_addr;
355 
356 	if (efi_enabled(EFI_OLD_MEMMAP))
357 		return old_map_region(md);
358 
359 	/*
360 	 * Make sure the 1:1 mappings are present as a catch-all for b0rked
361 	 * firmware which doesn't update all internal pointers after switching
362 	 * to virtual mode and would otherwise crap on us.
363 	 */
364 	__map_region(md, md->phys_addr);
365 
366 	/*
367 	 * Enforce the 1:1 mapping as the default virtual address when
368 	 * booting in EFI mixed mode, because even though we may be
369 	 * running a 64-bit kernel, the firmware may only be 32-bit.
370 	 */
371 	if (!efi_is_native () && IS_ENABLED(CONFIG_EFI_MIXED)) {
372 		md->virt_addr = md->phys_addr;
373 		return;
374 	}
375 
376 	efi_va -= size;
377 
378 	/* Is PA 2M-aligned? */
379 	if (!(pa & (PMD_SIZE - 1))) {
380 		efi_va &= PMD_MASK;
381 	} else {
382 		u64 pa_offset = pa & (PMD_SIZE - 1);
383 		u64 prev_va = efi_va;
384 
385 		/* get us the same offset within this 2M page */
386 		efi_va = (efi_va & PMD_MASK) + pa_offset;
387 
388 		if (efi_va > prev_va)
389 			efi_va -= PMD_SIZE;
390 	}
391 
392 	if (efi_va < EFI_VA_END) {
393 		pr_warn(FW_WARN "VA address range overflow!\n");
394 		return;
395 	}
396 
397 	/* Do the VA map */
398 	__map_region(md, efi_va);
399 	md->virt_addr = efi_va;
400 }
401 
402 /*
403  * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges.
404  * md->virt_addr is the original virtual address which had been mapped in kexec
405  * 1st kernel.
406  */
407 void __init efi_map_region_fixed(efi_memory_desc_t *md)
408 {
409 	__map_region(md, md->phys_addr);
410 	__map_region(md, md->virt_addr);
411 }
412 
413 void __iomem *__init efi_ioremap(unsigned long phys_addr, unsigned long size,
414 				 u32 type, u64 attribute)
415 {
416 	unsigned long last_map_pfn;
417 
418 	if (type == EFI_MEMORY_MAPPED_IO)
419 		return ioremap(phys_addr, size);
420 
421 	last_map_pfn = init_memory_mapping(phys_addr, phys_addr + size);
422 	if ((last_map_pfn << PAGE_SHIFT) < phys_addr + size) {
423 		unsigned long top = last_map_pfn << PAGE_SHIFT;
424 		efi_ioremap(top, size - (top - phys_addr), type, attribute);
425 	}
426 
427 	if (!(attribute & EFI_MEMORY_WB))
428 		efi_memory_uc((u64)(unsigned long)__va(phys_addr), size);
429 
430 	return (void __iomem *)__va(phys_addr);
431 }
432 
433 void __init parse_efi_setup(u64 phys_addr, u32 data_len)
434 {
435 	efi_setup = phys_addr + sizeof(struct setup_data);
436 }
437 
438 static int __init efi_update_mappings(efi_memory_desc_t *md, unsigned long pf)
439 {
440 	unsigned long pfn;
441 	pgd_t *pgd = efi_pgd;
442 	int err1, err2;
443 
444 	/* Update the 1:1 mapping */
445 	pfn = md->phys_addr >> PAGE_SHIFT;
446 	err1 = kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf);
447 	if (err1) {
448 		pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n",
449 			   md->phys_addr, md->virt_addr);
450 	}
451 
452 	err2 = kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf);
453 	if (err2) {
454 		pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n",
455 			   md->phys_addr, md->virt_addr);
456 	}
457 
458 	return err1 || err2;
459 }
460 
461 static int __init efi_update_mem_attr(struct mm_struct *mm, efi_memory_desc_t *md)
462 {
463 	unsigned long pf = 0;
464 
465 	if (md->attribute & EFI_MEMORY_XP)
466 		pf |= _PAGE_NX;
467 
468 	if (!(md->attribute & EFI_MEMORY_RO))
469 		pf |= _PAGE_RW;
470 
471 	return efi_update_mappings(md, pf);
472 }
473 
474 void __init efi_runtime_update_mappings(void)
475 {
476 	efi_memory_desc_t *md;
477 
478 	if (efi_enabled(EFI_OLD_MEMMAP)) {
479 		if (__supported_pte_mask & _PAGE_NX)
480 			runtime_code_page_mkexec();
481 		return;
482 	}
483 
484 	/*
485 	 * Use the EFI Memory Attribute Table for mapping permissions if it
486 	 * exists, since it is intended to supersede EFI_PROPERTIES_TABLE.
487 	 */
488 	if (efi_enabled(EFI_MEM_ATTR)) {
489 		efi_memattr_apply_permissions(NULL, efi_update_mem_attr);
490 		return;
491 	}
492 
493 	/*
494 	 * EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace
495 	 * EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update
496 	 * permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not
497 	 * published by the firmware. Even if we find a buggy implementation of
498 	 * EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to
499 	 * EFI_PROPERTIES_TABLE, because of the same reason.
500 	 */
501 
502 	if (!efi_enabled(EFI_NX_PE_DATA))
503 		return;
504 
505 	for_each_efi_memory_desc(md) {
506 		unsigned long pf = 0;
507 
508 		if (!(md->attribute & EFI_MEMORY_RUNTIME))
509 			continue;
510 
511 		if (!(md->attribute & EFI_MEMORY_WB))
512 			pf |= _PAGE_PCD;
513 
514 		if ((md->attribute & EFI_MEMORY_XP) ||
515 			(md->type == EFI_RUNTIME_SERVICES_DATA))
516 			pf |= _PAGE_NX;
517 
518 		if (!(md->attribute & EFI_MEMORY_RO) &&
519 			(md->type != EFI_RUNTIME_SERVICES_CODE))
520 			pf |= _PAGE_RW;
521 
522 		efi_update_mappings(md, pf);
523 	}
524 }
525 
526 void __init efi_dump_pagetable(void)
527 {
528 #ifdef CONFIG_EFI_PGT_DUMP
529 	ptdump_walk_pgd_level(NULL, efi_pgd);
530 #endif
531 }
532 
533 #ifdef CONFIG_EFI_MIXED
534 extern efi_status_t efi64_thunk(u32, ...);
535 
536 #define runtime_service32(func)						 \
537 ({									 \
538 	u32 table = (u32)(unsigned long)efi.systab;			 \
539 	u32 *rt, *___f;							 \
540 									 \
541 	rt = (u32 *)(table + offsetof(efi_system_table_32_t, runtime));	 \
542 	___f = (u32 *)(*rt + offsetof(efi_runtime_services_32_t, func)); \
543 	*___f;								 \
544 })
545 
546 /*
547  * Switch to the EFI page tables early so that we can access the 1:1
548  * runtime services mappings which are not mapped in any other page
549  * tables. This function must be called before runtime_service32().
550  *
551  * Also, disable interrupts because the IDT points to 64-bit handlers,
552  * which aren't going to function correctly when we switch to 32-bit.
553  */
554 #define efi_thunk(f, ...)						\
555 ({									\
556 	efi_status_t __s;						\
557 	unsigned long __flags;						\
558 	u32 __func;							\
559 									\
560 	local_irq_save(__flags);					\
561 	arch_efi_call_virt_setup();					\
562 									\
563 	__func = runtime_service32(f);					\
564 	__s = efi64_thunk(__func, __VA_ARGS__);				\
565 									\
566 	arch_efi_call_virt_teardown();					\
567 	local_irq_restore(__flags);					\
568 									\
569 	__s;								\
570 })
571 
572 efi_status_t efi_thunk_set_virtual_address_map(
573 	void *phys_set_virtual_address_map,
574 	unsigned long memory_map_size,
575 	unsigned long descriptor_size,
576 	u32 descriptor_version,
577 	efi_memory_desc_t *virtual_map)
578 {
579 	efi_status_t status;
580 	unsigned long flags;
581 	u32 func;
582 
583 	efi_sync_low_kernel_mappings();
584 	local_irq_save(flags);
585 
586 	efi_scratch.prev_cr3 = read_cr3();
587 	write_cr3((unsigned long)efi_scratch.efi_pgt);
588 	__flush_tlb_all();
589 
590 	func = (u32)(unsigned long)phys_set_virtual_address_map;
591 	status = efi64_thunk(func, memory_map_size, descriptor_size,
592 			     descriptor_version, virtual_map);
593 
594 	write_cr3(efi_scratch.prev_cr3);
595 	__flush_tlb_all();
596 	local_irq_restore(flags);
597 
598 	return status;
599 }
600 
601 static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc)
602 {
603 	efi_status_t status;
604 	u32 phys_tm, phys_tc;
605 
606 	spin_lock(&rtc_lock);
607 
608 	phys_tm = virt_to_phys_or_null(tm);
609 	phys_tc = virt_to_phys_or_null(tc);
610 
611 	status = efi_thunk(get_time, phys_tm, phys_tc);
612 
613 	spin_unlock(&rtc_lock);
614 
615 	return status;
616 }
617 
618 static efi_status_t efi_thunk_set_time(efi_time_t *tm)
619 {
620 	efi_status_t status;
621 	u32 phys_tm;
622 
623 	spin_lock(&rtc_lock);
624 
625 	phys_tm = virt_to_phys_or_null(tm);
626 
627 	status = efi_thunk(set_time, phys_tm);
628 
629 	spin_unlock(&rtc_lock);
630 
631 	return status;
632 }
633 
634 static efi_status_t
635 efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending,
636 			  efi_time_t *tm)
637 {
638 	efi_status_t status;
639 	u32 phys_enabled, phys_pending, phys_tm;
640 
641 	spin_lock(&rtc_lock);
642 
643 	phys_enabled = virt_to_phys_or_null(enabled);
644 	phys_pending = virt_to_phys_or_null(pending);
645 	phys_tm = virt_to_phys_or_null(tm);
646 
647 	status = efi_thunk(get_wakeup_time, phys_enabled,
648 			     phys_pending, phys_tm);
649 
650 	spin_unlock(&rtc_lock);
651 
652 	return status;
653 }
654 
655 static efi_status_t
656 efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
657 {
658 	efi_status_t status;
659 	u32 phys_tm;
660 
661 	spin_lock(&rtc_lock);
662 
663 	phys_tm = virt_to_phys_or_null(tm);
664 
665 	status = efi_thunk(set_wakeup_time, enabled, phys_tm);
666 
667 	spin_unlock(&rtc_lock);
668 
669 	return status;
670 }
671 
672 static unsigned long efi_name_size(efi_char16_t *name)
673 {
674 	return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1;
675 }
676 
677 static efi_status_t
678 efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor,
679 		       u32 *attr, unsigned long *data_size, void *data)
680 {
681 	efi_status_t status;
682 	u32 phys_name, phys_vendor, phys_attr;
683 	u32 phys_data_size, phys_data;
684 
685 	phys_data_size = virt_to_phys_or_null(data_size);
686 	phys_vendor = virt_to_phys_or_null(vendor);
687 	phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
688 	phys_attr = virt_to_phys_or_null(attr);
689 	phys_data = virt_to_phys_or_null_size(data, *data_size);
690 
691 	status = efi_thunk(get_variable, phys_name, phys_vendor,
692 			   phys_attr, phys_data_size, phys_data);
693 
694 	return status;
695 }
696 
697 static efi_status_t
698 efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor,
699 		       u32 attr, unsigned long data_size, void *data)
700 {
701 	u32 phys_name, phys_vendor, phys_data;
702 	efi_status_t status;
703 
704 	phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
705 	phys_vendor = virt_to_phys_or_null(vendor);
706 	phys_data = virt_to_phys_or_null_size(data, data_size);
707 
708 	/* If data_size is > sizeof(u32) we've got problems */
709 	status = efi_thunk(set_variable, phys_name, phys_vendor,
710 			   attr, data_size, phys_data);
711 
712 	return status;
713 }
714 
715 static efi_status_t
716 efi_thunk_get_next_variable(unsigned long *name_size,
717 			    efi_char16_t *name,
718 			    efi_guid_t *vendor)
719 {
720 	efi_status_t status;
721 	u32 phys_name_size, phys_name, phys_vendor;
722 
723 	phys_name_size = virt_to_phys_or_null(name_size);
724 	phys_vendor = virt_to_phys_or_null(vendor);
725 	phys_name = virt_to_phys_or_null_size(name, *name_size);
726 
727 	status = efi_thunk(get_next_variable, phys_name_size,
728 			   phys_name, phys_vendor);
729 
730 	return status;
731 }
732 
733 static efi_status_t
734 efi_thunk_get_next_high_mono_count(u32 *count)
735 {
736 	efi_status_t status;
737 	u32 phys_count;
738 
739 	phys_count = virt_to_phys_or_null(count);
740 	status = efi_thunk(get_next_high_mono_count, phys_count);
741 
742 	return status;
743 }
744 
745 static void
746 efi_thunk_reset_system(int reset_type, efi_status_t status,
747 		       unsigned long data_size, efi_char16_t *data)
748 {
749 	u32 phys_data;
750 
751 	phys_data = virt_to_phys_or_null_size(data, data_size);
752 
753 	efi_thunk(reset_system, reset_type, status, data_size, phys_data);
754 }
755 
756 static efi_status_t
757 efi_thunk_update_capsule(efi_capsule_header_t **capsules,
758 			 unsigned long count, unsigned long sg_list)
759 {
760 	/*
761 	 * To properly support this function we would need to repackage
762 	 * 'capsules' because the firmware doesn't understand 64-bit
763 	 * pointers.
764 	 */
765 	return EFI_UNSUPPORTED;
766 }
767 
768 static efi_status_t
769 efi_thunk_query_variable_info(u32 attr, u64 *storage_space,
770 			      u64 *remaining_space,
771 			      u64 *max_variable_size)
772 {
773 	efi_status_t status;
774 	u32 phys_storage, phys_remaining, phys_max;
775 
776 	if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
777 		return EFI_UNSUPPORTED;
778 
779 	phys_storage = virt_to_phys_or_null(storage_space);
780 	phys_remaining = virt_to_phys_or_null(remaining_space);
781 	phys_max = virt_to_phys_or_null(max_variable_size);
782 
783 	status = efi_thunk(query_variable_info, attr, phys_storage,
784 			   phys_remaining, phys_max);
785 
786 	return status;
787 }
788 
789 static efi_status_t
790 efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules,
791 			     unsigned long count, u64 *max_size,
792 			     int *reset_type)
793 {
794 	/*
795 	 * To properly support this function we would need to repackage
796 	 * 'capsules' because the firmware doesn't understand 64-bit
797 	 * pointers.
798 	 */
799 	return EFI_UNSUPPORTED;
800 }
801 
802 void efi_thunk_runtime_setup(void)
803 {
804 	efi.get_time = efi_thunk_get_time;
805 	efi.set_time = efi_thunk_set_time;
806 	efi.get_wakeup_time = efi_thunk_get_wakeup_time;
807 	efi.set_wakeup_time = efi_thunk_set_wakeup_time;
808 	efi.get_variable = efi_thunk_get_variable;
809 	efi.get_next_variable = efi_thunk_get_next_variable;
810 	efi.set_variable = efi_thunk_set_variable;
811 	efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count;
812 	efi.reset_system = efi_thunk_reset_system;
813 	efi.query_variable_info = efi_thunk_query_variable_info;
814 	efi.update_capsule = efi_thunk_update_capsule;
815 	efi.query_capsule_caps = efi_thunk_query_capsule_caps;
816 }
817 #endif /* CONFIG_EFI_MIXED */
818