xref: /openbmc/linux/arch/x86/platform/efi/efi_64.c (revision 8795a739)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * x86_64 specific EFI support functions
4  * Based on Extensible Firmware Interface Specification version 1.0
5  *
6  * Copyright (C) 2005-2008 Intel Co.
7  *	Fenghua Yu <fenghua.yu@intel.com>
8  *	Bibo Mao <bibo.mao@intel.com>
9  *	Chandramouli Narayanan <mouli@linux.intel.com>
10  *	Huang Ying <ying.huang@intel.com>
11  *
12  * Code to convert EFI to E820 map has been implemented in elilo bootloader
13  * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table
14  * is setup appropriately for EFI runtime code.
15  * - mouli 06/14/2007.
16  *
17  */
18 
19 #define pr_fmt(fmt) "efi: " fmt
20 
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/mm.h>
24 #include <linux/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/memblock.h>
27 #include <linux/ioport.h>
28 #include <linux/mc146818rtc.h>
29 #include <linux/efi.h>
30 #include <linux/export.h>
31 #include <linux/uaccess.h>
32 #include <linux/io.h>
33 #include <linux/reboot.h>
34 #include <linux/slab.h>
35 #include <linux/ucs2_string.h>
36 #include <linux/mem_encrypt.h>
37 #include <linux/sched/task.h>
38 
39 #include <asm/setup.h>
40 #include <asm/page.h>
41 #include <asm/e820/api.h>
42 #include <asm/pgtable.h>
43 #include <asm/tlbflush.h>
44 #include <asm/proto.h>
45 #include <asm/efi.h>
46 #include <asm/cacheflush.h>
47 #include <asm/fixmap.h>
48 #include <asm/realmode.h>
49 #include <asm/time.h>
50 #include <asm/pgalloc.h>
51 
52 /*
53  * We allocate runtime services regions top-down, starting from -4G, i.e.
54  * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G.
55  */
56 static u64 efi_va = EFI_VA_START;
57 
58 struct efi_scratch efi_scratch;
59 
60 static void __init early_code_mapping_set_exec(int executable)
61 {
62 	efi_memory_desc_t *md;
63 
64 	if (!(__supported_pte_mask & _PAGE_NX))
65 		return;
66 
67 	/* Make EFI service code area executable */
68 	for_each_efi_memory_desc(md) {
69 		if (md->type == EFI_RUNTIME_SERVICES_CODE ||
70 		    md->type == EFI_BOOT_SERVICES_CODE)
71 			efi_set_executable(md, executable);
72 	}
73 }
74 
75 pgd_t * __init efi_call_phys_prolog(void)
76 {
77 	unsigned long vaddr, addr_pgd, addr_p4d, addr_pud;
78 	pgd_t *save_pgd, *pgd_k, *pgd_efi;
79 	p4d_t *p4d, *p4d_k, *p4d_efi;
80 	pud_t *pud;
81 
82 	int pgd;
83 	int n_pgds, i, j;
84 
85 	if (!efi_enabled(EFI_OLD_MEMMAP)) {
86 		efi_switch_mm(&efi_mm);
87 		return efi_mm.pgd;
88 	}
89 
90 	early_code_mapping_set_exec(1);
91 
92 	n_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT), PGDIR_SIZE);
93 	save_pgd = kmalloc_array(n_pgds, sizeof(*save_pgd), GFP_KERNEL);
94 	if (!save_pgd)
95 		return NULL;
96 
97 	/*
98 	 * Build 1:1 identity mapping for efi=old_map usage. Note that
99 	 * PAGE_OFFSET is PGDIR_SIZE aligned when KASLR is disabled, while
100 	 * it is PUD_SIZE ALIGNED with KASLR enabled. So for a given physical
101 	 * address X, the pud_index(X) != pud_index(__va(X)), we can only copy
102 	 * PUD entry of __va(X) to fill in pud entry of X to build 1:1 mapping.
103 	 * This means here we can only reuse the PMD tables of the direct mapping.
104 	 */
105 	for (pgd = 0; pgd < n_pgds; pgd++) {
106 		addr_pgd = (unsigned long)(pgd * PGDIR_SIZE);
107 		vaddr = (unsigned long)__va(pgd * PGDIR_SIZE);
108 		pgd_efi = pgd_offset_k(addr_pgd);
109 		save_pgd[pgd] = *pgd_efi;
110 
111 		p4d = p4d_alloc(&init_mm, pgd_efi, addr_pgd);
112 		if (!p4d) {
113 			pr_err("Failed to allocate p4d table!\n");
114 			goto out;
115 		}
116 
117 		for (i = 0; i < PTRS_PER_P4D; i++) {
118 			addr_p4d = addr_pgd + i * P4D_SIZE;
119 			p4d_efi = p4d + p4d_index(addr_p4d);
120 
121 			pud = pud_alloc(&init_mm, p4d_efi, addr_p4d);
122 			if (!pud) {
123 				pr_err("Failed to allocate pud table!\n");
124 				goto out;
125 			}
126 
127 			for (j = 0; j < PTRS_PER_PUD; j++) {
128 				addr_pud = addr_p4d + j * PUD_SIZE;
129 
130 				if (addr_pud > (max_pfn << PAGE_SHIFT))
131 					break;
132 
133 				vaddr = (unsigned long)__va(addr_pud);
134 
135 				pgd_k = pgd_offset_k(vaddr);
136 				p4d_k = p4d_offset(pgd_k, vaddr);
137 				pud[j] = *pud_offset(p4d_k, vaddr);
138 			}
139 		}
140 		pgd_offset_k(pgd * PGDIR_SIZE)->pgd &= ~_PAGE_NX;
141 	}
142 
143 	__flush_tlb_all();
144 	return save_pgd;
145 out:
146 	efi_call_phys_epilog(save_pgd);
147 	return NULL;
148 }
149 
150 void __init efi_call_phys_epilog(pgd_t *save_pgd)
151 {
152 	/*
153 	 * After the lock is released, the original page table is restored.
154 	 */
155 	int pgd_idx, i;
156 	int nr_pgds;
157 	pgd_t *pgd;
158 	p4d_t *p4d;
159 	pud_t *pud;
160 
161 	if (!efi_enabled(EFI_OLD_MEMMAP)) {
162 		efi_switch_mm(efi_scratch.prev_mm);
163 		return;
164 	}
165 
166 	nr_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT) , PGDIR_SIZE);
167 
168 	for (pgd_idx = 0; pgd_idx < nr_pgds; pgd_idx++) {
169 		pgd = pgd_offset_k(pgd_idx * PGDIR_SIZE);
170 		set_pgd(pgd_offset_k(pgd_idx * PGDIR_SIZE), save_pgd[pgd_idx]);
171 
172 		if (!pgd_present(*pgd))
173 			continue;
174 
175 		for (i = 0; i < PTRS_PER_P4D; i++) {
176 			p4d = p4d_offset(pgd,
177 					 pgd_idx * PGDIR_SIZE + i * P4D_SIZE);
178 
179 			if (!p4d_present(*p4d))
180 				continue;
181 
182 			pud = (pud_t *)p4d_page_vaddr(*p4d);
183 			pud_free(&init_mm, pud);
184 		}
185 
186 		p4d = (p4d_t *)pgd_page_vaddr(*pgd);
187 		p4d_free(&init_mm, p4d);
188 	}
189 
190 	kfree(save_pgd);
191 
192 	__flush_tlb_all();
193 	early_code_mapping_set_exec(0);
194 }
195 
196 EXPORT_SYMBOL_GPL(efi_mm);
197 
198 /*
199  * We need our own copy of the higher levels of the page tables
200  * because we want to avoid inserting EFI region mappings (EFI_VA_END
201  * to EFI_VA_START) into the standard kernel page tables. Everything
202  * else can be shared, see efi_sync_low_kernel_mappings().
203  *
204  * We don't want the pgd on the pgd_list and cannot use pgd_alloc() for the
205  * allocation.
206  */
207 int __init efi_alloc_page_tables(void)
208 {
209 	pgd_t *pgd, *efi_pgd;
210 	p4d_t *p4d;
211 	pud_t *pud;
212 	gfp_t gfp_mask;
213 
214 	if (efi_enabled(EFI_OLD_MEMMAP))
215 		return 0;
216 
217 	gfp_mask = GFP_KERNEL | __GFP_ZERO;
218 	efi_pgd = (pgd_t *)__get_free_pages(gfp_mask, PGD_ALLOCATION_ORDER);
219 	if (!efi_pgd)
220 		return -ENOMEM;
221 
222 	pgd = efi_pgd + pgd_index(EFI_VA_END);
223 	p4d = p4d_alloc(&init_mm, pgd, EFI_VA_END);
224 	if (!p4d) {
225 		free_page((unsigned long)efi_pgd);
226 		return -ENOMEM;
227 	}
228 
229 	pud = pud_alloc(&init_mm, p4d, EFI_VA_END);
230 	if (!pud) {
231 		if (pgtable_l5_enabled())
232 			free_page((unsigned long) pgd_page_vaddr(*pgd));
233 		free_pages((unsigned long)efi_pgd, PGD_ALLOCATION_ORDER);
234 		return -ENOMEM;
235 	}
236 
237 	efi_mm.pgd = efi_pgd;
238 	mm_init_cpumask(&efi_mm);
239 	init_new_context(NULL, &efi_mm);
240 
241 	return 0;
242 }
243 
244 /*
245  * Add low kernel mappings for passing arguments to EFI functions.
246  */
247 void efi_sync_low_kernel_mappings(void)
248 {
249 	unsigned num_entries;
250 	pgd_t *pgd_k, *pgd_efi;
251 	p4d_t *p4d_k, *p4d_efi;
252 	pud_t *pud_k, *pud_efi;
253 	pgd_t *efi_pgd = efi_mm.pgd;
254 
255 	if (efi_enabled(EFI_OLD_MEMMAP))
256 		return;
257 
258 	/*
259 	 * We can share all PGD entries apart from the one entry that
260 	 * covers the EFI runtime mapping space.
261 	 *
262 	 * Make sure the EFI runtime region mappings are guaranteed to
263 	 * only span a single PGD entry and that the entry also maps
264 	 * other important kernel regions.
265 	 */
266 	MAYBE_BUILD_BUG_ON(pgd_index(EFI_VA_END) != pgd_index(MODULES_END));
267 	MAYBE_BUILD_BUG_ON((EFI_VA_START & PGDIR_MASK) !=
268 			(EFI_VA_END & PGDIR_MASK));
269 
270 	pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET);
271 	pgd_k = pgd_offset_k(PAGE_OFFSET);
272 
273 	num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET);
274 	memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries);
275 
276 	/*
277 	 * As with PGDs, we share all P4D entries apart from the one entry
278 	 * that covers the EFI runtime mapping space.
279 	 */
280 	BUILD_BUG_ON(p4d_index(EFI_VA_END) != p4d_index(MODULES_END));
281 	BUILD_BUG_ON((EFI_VA_START & P4D_MASK) != (EFI_VA_END & P4D_MASK));
282 
283 	pgd_efi = efi_pgd + pgd_index(EFI_VA_END);
284 	pgd_k = pgd_offset_k(EFI_VA_END);
285 	p4d_efi = p4d_offset(pgd_efi, 0);
286 	p4d_k = p4d_offset(pgd_k, 0);
287 
288 	num_entries = p4d_index(EFI_VA_END);
289 	memcpy(p4d_efi, p4d_k, sizeof(p4d_t) * num_entries);
290 
291 	/*
292 	 * We share all the PUD entries apart from those that map the
293 	 * EFI regions. Copy around them.
294 	 */
295 	BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0);
296 	BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0);
297 
298 	p4d_efi = p4d_offset(pgd_efi, EFI_VA_END);
299 	p4d_k = p4d_offset(pgd_k, EFI_VA_END);
300 	pud_efi = pud_offset(p4d_efi, 0);
301 	pud_k = pud_offset(p4d_k, 0);
302 
303 	num_entries = pud_index(EFI_VA_END);
304 	memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
305 
306 	pud_efi = pud_offset(p4d_efi, EFI_VA_START);
307 	pud_k = pud_offset(p4d_k, EFI_VA_START);
308 
309 	num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START);
310 	memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
311 }
312 
313 /*
314  * Wrapper for slow_virt_to_phys() that handles NULL addresses.
315  */
316 static inline phys_addr_t
317 virt_to_phys_or_null_size(void *va, unsigned long size)
318 {
319 	bool bad_size;
320 
321 	if (!va)
322 		return 0;
323 
324 	if (virt_addr_valid(va))
325 		return virt_to_phys(va);
326 
327 	/*
328 	 * A fully aligned variable on the stack is guaranteed not to
329 	 * cross a page bounary. Try to catch strings on the stack by
330 	 * checking that 'size' is a power of two.
331 	 */
332 	bad_size = size > PAGE_SIZE || !is_power_of_2(size);
333 
334 	WARN_ON(!IS_ALIGNED((unsigned long)va, size) || bad_size);
335 
336 	return slow_virt_to_phys(va);
337 }
338 
339 #define virt_to_phys_or_null(addr)				\
340 	virt_to_phys_or_null_size((addr), sizeof(*(addr)))
341 
342 int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
343 {
344 	unsigned long pfn, text, pf;
345 	struct page *page;
346 	unsigned npages;
347 	pgd_t *pgd = efi_mm.pgd;
348 
349 	if (efi_enabled(EFI_OLD_MEMMAP))
350 		return 0;
351 
352 	/*
353 	 * It can happen that the physical address of new_memmap lands in memory
354 	 * which is not mapped in the EFI page table. Therefore we need to go
355 	 * and ident-map those pages containing the map before calling
356 	 * phys_efi_set_virtual_address_map().
357 	 */
358 	pfn = pa_memmap >> PAGE_SHIFT;
359 	pf = _PAGE_NX | _PAGE_RW | _PAGE_ENC;
360 	if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, pf)) {
361 		pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap);
362 		return 1;
363 	}
364 
365 	/*
366 	 * Certain firmware versions are way too sentimential and still believe
367 	 * they are exclusive and unquestionable owners of the first physical page,
368 	 * even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY
369 	 * (but then write-access it later during SetVirtualAddressMap()).
370 	 *
371 	 * Create a 1:1 mapping for this page, to avoid triple faults during early
372 	 * boot with such firmware. We are free to hand this page to the BIOS,
373 	 * as trim_bios_range() will reserve the first page and isolate it away
374 	 * from memory allocators anyway.
375 	 */
376 	pf = _PAGE_RW;
377 	if (sev_active())
378 		pf |= _PAGE_ENC;
379 
380 	if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, pf)) {
381 		pr_err("Failed to create 1:1 mapping for the first page!\n");
382 		return 1;
383 	}
384 
385 	/*
386 	 * When making calls to the firmware everything needs to be 1:1
387 	 * mapped and addressable with 32-bit pointers. Map the kernel
388 	 * text and allocate a new stack because we can't rely on the
389 	 * stack pointer being < 4GB.
390 	 */
391 	if (!IS_ENABLED(CONFIG_EFI_MIXED) || efi_is_native())
392 		return 0;
393 
394 	page = alloc_page(GFP_KERNEL|__GFP_DMA32);
395 	if (!page)
396 		panic("Unable to allocate EFI runtime stack < 4GB\n");
397 
398 	efi_scratch.phys_stack = virt_to_phys(page_address(page));
399 	efi_scratch.phys_stack += PAGE_SIZE; /* stack grows down */
400 
401 	npages = (_etext - _text) >> PAGE_SHIFT;
402 	text = __pa(_text);
403 	pfn = text >> PAGE_SHIFT;
404 
405 	pf = _PAGE_RW | _PAGE_ENC;
406 	if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, pf)) {
407 		pr_err("Failed to map kernel text 1:1\n");
408 		return 1;
409 	}
410 
411 	return 0;
412 }
413 
414 static void __init __map_region(efi_memory_desc_t *md, u64 va)
415 {
416 	unsigned long flags = _PAGE_RW;
417 	unsigned long pfn;
418 	pgd_t *pgd = efi_mm.pgd;
419 
420 	if (!(md->attribute & EFI_MEMORY_WB))
421 		flags |= _PAGE_PCD;
422 
423 	if (sev_active() && md->type != EFI_MEMORY_MAPPED_IO)
424 		flags |= _PAGE_ENC;
425 
426 	pfn = md->phys_addr >> PAGE_SHIFT;
427 	if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags))
428 		pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
429 			   md->phys_addr, va);
430 }
431 
432 void __init efi_map_region(efi_memory_desc_t *md)
433 {
434 	unsigned long size = md->num_pages << PAGE_SHIFT;
435 	u64 pa = md->phys_addr;
436 
437 	if (efi_enabled(EFI_OLD_MEMMAP))
438 		return old_map_region(md);
439 
440 	/*
441 	 * Make sure the 1:1 mappings are present as a catch-all for b0rked
442 	 * firmware which doesn't update all internal pointers after switching
443 	 * to virtual mode and would otherwise crap on us.
444 	 */
445 	__map_region(md, md->phys_addr);
446 
447 	/*
448 	 * Enforce the 1:1 mapping as the default virtual address when
449 	 * booting in EFI mixed mode, because even though we may be
450 	 * running a 64-bit kernel, the firmware may only be 32-bit.
451 	 */
452 	if (!efi_is_native () && IS_ENABLED(CONFIG_EFI_MIXED)) {
453 		md->virt_addr = md->phys_addr;
454 		return;
455 	}
456 
457 	efi_va -= size;
458 
459 	/* Is PA 2M-aligned? */
460 	if (!(pa & (PMD_SIZE - 1))) {
461 		efi_va &= PMD_MASK;
462 	} else {
463 		u64 pa_offset = pa & (PMD_SIZE - 1);
464 		u64 prev_va = efi_va;
465 
466 		/* get us the same offset within this 2M page */
467 		efi_va = (efi_va & PMD_MASK) + pa_offset;
468 
469 		if (efi_va > prev_va)
470 			efi_va -= PMD_SIZE;
471 	}
472 
473 	if (efi_va < EFI_VA_END) {
474 		pr_warn(FW_WARN "VA address range overflow!\n");
475 		return;
476 	}
477 
478 	/* Do the VA map */
479 	__map_region(md, efi_va);
480 	md->virt_addr = efi_va;
481 }
482 
483 /*
484  * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges.
485  * md->virt_addr is the original virtual address which had been mapped in kexec
486  * 1st kernel.
487  */
488 void __init efi_map_region_fixed(efi_memory_desc_t *md)
489 {
490 	__map_region(md, md->phys_addr);
491 	__map_region(md, md->virt_addr);
492 }
493 
494 void __iomem *__init efi_ioremap(unsigned long phys_addr, unsigned long size,
495 				 u32 type, u64 attribute)
496 {
497 	unsigned long last_map_pfn;
498 
499 	if (type == EFI_MEMORY_MAPPED_IO)
500 		return ioremap(phys_addr, size);
501 
502 	last_map_pfn = init_memory_mapping(phys_addr, phys_addr + size);
503 	if ((last_map_pfn << PAGE_SHIFT) < phys_addr + size) {
504 		unsigned long top = last_map_pfn << PAGE_SHIFT;
505 		efi_ioremap(top, size - (top - phys_addr), type, attribute);
506 	}
507 
508 	if (!(attribute & EFI_MEMORY_WB))
509 		efi_memory_uc((u64)(unsigned long)__va(phys_addr), size);
510 
511 	return (void __iomem *)__va(phys_addr);
512 }
513 
514 void __init parse_efi_setup(u64 phys_addr, u32 data_len)
515 {
516 	efi_setup = phys_addr + sizeof(struct setup_data);
517 }
518 
519 static int __init efi_update_mappings(efi_memory_desc_t *md, unsigned long pf)
520 {
521 	unsigned long pfn;
522 	pgd_t *pgd = efi_mm.pgd;
523 	int err1, err2;
524 
525 	/* Update the 1:1 mapping */
526 	pfn = md->phys_addr >> PAGE_SHIFT;
527 	err1 = kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf);
528 	if (err1) {
529 		pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n",
530 			   md->phys_addr, md->virt_addr);
531 	}
532 
533 	err2 = kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf);
534 	if (err2) {
535 		pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n",
536 			   md->phys_addr, md->virt_addr);
537 	}
538 
539 	return err1 || err2;
540 }
541 
542 static int __init efi_update_mem_attr(struct mm_struct *mm, efi_memory_desc_t *md)
543 {
544 	unsigned long pf = 0;
545 
546 	if (md->attribute & EFI_MEMORY_XP)
547 		pf |= _PAGE_NX;
548 
549 	if (!(md->attribute & EFI_MEMORY_RO))
550 		pf |= _PAGE_RW;
551 
552 	if (sev_active())
553 		pf |= _PAGE_ENC;
554 
555 	return efi_update_mappings(md, pf);
556 }
557 
558 void __init efi_runtime_update_mappings(void)
559 {
560 	efi_memory_desc_t *md;
561 
562 	if (efi_enabled(EFI_OLD_MEMMAP)) {
563 		if (__supported_pte_mask & _PAGE_NX)
564 			runtime_code_page_mkexec();
565 		return;
566 	}
567 
568 	/*
569 	 * Use the EFI Memory Attribute Table for mapping permissions if it
570 	 * exists, since it is intended to supersede EFI_PROPERTIES_TABLE.
571 	 */
572 	if (efi_enabled(EFI_MEM_ATTR)) {
573 		efi_memattr_apply_permissions(NULL, efi_update_mem_attr);
574 		return;
575 	}
576 
577 	/*
578 	 * EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace
579 	 * EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update
580 	 * permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not
581 	 * published by the firmware. Even if we find a buggy implementation of
582 	 * EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to
583 	 * EFI_PROPERTIES_TABLE, because of the same reason.
584 	 */
585 
586 	if (!efi_enabled(EFI_NX_PE_DATA))
587 		return;
588 
589 	for_each_efi_memory_desc(md) {
590 		unsigned long pf = 0;
591 
592 		if (!(md->attribute & EFI_MEMORY_RUNTIME))
593 			continue;
594 
595 		if (!(md->attribute & EFI_MEMORY_WB))
596 			pf |= _PAGE_PCD;
597 
598 		if ((md->attribute & EFI_MEMORY_XP) ||
599 			(md->type == EFI_RUNTIME_SERVICES_DATA))
600 			pf |= _PAGE_NX;
601 
602 		if (!(md->attribute & EFI_MEMORY_RO) &&
603 			(md->type != EFI_RUNTIME_SERVICES_CODE))
604 			pf |= _PAGE_RW;
605 
606 		if (sev_active())
607 			pf |= _PAGE_ENC;
608 
609 		efi_update_mappings(md, pf);
610 	}
611 }
612 
613 void __init efi_dump_pagetable(void)
614 {
615 #ifdef CONFIG_EFI_PGT_DUMP
616 	if (efi_enabled(EFI_OLD_MEMMAP))
617 		ptdump_walk_pgd_level(NULL, swapper_pg_dir);
618 	else
619 		ptdump_walk_pgd_level(NULL, efi_mm.pgd);
620 #endif
621 }
622 
623 /*
624  * Makes the calling thread switch to/from efi_mm context. Can be used
625  * in a kernel thread and user context. Preemption needs to remain disabled
626  * while the EFI-mm is borrowed. mmgrab()/mmdrop() is not used because the mm
627  * can not change under us.
628  * It should be ensured that there are no concurent calls to this function.
629  */
630 void efi_switch_mm(struct mm_struct *mm)
631 {
632 	efi_scratch.prev_mm = current->active_mm;
633 	current->active_mm = mm;
634 	switch_mm(efi_scratch.prev_mm, mm, NULL);
635 }
636 
637 #ifdef CONFIG_EFI_MIXED
638 extern efi_status_t efi64_thunk(u32, ...);
639 
640 static DEFINE_SPINLOCK(efi_runtime_lock);
641 
642 #define runtime_service32(func)						 \
643 ({									 \
644 	u32 table = (u32)(unsigned long)efi.systab;			 \
645 	u32 *rt, *___f;							 \
646 									 \
647 	rt = (u32 *)(table + offsetof(efi_system_table_32_t, runtime));	 \
648 	___f = (u32 *)(*rt + offsetof(efi_runtime_services_32_t, func)); \
649 	*___f;								 \
650 })
651 
652 /*
653  * Switch to the EFI page tables early so that we can access the 1:1
654  * runtime services mappings which are not mapped in any other page
655  * tables. This function must be called before runtime_service32().
656  *
657  * Also, disable interrupts because the IDT points to 64-bit handlers,
658  * which aren't going to function correctly when we switch to 32-bit.
659  */
660 #define efi_thunk(f, ...)						\
661 ({									\
662 	efi_status_t __s;						\
663 	u32 __func;							\
664 									\
665 	arch_efi_call_virt_setup();					\
666 									\
667 	__func = runtime_service32(f);					\
668 	__s = efi64_thunk(__func, __VA_ARGS__);				\
669 									\
670 	arch_efi_call_virt_teardown();					\
671 									\
672 	__s;								\
673 })
674 
675 efi_status_t efi_thunk_set_virtual_address_map(
676 	void *phys_set_virtual_address_map,
677 	unsigned long memory_map_size,
678 	unsigned long descriptor_size,
679 	u32 descriptor_version,
680 	efi_memory_desc_t *virtual_map)
681 {
682 	efi_status_t status;
683 	unsigned long flags;
684 	u32 func;
685 
686 	efi_sync_low_kernel_mappings();
687 	local_irq_save(flags);
688 
689 	efi_switch_mm(&efi_mm);
690 
691 	func = (u32)(unsigned long)phys_set_virtual_address_map;
692 	status = efi64_thunk(func, memory_map_size, descriptor_size,
693 			     descriptor_version, virtual_map);
694 
695 	efi_switch_mm(efi_scratch.prev_mm);
696 	local_irq_restore(flags);
697 
698 	return status;
699 }
700 
701 static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc)
702 {
703 	efi_status_t status;
704 	u32 phys_tm, phys_tc;
705 	unsigned long flags;
706 
707 	spin_lock(&rtc_lock);
708 	spin_lock_irqsave(&efi_runtime_lock, flags);
709 
710 	phys_tm = virt_to_phys_or_null(tm);
711 	phys_tc = virt_to_phys_or_null(tc);
712 
713 	status = efi_thunk(get_time, phys_tm, phys_tc);
714 
715 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
716 	spin_unlock(&rtc_lock);
717 
718 	return status;
719 }
720 
721 static efi_status_t efi_thunk_set_time(efi_time_t *tm)
722 {
723 	efi_status_t status;
724 	u32 phys_tm;
725 	unsigned long flags;
726 
727 	spin_lock(&rtc_lock);
728 	spin_lock_irqsave(&efi_runtime_lock, flags);
729 
730 	phys_tm = virt_to_phys_or_null(tm);
731 
732 	status = efi_thunk(set_time, phys_tm);
733 
734 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
735 	spin_unlock(&rtc_lock);
736 
737 	return status;
738 }
739 
740 static efi_status_t
741 efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending,
742 			  efi_time_t *tm)
743 {
744 	efi_status_t status;
745 	u32 phys_enabled, phys_pending, phys_tm;
746 	unsigned long flags;
747 
748 	spin_lock(&rtc_lock);
749 	spin_lock_irqsave(&efi_runtime_lock, flags);
750 
751 	phys_enabled = virt_to_phys_or_null(enabled);
752 	phys_pending = virt_to_phys_or_null(pending);
753 	phys_tm = virt_to_phys_or_null(tm);
754 
755 	status = efi_thunk(get_wakeup_time, phys_enabled,
756 			     phys_pending, phys_tm);
757 
758 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
759 	spin_unlock(&rtc_lock);
760 
761 	return status;
762 }
763 
764 static efi_status_t
765 efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
766 {
767 	efi_status_t status;
768 	u32 phys_tm;
769 	unsigned long flags;
770 
771 	spin_lock(&rtc_lock);
772 	spin_lock_irqsave(&efi_runtime_lock, flags);
773 
774 	phys_tm = virt_to_phys_or_null(tm);
775 
776 	status = efi_thunk(set_wakeup_time, enabled, phys_tm);
777 
778 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
779 	spin_unlock(&rtc_lock);
780 
781 	return status;
782 }
783 
784 static unsigned long efi_name_size(efi_char16_t *name)
785 {
786 	return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1;
787 }
788 
789 static efi_status_t
790 efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor,
791 		       u32 *attr, unsigned long *data_size, void *data)
792 {
793 	efi_status_t status;
794 	u32 phys_name, phys_vendor, phys_attr;
795 	u32 phys_data_size, phys_data;
796 	unsigned long flags;
797 
798 	spin_lock_irqsave(&efi_runtime_lock, flags);
799 
800 	phys_data_size = virt_to_phys_or_null(data_size);
801 	phys_vendor = virt_to_phys_or_null(vendor);
802 	phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
803 	phys_attr = virt_to_phys_or_null(attr);
804 	phys_data = virt_to_phys_or_null_size(data, *data_size);
805 
806 	status = efi_thunk(get_variable, phys_name, phys_vendor,
807 			   phys_attr, phys_data_size, phys_data);
808 
809 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
810 
811 	return status;
812 }
813 
814 static efi_status_t
815 efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor,
816 		       u32 attr, unsigned long data_size, void *data)
817 {
818 	u32 phys_name, phys_vendor, phys_data;
819 	efi_status_t status;
820 	unsigned long flags;
821 
822 	spin_lock_irqsave(&efi_runtime_lock, flags);
823 
824 	phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
825 	phys_vendor = virt_to_phys_or_null(vendor);
826 	phys_data = virt_to_phys_or_null_size(data, data_size);
827 
828 	/* If data_size is > sizeof(u32) we've got problems */
829 	status = efi_thunk(set_variable, phys_name, phys_vendor,
830 			   attr, data_size, phys_data);
831 
832 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
833 
834 	return status;
835 }
836 
837 static efi_status_t
838 efi_thunk_set_variable_nonblocking(efi_char16_t *name, efi_guid_t *vendor,
839 				   u32 attr, unsigned long data_size,
840 				   void *data)
841 {
842 	u32 phys_name, phys_vendor, phys_data;
843 	efi_status_t status;
844 	unsigned long flags;
845 
846 	if (!spin_trylock_irqsave(&efi_runtime_lock, flags))
847 		return EFI_NOT_READY;
848 
849 	phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
850 	phys_vendor = virt_to_phys_or_null(vendor);
851 	phys_data = virt_to_phys_or_null_size(data, data_size);
852 
853 	/* If data_size is > sizeof(u32) we've got problems */
854 	status = efi_thunk(set_variable, phys_name, phys_vendor,
855 			   attr, data_size, phys_data);
856 
857 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
858 
859 	return status;
860 }
861 
862 static efi_status_t
863 efi_thunk_get_next_variable(unsigned long *name_size,
864 			    efi_char16_t *name,
865 			    efi_guid_t *vendor)
866 {
867 	efi_status_t status;
868 	u32 phys_name_size, phys_name, phys_vendor;
869 	unsigned long flags;
870 
871 	spin_lock_irqsave(&efi_runtime_lock, flags);
872 
873 	phys_name_size = virt_to_phys_or_null(name_size);
874 	phys_vendor = virt_to_phys_or_null(vendor);
875 	phys_name = virt_to_phys_or_null_size(name, *name_size);
876 
877 	status = efi_thunk(get_next_variable, phys_name_size,
878 			   phys_name, phys_vendor);
879 
880 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
881 
882 	return status;
883 }
884 
885 static efi_status_t
886 efi_thunk_get_next_high_mono_count(u32 *count)
887 {
888 	efi_status_t status;
889 	u32 phys_count;
890 	unsigned long flags;
891 
892 	spin_lock_irqsave(&efi_runtime_lock, flags);
893 
894 	phys_count = virt_to_phys_or_null(count);
895 	status = efi_thunk(get_next_high_mono_count, phys_count);
896 
897 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
898 
899 	return status;
900 }
901 
902 static void
903 efi_thunk_reset_system(int reset_type, efi_status_t status,
904 		       unsigned long data_size, efi_char16_t *data)
905 {
906 	u32 phys_data;
907 	unsigned long flags;
908 
909 	spin_lock_irqsave(&efi_runtime_lock, flags);
910 
911 	phys_data = virt_to_phys_or_null_size(data, data_size);
912 
913 	efi_thunk(reset_system, reset_type, status, data_size, phys_data);
914 
915 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
916 }
917 
918 static efi_status_t
919 efi_thunk_update_capsule(efi_capsule_header_t **capsules,
920 			 unsigned long count, unsigned long sg_list)
921 {
922 	/*
923 	 * To properly support this function we would need to repackage
924 	 * 'capsules' because the firmware doesn't understand 64-bit
925 	 * pointers.
926 	 */
927 	return EFI_UNSUPPORTED;
928 }
929 
930 static efi_status_t
931 efi_thunk_query_variable_info(u32 attr, u64 *storage_space,
932 			      u64 *remaining_space,
933 			      u64 *max_variable_size)
934 {
935 	efi_status_t status;
936 	u32 phys_storage, phys_remaining, phys_max;
937 	unsigned long flags;
938 
939 	if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
940 		return EFI_UNSUPPORTED;
941 
942 	spin_lock_irqsave(&efi_runtime_lock, flags);
943 
944 	phys_storage = virt_to_phys_or_null(storage_space);
945 	phys_remaining = virt_to_phys_or_null(remaining_space);
946 	phys_max = virt_to_phys_or_null(max_variable_size);
947 
948 	status = efi_thunk(query_variable_info, attr, phys_storage,
949 			   phys_remaining, phys_max);
950 
951 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
952 
953 	return status;
954 }
955 
956 static efi_status_t
957 efi_thunk_query_variable_info_nonblocking(u32 attr, u64 *storage_space,
958 					  u64 *remaining_space,
959 					  u64 *max_variable_size)
960 {
961 	efi_status_t status;
962 	u32 phys_storage, phys_remaining, phys_max;
963 	unsigned long flags;
964 
965 	if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
966 		return EFI_UNSUPPORTED;
967 
968 	if (!spin_trylock_irqsave(&efi_runtime_lock, flags))
969 		return EFI_NOT_READY;
970 
971 	phys_storage = virt_to_phys_or_null(storage_space);
972 	phys_remaining = virt_to_phys_or_null(remaining_space);
973 	phys_max = virt_to_phys_or_null(max_variable_size);
974 
975 	status = efi_thunk(query_variable_info, attr, phys_storage,
976 			   phys_remaining, phys_max);
977 
978 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
979 
980 	return status;
981 }
982 
983 static efi_status_t
984 efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules,
985 			     unsigned long count, u64 *max_size,
986 			     int *reset_type)
987 {
988 	/*
989 	 * To properly support this function we would need to repackage
990 	 * 'capsules' because the firmware doesn't understand 64-bit
991 	 * pointers.
992 	 */
993 	return EFI_UNSUPPORTED;
994 }
995 
996 void efi_thunk_runtime_setup(void)
997 {
998 	efi.get_time = efi_thunk_get_time;
999 	efi.set_time = efi_thunk_set_time;
1000 	efi.get_wakeup_time = efi_thunk_get_wakeup_time;
1001 	efi.set_wakeup_time = efi_thunk_set_wakeup_time;
1002 	efi.get_variable = efi_thunk_get_variable;
1003 	efi.get_next_variable = efi_thunk_get_next_variable;
1004 	efi.set_variable = efi_thunk_set_variable;
1005 	efi.set_variable_nonblocking = efi_thunk_set_variable_nonblocking;
1006 	efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count;
1007 	efi.reset_system = efi_thunk_reset_system;
1008 	efi.query_variable_info = efi_thunk_query_variable_info;
1009 	efi.query_variable_info_nonblocking = efi_thunk_query_variable_info_nonblocking;
1010 	efi.update_capsule = efi_thunk_update_capsule;
1011 	efi.query_capsule_caps = efi_thunk_query_capsule_caps;
1012 }
1013 #endif /* CONFIG_EFI_MIXED */
1014