xref: /openbmc/linux/arch/x86/platform/efi/efi_64.c (revision 84b102f5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * x86_64 specific EFI support functions
4  * Based on Extensible Firmware Interface Specification version 1.0
5  *
6  * Copyright (C) 2005-2008 Intel Co.
7  *	Fenghua Yu <fenghua.yu@intel.com>
8  *	Bibo Mao <bibo.mao@intel.com>
9  *	Chandramouli Narayanan <mouli@linux.intel.com>
10  *	Huang Ying <ying.huang@intel.com>
11  *
12  * Code to convert EFI to E820 map has been implemented in elilo bootloader
13  * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table
14  * is setup appropriately for EFI runtime code.
15  * - mouli 06/14/2007.
16  *
17  */
18 
19 #define pr_fmt(fmt) "efi: " fmt
20 
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/mm.h>
24 #include <linux/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/memblock.h>
27 #include <linux/ioport.h>
28 #include <linux/mc146818rtc.h>
29 #include <linux/efi.h>
30 #include <linux/export.h>
31 #include <linux/uaccess.h>
32 #include <linux/io.h>
33 #include <linux/reboot.h>
34 #include <linux/slab.h>
35 #include <linux/ucs2_string.h>
36 #include <linux/mem_encrypt.h>
37 #include <linux/sched/task.h>
38 
39 #include <asm/setup.h>
40 #include <asm/page.h>
41 #include <asm/e820/api.h>
42 #include <asm/tlbflush.h>
43 #include <asm/proto.h>
44 #include <asm/efi.h>
45 #include <asm/cacheflush.h>
46 #include <asm/fixmap.h>
47 #include <asm/realmode.h>
48 #include <asm/time.h>
49 #include <asm/pgalloc.h>
50 #include <asm/sev-es.h>
51 
52 /*
53  * We allocate runtime services regions top-down, starting from -4G, i.e.
54  * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G.
55  */
56 static u64 efi_va = EFI_VA_START;
57 
58 struct efi_scratch efi_scratch;
59 
60 EXPORT_SYMBOL_GPL(efi_mm);
61 
62 /*
63  * We need our own copy of the higher levels of the page tables
64  * because we want to avoid inserting EFI region mappings (EFI_VA_END
65  * to EFI_VA_START) into the standard kernel page tables. Everything
66  * else can be shared, see efi_sync_low_kernel_mappings().
67  *
68  * We don't want the pgd on the pgd_list and cannot use pgd_alloc() for the
69  * allocation.
70  */
71 int __init efi_alloc_page_tables(void)
72 {
73 	pgd_t *pgd, *efi_pgd;
74 	p4d_t *p4d;
75 	pud_t *pud;
76 	gfp_t gfp_mask;
77 
78 	gfp_mask = GFP_KERNEL | __GFP_ZERO;
79 	efi_pgd = (pgd_t *)__get_free_pages(gfp_mask, PGD_ALLOCATION_ORDER);
80 	if (!efi_pgd)
81 		goto fail;
82 
83 	pgd = efi_pgd + pgd_index(EFI_VA_END);
84 	p4d = p4d_alloc(&init_mm, pgd, EFI_VA_END);
85 	if (!p4d)
86 		goto free_pgd;
87 
88 	pud = pud_alloc(&init_mm, p4d, EFI_VA_END);
89 	if (!pud)
90 		goto free_p4d;
91 
92 	efi_mm.pgd = efi_pgd;
93 	mm_init_cpumask(&efi_mm);
94 	init_new_context(NULL, &efi_mm);
95 
96 	return 0;
97 
98 free_p4d:
99 	if (pgtable_l5_enabled())
100 		free_page((unsigned long)pgd_page_vaddr(*pgd));
101 free_pgd:
102 	free_pages((unsigned long)efi_pgd, PGD_ALLOCATION_ORDER);
103 fail:
104 	return -ENOMEM;
105 }
106 
107 /*
108  * Add low kernel mappings for passing arguments to EFI functions.
109  */
110 void efi_sync_low_kernel_mappings(void)
111 {
112 	unsigned num_entries;
113 	pgd_t *pgd_k, *pgd_efi;
114 	p4d_t *p4d_k, *p4d_efi;
115 	pud_t *pud_k, *pud_efi;
116 	pgd_t *efi_pgd = efi_mm.pgd;
117 
118 	pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET);
119 	pgd_k = pgd_offset_k(PAGE_OFFSET);
120 
121 	num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET);
122 	memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries);
123 
124 	pgd_efi = efi_pgd + pgd_index(EFI_VA_END);
125 	pgd_k = pgd_offset_k(EFI_VA_END);
126 	p4d_efi = p4d_offset(pgd_efi, 0);
127 	p4d_k = p4d_offset(pgd_k, 0);
128 
129 	num_entries = p4d_index(EFI_VA_END);
130 	memcpy(p4d_efi, p4d_k, sizeof(p4d_t) * num_entries);
131 
132 	/*
133 	 * We share all the PUD entries apart from those that map the
134 	 * EFI regions. Copy around them.
135 	 */
136 	BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0);
137 	BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0);
138 
139 	p4d_efi = p4d_offset(pgd_efi, EFI_VA_END);
140 	p4d_k = p4d_offset(pgd_k, EFI_VA_END);
141 	pud_efi = pud_offset(p4d_efi, 0);
142 	pud_k = pud_offset(p4d_k, 0);
143 
144 	num_entries = pud_index(EFI_VA_END);
145 	memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
146 
147 	pud_efi = pud_offset(p4d_efi, EFI_VA_START);
148 	pud_k = pud_offset(p4d_k, EFI_VA_START);
149 
150 	num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START);
151 	memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
152 }
153 
154 /*
155  * Wrapper for slow_virt_to_phys() that handles NULL addresses.
156  */
157 static inline phys_addr_t
158 virt_to_phys_or_null_size(void *va, unsigned long size)
159 {
160 	phys_addr_t pa;
161 
162 	if (!va)
163 		return 0;
164 
165 	if (virt_addr_valid(va))
166 		return virt_to_phys(va);
167 
168 	pa = slow_virt_to_phys(va);
169 
170 	/* check if the object crosses a page boundary */
171 	if (WARN_ON((pa ^ (pa + size - 1)) & PAGE_MASK))
172 		return 0;
173 
174 	return pa;
175 }
176 
177 #define virt_to_phys_or_null(addr)				\
178 	virt_to_phys_or_null_size((addr), sizeof(*(addr)))
179 
180 int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
181 {
182 	unsigned long pfn, text, pf, rodata;
183 	struct page *page;
184 	unsigned npages;
185 	pgd_t *pgd = efi_mm.pgd;
186 
187 	/*
188 	 * It can happen that the physical address of new_memmap lands in memory
189 	 * which is not mapped in the EFI page table. Therefore we need to go
190 	 * and ident-map those pages containing the map before calling
191 	 * phys_efi_set_virtual_address_map().
192 	 */
193 	pfn = pa_memmap >> PAGE_SHIFT;
194 	pf = _PAGE_NX | _PAGE_RW | _PAGE_ENC;
195 	if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, pf)) {
196 		pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap);
197 		return 1;
198 	}
199 
200 	/*
201 	 * Certain firmware versions are way too sentimential and still believe
202 	 * they are exclusive and unquestionable owners of the first physical page,
203 	 * even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY
204 	 * (but then write-access it later during SetVirtualAddressMap()).
205 	 *
206 	 * Create a 1:1 mapping for this page, to avoid triple faults during early
207 	 * boot with such firmware. We are free to hand this page to the BIOS,
208 	 * as trim_bios_range() will reserve the first page and isolate it away
209 	 * from memory allocators anyway.
210 	 */
211 	if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, pf)) {
212 		pr_err("Failed to create 1:1 mapping for the first page!\n");
213 		return 1;
214 	}
215 
216 	/*
217 	 * When SEV-ES is active, the GHCB as set by the kernel will be used
218 	 * by firmware. Create a 1:1 unencrypted mapping for each GHCB.
219 	 */
220 	if (sev_es_efi_map_ghcbs(pgd)) {
221 		pr_err("Failed to create 1:1 mapping for the GHCBs!\n");
222 		return 1;
223 	}
224 
225 	/*
226 	 * When making calls to the firmware everything needs to be 1:1
227 	 * mapped and addressable with 32-bit pointers. Map the kernel
228 	 * text and allocate a new stack because we can't rely on the
229 	 * stack pointer being < 4GB.
230 	 */
231 	if (!efi_is_mixed())
232 		return 0;
233 
234 	page = alloc_page(GFP_KERNEL|__GFP_DMA32);
235 	if (!page) {
236 		pr_err("Unable to allocate EFI runtime stack < 4GB\n");
237 		return 1;
238 	}
239 
240 	efi_scratch.phys_stack = page_to_phys(page + 1); /* stack grows down */
241 
242 	npages = (_etext - _text) >> PAGE_SHIFT;
243 	text = __pa(_text);
244 	pfn = text >> PAGE_SHIFT;
245 
246 	pf = _PAGE_ENC;
247 	if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, pf)) {
248 		pr_err("Failed to map kernel text 1:1\n");
249 		return 1;
250 	}
251 
252 	npages = (__end_rodata - __start_rodata) >> PAGE_SHIFT;
253 	rodata = __pa(__start_rodata);
254 	pfn = rodata >> PAGE_SHIFT;
255 
256 	pf = _PAGE_NX | _PAGE_ENC;
257 	if (kernel_map_pages_in_pgd(pgd, pfn, rodata, npages, pf)) {
258 		pr_err("Failed to map kernel rodata 1:1\n");
259 		return 1;
260 	}
261 
262 	return 0;
263 }
264 
265 static void __init __map_region(efi_memory_desc_t *md, u64 va)
266 {
267 	unsigned long flags = _PAGE_RW;
268 	unsigned long pfn;
269 	pgd_t *pgd = efi_mm.pgd;
270 
271 	/*
272 	 * EFI_RUNTIME_SERVICES_CODE regions typically cover PE/COFF
273 	 * executable images in memory that consist of both R-X and
274 	 * RW- sections, so we cannot apply read-only or non-exec
275 	 * permissions just yet. However, modern EFI systems provide
276 	 * a memory attributes table that describes those sections
277 	 * with the appropriate restricted permissions, which are
278 	 * applied in efi_runtime_update_mappings() below. All other
279 	 * regions can be mapped non-executable at this point, with
280 	 * the exception of boot services code regions, but those will
281 	 * be unmapped again entirely in efi_free_boot_services().
282 	 */
283 	if (md->type != EFI_BOOT_SERVICES_CODE &&
284 	    md->type != EFI_RUNTIME_SERVICES_CODE)
285 		flags |= _PAGE_NX;
286 
287 	if (!(md->attribute & EFI_MEMORY_WB))
288 		flags |= _PAGE_PCD;
289 
290 	if (sev_active() && md->type != EFI_MEMORY_MAPPED_IO)
291 		flags |= _PAGE_ENC;
292 
293 	pfn = md->phys_addr >> PAGE_SHIFT;
294 	if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags))
295 		pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
296 			   md->phys_addr, va);
297 }
298 
299 void __init efi_map_region(efi_memory_desc_t *md)
300 {
301 	unsigned long size = md->num_pages << PAGE_SHIFT;
302 	u64 pa = md->phys_addr;
303 
304 	/*
305 	 * Make sure the 1:1 mappings are present as a catch-all for b0rked
306 	 * firmware which doesn't update all internal pointers after switching
307 	 * to virtual mode and would otherwise crap on us.
308 	 */
309 	__map_region(md, md->phys_addr);
310 
311 	/*
312 	 * Enforce the 1:1 mapping as the default virtual address when
313 	 * booting in EFI mixed mode, because even though we may be
314 	 * running a 64-bit kernel, the firmware may only be 32-bit.
315 	 */
316 	if (efi_is_mixed()) {
317 		md->virt_addr = md->phys_addr;
318 		return;
319 	}
320 
321 	efi_va -= size;
322 
323 	/* Is PA 2M-aligned? */
324 	if (!(pa & (PMD_SIZE - 1))) {
325 		efi_va &= PMD_MASK;
326 	} else {
327 		u64 pa_offset = pa & (PMD_SIZE - 1);
328 		u64 prev_va = efi_va;
329 
330 		/* get us the same offset within this 2M page */
331 		efi_va = (efi_va & PMD_MASK) + pa_offset;
332 
333 		if (efi_va > prev_va)
334 			efi_va -= PMD_SIZE;
335 	}
336 
337 	if (efi_va < EFI_VA_END) {
338 		pr_warn(FW_WARN "VA address range overflow!\n");
339 		return;
340 	}
341 
342 	/* Do the VA map */
343 	__map_region(md, efi_va);
344 	md->virt_addr = efi_va;
345 }
346 
347 /*
348  * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges.
349  * md->virt_addr is the original virtual address which had been mapped in kexec
350  * 1st kernel.
351  */
352 void __init efi_map_region_fixed(efi_memory_desc_t *md)
353 {
354 	__map_region(md, md->phys_addr);
355 	__map_region(md, md->virt_addr);
356 }
357 
358 void __init parse_efi_setup(u64 phys_addr, u32 data_len)
359 {
360 	efi_setup = phys_addr + sizeof(struct setup_data);
361 }
362 
363 static int __init efi_update_mappings(efi_memory_desc_t *md, unsigned long pf)
364 {
365 	unsigned long pfn;
366 	pgd_t *pgd = efi_mm.pgd;
367 	int err1, err2;
368 
369 	/* Update the 1:1 mapping */
370 	pfn = md->phys_addr >> PAGE_SHIFT;
371 	err1 = kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf);
372 	if (err1) {
373 		pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n",
374 			   md->phys_addr, md->virt_addr);
375 	}
376 
377 	err2 = kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf);
378 	if (err2) {
379 		pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n",
380 			   md->phys_addr, md->virt_addr);
381 	}
382 
383 	return err1 || err2;
384 }
385 
386 static int __init efi_update_mem_attr(struct mm_struct *mm, efi_memory_desc_t *md)
387 {
388 	unsigned long pf = 0;
389 
390 	if (md->attribute & EFI_MEMORY_XP)
391 		pf |= _PAGE_NX;
392 
393 	if (!(md->attribute & EFI_MEMORY_RO))
394 		pf |= _PAGE_RW;
395 
396 	if (sev_active())
397 		pf |= _PAGE_ENC;
398 
399 	return efi_update_mappings(md, pf);
400 }
401 
402 void __init efi_runtime_update_mappings(void)
403 {
404 	efi_memory_desc_t *md;
405 
406 	/*
407 	 * Use the EFI Memory Attribute Table for mapping permissions if it
408 	 * exists, since it is intended to supersede EFI_PROPERTIES_TABLE.
409 	 */
410 	if (efi_enabled(EFI_MEM_ATTR)) {
411 		efi_memattr_apply_permissions(NULL, efi_update_mem_attr);
412 		return;
413 	}
414 
415 	/*
416 	 * EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace
417 	 * EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update
418 	 * permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not
419 	 * published by the firmware. Even if we find a buggy implementation of
420 	 * EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to
421 	 * EFI_PROPERTIES_TABLE, because of the same reason.
422 	 */
423 
424 	if (!efi_enabled(EFI_NX_PE_DATA))
425 		return;
426 
427 	for_each_efi_memory_desc(md) {
428 		unsigned long pf = 0;
429 
430 		if (!(md->attribute & EFI_MEMORY_RUNTIME))
431 			continue;
432 
433 		if (!(md->attribute & EFI_MEMORY_WB))
434 			pf |= _PAGE_PCD;
435 
436 		if ((md->attribute & EFI_MEMORY_XP) ||
437 			(md->type == EFI_RUNTIME_SERVICES_DATA))
438 			pf |= _PAGE_NX;
439 
440 		if (!(md->attribute & EFI_MEMORY_RO) &&
441 			(md->type != EFI_RUNTIME_SERVICES_CODE))
442 			pf |= _PAGE_RW;
443 
444 		if (sev_active())
445 			pf |= _PAGE_ENC;
446 
447 		efi_update_mappings(md, pf);
448 	}
449 }
450 
451 void __init efi_dump_pagetable(void)
452 {
453 #ifdef CONFIG_EFI_PGT_DUMP
454 	ptdump_walk_pgd_level(NULL, &efi_mm);
455 #endif
456 }
457 
458 /*
459  * Makes the calling thread switch to/from efi_mm context. Can be used
460  * in a kernel thread and user context. Preemption needs to remain disabled
461  * while the EFI-mm is borrowed. mmgrab()/mmdrop() is not used because the mm
462  * can not change under us.
463  * It should be ensured that there are no concurent calls to this function.
464  */
465 void efi_switch_mm(struct mm_struct *mm)
466 {
467 	efi_scratch.prev_mm = current->active_mm;
468 	current->active_mm = mm;
469 	switch_mm(efi_scratch.prev_mm, mm, NULL);
470 }
471 
472 static DEFINE_SPINLOCK(efi_runtime_lock);
473 
474 /*
475  * DS and ES contain user values.  We need to save them.
476  * The 32-bit EFI code needs a valid DS, ES, and SS.  There's no
477  * need to save the old SS: __KERNEL_DS is always acceptable.
478  */
479 #define __efi_thunk(func, ...)						\
480 ({									\
481 	unsigned short __ds, __es;					\
482 	efi_status_t ____s;						\
483 									\
484 	savesegment(ds, __ds);						\
485 	savesegment(es, __es);						\
486 									\
487 	loadsegment(ss, __KERNEL_DS);					\
488 	loadsegment(ds, __KERNEL_DS);					\
489 	loadsegment(es, __KERNEL_DS);					\
490 									\
491 	____s = efi64_thunk(efi.runtime->mixed_mode.func, __VA_ARGS__);	\
492 									\
493 	loadsegment(ds, __ds);						\
494 	loadsegment(es, __es);						\
495 									\
496 	____s ^= (____s & BIT(31)) | (____s & BIT_ULL(31)) << 32;	\
497 	____s;								\
498 })
499 
500 /*
501  * Switch to the EFI page tables early so that we can access the 1:1
502  * runtime services mappings which are not mapped in any other page
503  * tables.
504  *
505  * Also, disable interrupts because the IDT points to 64-bit handlers,
506  * which aren't going to function correctly when we switch to 32-bit.
507  */
508 #define efi_thunk(func...)						\
509 ({									\
510 	efi_status_t __s;						\
511 									\
512 	arch_efi_call_virt_setup();					\
513 									\
514 	__s = __efi_thunk(func);					\
515 									\
516 	arch_efi_call_virt_teardown();					\
517 									\
518 	__s;								\
519 })
520 
521 static efi_status_t __init __no_sanitize_address
522 efi_thunk_set_virtual_address_map(unsigned long memory_map_size,
523 				  unsigned long descriptor_size,
524 				  u32 descriptor_version,
525 				  efi_memory_desc_t *virtual_map)
526 {
527 	efi_status_t status;
528 	unsigned long flags;
529 
530 	efi_sync_low_kernel_mappings();
531 	local_irq_save(flags);
532 
533 	efi_switch_mm(&efi_mm);
534 
535 	status = __efi_thunk(set_virtual_address_map, memory_map_size,
536 			     descriptor_size, descriptor_version, virtual_map);
537 
538 	efi_switch_mm(efi_scratch.prev_mm);
539 	local_irq_restore(flags);
540 
541 	return status;
542 }
543 
544 static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc)
545 {
546 	return EFI_UNSUPPORTED;
547 }
548 
549 static efi_status_t efi_thunk_set_time(efi_time_t *tm)
550 {
551 	return EFI_UNSUPPORTED;
552 }
553 
554 static efi_status_t
555 efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending,
556 			  efi_time_t *tm)
557 {
558 	return EFI_UNSUPPORTED;
559 }
560 
561 static efi_status_t
562 efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
563 {
564 	return EFI_UNSUPPORTED;
565 }
566 
567 static unsigned long efi_name_size(efi_char16_t *name)
568 {
569 	return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1;
570 }
571 
572 static efi_status_t
573 efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor,
574 		       u32 *attr, unsigned long *data_size, void *data)
575 {
576 	u8 buf[24] __aligned(8);
577 	efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
578 	efi_status_t status;
579 	u32 phys_name, phys_vendor, phys_attr;
580 	u32 phys_data_size, phys_data;
581 	unsigned long flags;
582 
583 	spin_lock_irqsave(&efi_runtime_lock, flags);
584 
585 	*vnd = *vendor;
586 
587 	phys_data_size = virt_to_phys_or_null(data_size);
588 	phys_vendor = virt_to_phys_or_null(vnd);
589 	phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
590 	phys_attr = virt_to_phys_or_null(attr);
591 	phys_data = virt_to_phys_or_null_size(data, *data_size);
592 
593 	if (!phys_name || (data && !phys_data))
594 		status = EFI_INVALID_PARAMETER;
595 	else
596 		status = efi_thunk(get_variable, phys_name, phys_vendor,
597 				   phys_attr, phys_data_size, phys_data);
598 
599 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
600 
601 	return status;
602 }
603 
604 static efi_status_t
605 efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor,
606 		       u32 attr, unsigned long data_size, void *data)
607 {
608 	u8 buf[24] __aligned(8);
609 	efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
610 	u32 phys_name, phys_vendor, phys_data;
611 	efi_status_t status;
612 	unsigned long flags;
613 
614 	spin_lock_irqsave(&efi_runtime_lock, flags);
615 
616 	*vnd = *vendor;
617 
618 	phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
619 	phys_vendor = virt_to_phys_or_null(vnd);
620 	phys_data = virt_to_phys_or_null_size(data, data_size);
621 
622 	if (!phys_name || (data && !phys_data))
623 		status = EFI_INVALID_PARAMETER;
624 	else
625 		status = efi_thunk(set_variable, phys_name, phys_vendor,
626 				   attr, data_size, phys_data);
627 
628 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
629 
630 	return status;
631 }
632 
633 static efi_status_t
634 efi_thunk_set_variable_nonblocking(efi_char16_t *name, efi_guid_t *vendor,
635 				   u32 attr, unsigned long data_size,
636 				   void *data)
637 {
638 	u8 buf[24] __aligned(8);
639 	efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
640 	u32 phys_name, phys_vendor, phys_data;
641 	efi_status_t status;
642 	unsigned long flags;
643 
644 	if (!spin_trylock_irqsave(&efi_runtime_lock, flags))
645 		return EFI_NOT_READY;
646 
647 	*vnd = *vendor;
648 
649 	phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
650 	phys_vendor = virt_to_phys_or_null(vnd);
651 	phys_data = virt_to_phys_or_null_size(data, data_size);
652 
653 	if (!phys_name || (data && !phys_data))
654 		status = EFI_INVALID_PARAMETER;
655 	else
656 		status = efi_thunk(set_variable, phys_name, phys_vendor,
657 				   attr, data_size, phys_data);
658 
659 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
660 
661 	return status;
662 }
663 
664 static efi_status_t
665 efi_thunk_get_next_variable(unsigned long *name_size,
666 			    efi_char16_t *name,
667 			    efi_guid_t *vendor)
668 {
669 	u8 buf[24] __aligned(8);
670 	efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
671 	efi_status_t status;
672 	u32 phys_name_size, phys_name, phys_vendor;
673 	unsigned long flags;
674 
675 	spin_lock_irqsave(&efi_runtime_lock, flags);
676 
677 	*vnd = *vendor;
678 
679 	phys_name_size = virt_to_phys_or_null(name_size);
680 	phys_vendor = virt_to_phys_or_null(vnd);
681 	phys_name = virt_to_phys_or_null_size(name, *name_size);
682 
683 	if (!phys_name)
684 		status = EFI_INVALID_PARAMETER;
685 	else
686 		status = efi_thunk(get_next_variable, phys_name_size,
687 				   phys_name, phys_vendor);
688 
689 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
690 
691 	*vendor = *vnd;
692 	return status;
693 }
694 
695 static efi_status_t
696 efi_thunk_get_next_high_mono_count(u32 *count)
697 {
698 	return EFI_UNSUPPORTED;
699 }
700 
701 static void
702 efi_thunk_reset_system(int reset_type, efi_status_t status,
703 		       unsigned long data_size, efi_char16_t *data)
704 {
705 	u32 phys_data;
706 	unsigned long flags;
707 
708 	spin_lock_irqsave(&efi_runtime_lock, flags);
709 
710 	phys_data = virt_to_phys_or_null_size(data, data_size);
711 
712 	efi_thunk(reset_system, reset_type, status, data_size, phys_data);
713 
714 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
715 }
716 
717 static efi_status_t
718 efi_thunk_update_capsule(efi_capsule_header_t **capsules,
719 			 unsigned long count, unsigned long sg_list)
720 {
721 	/*
722 	 * To properly support this function we would need to repackage
723 	 * 'capsules' because the firmware doesn't understand 64-bit
724 	 * pointers.
725 	 */
726 	return EFI_UNSUPPORTED;
727 }
728 
729 static efi_status_t
730 efi_thunk_query_variable_info(u32 attr, u64 *storage_space,
731 			      u64 *remaining_space,
732 			      u64 *max_variable_size)
733 {
734 	efi_status_t status;
735 	u32 phys_storage, phys_remaining, phys_max;
736 	unsigned long flags;
737 
738 	if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
739 		return EFI_UNSUPPORTED;
740 
741 	spin_lock_irqsave(&efi_runtime_lock, flags);
742 
743 	phys_storage = virt_to_phys_or_null(storage_space);
744 	phys_remaining = virt_to_phys_or_null(remaining_space);
745 	phys_max = virt_to_phys_or_null(max_variable_size);
746 
747 	status = efi_thunk(query_variable_info, attr, phys_storage,
748 			   phys_remaining, phys_max);
749 
750 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
751 
752 	return status;
753 }
754 
755 static efi_status_t
756 efi_thunk_query_variable_info_nonblocking(u32 attr, u64 *storage_space,
757 					  u64 *remaining_space,
758 					  u64 *max_variable_size)
759 {
760 	efi_status_t status;
761 	u32 phys_storage, phys_remaining, phys_max;
762 	unsigned long flags;
763 
764 	if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
765 		return EFI_UNSUPPORTED;
766 
767 	if (!spin_trylock_irqsave(&efi_runtime_lock, flags))
768 		return EFI_NOT_READY;
769 
770 	phys_storage = virt_to_phys_or_null(storage_space);
771 	phys_remaining = virt_to_phys_or_null(remaining_space);
772 	phys_max = virt_to_phys_or_null(max_variable_size);
773 
774 	status = efi_thunk(query_variable_info, attr, phys_storage,
775 			   phys_remaining, phys_max);
776 
777 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
778 
779 	return status;
780 }
781 
782 static efi_status_t
783 efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules,
784 			     unsigned long count, u64 *max_size,
785 			     int *reset_type)
786 {
787 	/*
788 	 * To properly support this function we would need to repackage
789 	 * 'capsules' because the firmware doesn't understand 64-bit
790 	 * pointers.
791 	 */
792 	return EFI_UNSUPPORTED;
793 }
794 
795 void __init efi_thunk_runtime_setup(void)
796 {
797 	if (!IS_ENABLED(CONFIG_EFI_MIXED))
798 		return;
799 
800 	efi.get_time = efi_thunk_get_time;
801 	efi.set_time = efi_thunk_set_time;
802 	efi.get_wakeup_time = efi_thunk_get_wakeup_time;
803 	efi.set_wakeup_time = efi_thunk_set_wakeup_time;
804 	efi.get_variable = efi_thunk_get_variable;
805 	efi.get_next_variable = efi_thunk_get_next_variable;
806 	efi.set_variable = efi_thunk_set_variable;
807 	efi.set_variable_nonblocking = efi_thunk_set_variable_nonblocking;
808 	efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count;
809 	efi.reset_system = efi_thunk_reset_system;
810 	efi.query_variable_info = efi_thunk_query_variable_info;
811 	efi.query_variable_info_nonblocking = efi_thunk_query_variable_info_nonblocking;
812 	efi.update_capsule = efi_thunk_update_capsule;
813 	efi.query_capsule_caps = efi_thunk_query_capsule_caps;
814 }
815 
816 efi_status_t __init __no_sanitize_address
817 efi_set_virtual_address_map(unsigned long memory_map_size,
818 			    unsigned long descriptor_size,
819 			    u32 descriptor_version,
820 			    efi_memory_desc_t *virtual_map,
821 			    unsigned long systab_phys)
822 {
823 	const efi_system_table_t *systab = (efi_system_table_t *)systab_phys;
824 	efi_status_t status;
825 	unsigned long flags;
826 
827 	if (efi_is_mixed())
828 		return efi_thunk_set_virtual_address_map(memory_map_size,
829 							 descriptor_size,
830 							 descriptor_version,
831 							 virtual_map);
832 	efi_switch_mm(&efi_mm);
833 
834 	kernel_fpu_begin();
835 
836 	/* Disable interrupts around EFI calls: */
837 	local_irq_save(flags);
838 	status = efi_call(efi.runtime->set_virtual_address_map,
839 			  memory_map_size, descriptor_size,
840 			  descriptor_version, virtual_map);
841 	local_irq_restore(flags);
842 
843 	kernel_fpu_end();
844 
845 	/* grab the virtually remapped EFI runtime services table pointer */
846 	efi.runtime = READ_ONCE(systab->runtime);
847 
848 	efi_switch_mm(efi_scratch.prev_mm);
849 
850 	return status;
851 }
852