xref: /openbmc/linux/arch/x86/platform/efi/efi_64.c (revision 799a545b)
1 /*
2  * x86_64 specific EFI support functions
3  * Based on Extensible Firmware Interface Specification version 1.0
4  *
5  * Copyright (C) 2005-2008 Intel Co.
6  *	Fenghua Yu <fenghua.yu@intel.com>
7  *	Bibo Mao <bibo.mao@intel.com>
8  *	Chandramouli Narayanan <mouli@linux.intel.com>
9  *	Huang Ying <ying.huang@intel.com>
10  *
11  * Code to convert EFI to E820 map has been implemented in elilo bootloader
12  * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table
13  * is setup appropriately for EFI runtime code.
14  * - mouli 06/14/2007.
15  *
16  */
17 
18 #define pr_fmt(fmt) "efi: " fmt
19 
20 #include <linux/kernel.h>
21 #include <linux/init.h>
22 #include <linux/mm.h>
23 #include <linux/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/bootmem.h>
26 #include <linux/ioport.h>
27 #include <linux/init.h>
28 #include <linux/mc146818rtc.h>
29 #include <linux/efi.h>
30 #include <linux/uaccess.h>
31 #include <linux/io.h>
32 #include <linux/reboot.h>
33 #include <linux/slab.h>
34 
35 #include <asm/setup.h>
36 #include <asm/page.h>
37 #include <asm/e820.h>
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <asm/proto.h>
41 #include <asm/efi.h>
42 #include <asm/cacheflush.h>
43 #include <asm/fixmap.h>
44 #include <asm/realmode.h>
45 #include <asm/time.h>
46 #include <asm/pgalloc.h>
47 
48 /*
49  * We allocate runtime services regions bottom-up, starting from -4G, i.e.
50  * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G.
51  */
52 static u64 efi_va = EFI_VA_START;
53 
54 struct efi_scratch efi_scratch;
55 
56 static void __init early_code_mapping_set_exec(int executable)
57 {
58 	efi_memory_desc_t *md;
59 
60 	if (!(__supported_pte_mask & _PAGE_NX))
61 		return;
62 
63 	/* Make EFI service code area executable */
64 	for_each_efi_memory_desc(md) {
65 		if (md->type == EFI_RUNTIME_SERVICES_CODE ||
66 		    md->type == EFI_BOOT_SERVICES_CODE)
67 			efi_set_executable(md, executable);
68 	}
69 }
70 
71 pgd_t * __init efi_call_phys_prolog(void)
72 {
73 	unsigned long vaddress;
74 	pgd_t *save_pgd;
75 
76 	int pgd;
77 	int n_pgds;
78 
79 	if (!efi_enabled(EFI_OLD_MEMMAP)) {
80 		save_pgd = (pgd_t *)read_cr3();
81 		write_cr3((unsigned long)efi_scratch.efi_pgt);
82 		goto out;
83 	}
84 
85 	early_code_mapping_set_exec(1);
86 
87 	n_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT), PGDIR_SIZE);
88 	save_pgd = kmalloc(n_pgds * sizeof(pgd_t), GFP_KERNEL);
89 
90 	for (pgd = 0; pgd < n_pgds; pgd++) {
91 		save_pgd[pgd] = *pgd_offset_k(pgd * PGDIR_SIZE);
92 		vaddress = (unsigned long)__va(pgd * PGDIR_SIZE);
93 		set_pgd(pgd_offset_k(pgd * PGDIR_SIZE), *pgd_offset_k(vaddress));
94 	}
95 out:
96 	__flush_tlb_all();
97 
98 	return save_pgd;
99 }
100 
101 void __init efi_call_phys_epilog(pgd_t *save_pgd)
102 {
103 	/*
104 	 * After the lock is released, the original page table is restored.
105 	 */
106 	int pgd_idx;
107 	int nr_pgds;
108 
109 	if (!efi_enabled(EFI_OLD_MEMMAP)) {
110 		write_cr3((unsigned long)save_pgd);
111 		__flush_tlb_all();
112 		return;
113 	}
114 
115 	nr_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT) , PGDIR_SIZE);
116 
117 	for (pgd_idx = 0; pgd_idx < nr_pgds; pgd_idx++)
118 		set_pgd(pgd_offset_k(pgd_idx * PGDIR_SIZE), save_pgd[pgd_idx]);
119 
120 	kfree(save_pgd);
121 
122 	__flush_tlb_all();
123 	early_code_mapping_set_exec(0);
124 }
125 
126 static pgd_t *efi_pgd;
127 
128 /*
129  * We need our own copy of the higher levels of the page tables
130  * because we want to avoid inserting EFI region mappings (EFI_VA_END
131  * to EFI_VA_START) into the standard kernel page tables. Everything
132  * else can be shared, see efi_sync_low_kernel_mappings().
133  */
134 int __init efi_alloc_page_tables(void)
135 {
136 	pgd_t *pgd;
137 	pud_t *pud;
138 	gfp_t gfp_mask;
139 
140 	if (efi_enabled(EFI_OLD_MEMMAP))
141 		return 0;
142 
143 	gfp_mask = GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO;
144 	efi_pgd = (pgd_t *)__get_free_page(gfp_mask);
145 	if (!efi_pgd)
146 		return -ENOMEM;
147 
148 	pgd = efi_pgd + pgd_index(EFI_VA_END);
149 
150 	pud = pud_alloc_one(NULL, 0);
151 	if (!pud) {
152 		free_page((unsigned long)efi_pgd);
153 		return -ENOMEM;
154 	}
155 
156 	pgd_populate(NULL, pgd, pud);
157 
158 	return 0;
159 }
160 
161 /*
162  * Add low kernel mappings for passing arguments to EFI functions.
163  */
164 void efi_sync_low_kernel_mappings(void)
165 {
166 	unsigned num_entries;
167 	pgd_t *pgd_k, *pgd_efi;
168 	pud_t *pud_k, *pud_efi;
169 
170 	if (efi_enabled(EFI_OLD_MEMMAP))
171 		return;
172 
173 	/*
174 	 * We can share all PGD entries apart from the one entry that
175 	 * covers the EFI runtime mapping space.
176 	 *
177 	 * Make sure the EFI runtime region mappings are guaranteed to
178 	 * only span a single PGD entry and that the entry also maps
179 	 * other important kernel regions.
180 	 */
181 	BUILD_BUG_ON(pgd_index(EFI_VA_END) != pgd_index(MODULES_END));
182 	BUILD_BUG_ON((EFI_VA_START & PGDIR_MASK) !=
183 			(EFI_VA_END & PGDIR_MASK));
184 
185 	pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET);
186 	pgd_k = pgd_offset_k(PAGE_OFFSET);
187 
188 	num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET);
189 	memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries);
190 
191 	/*
192 	 * We share all the PUD entries apart from those that map the
193 	 * EFI regions. Copy around them.
194 	 */
195 	BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0);
196 	BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0);
197 
198 	pgd_efi = efi_pgd + pgd_index(EFI_VA_END);
199 	pud_efi = pud_offset(pgd_efi, 0);
200 
201 	pgd_k = pgd_offset_k(EFI_VA_END);
202 	pud_k = pud_offset(pgd_k, 0);
203 
204 	num_entries = pud_index(EFI_VA_END);
205 	memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
206 
207 	pud_efi = pud_offset(pgd_efi, EFI_VA_START);
208 	pud_k = pud_offset(pgd_k, EFI_VA_START);
209 
210 	num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START);
211 	memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
212 }
213 
214 int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
215 {
216 	unsigned long pfn, text;
217 	efi_memory_desc_t *md;
218 	struct page *page;
219 	unsigned npages;
220 	pgd_t *pgd;
221 
222 	if (efi_enabled(EFI_OLD_MEMMAP))
223 		return 0;
224 
225 	efi_scratch.efi_pgt = (pgd_t *)__pa(efi_pgd);
226 	pgd = efi_pgd;
227 
228 	/*
229 	 * It can happen that the physical address of new_memmap lands in memory
230 	 * which is not mapped in the EFI page table. Therefore we need to go
231 	 * and ident-map those pages containing the map before calling
232 	 * phys_efi_set_virtual_address_map().
233 	 */
234 	pfn = pa_memmap >> PAGE_SHIFT;
235 	if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, _PAGE_NX | _PAGE_RW)) {
236 		pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap);
237 		return 1;
238 	}
239 
240 	efi_scratch.use_pgd = true;
241 
242 	/*
243 	 * When making calls to the firmware everything needs to be 1:1
244 	 * mapped and addressable with 32-bit pointers. Map the kernel
245 	 * text and allocate a new stack because we can't rely on the
246 	 * stack pointer being < 4GB.
247 	 */
248 	if (!IS_ENABLED(CONFIG_EFI_MIXED) || efi_is_native())
249 		return 0;
250 
251 	/*
252 	 * Map all of RAM so that we can access arguments in the 1:1
253 	 * mapping when making EFI runtime calls.
254 	 */
255 	for_each_efi_memory_desc(md) {
256 		if (md->type != EFI_CONVENTIONAL_MEMORY &&
257 		    md->type != EFI_LOADER_DATA &&
258 		    md->type != EFI_LOADER_CODE)
259 			continue;
260 
261 		pfn = md->phys_addr >> PAGE_SHIFT;
262 		npages = md->num_pages;
263 
264 		if (kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, npages, _PAGE_RW)) {
265 			pr_err("Failed to map 1:1 memory\n");
266 			return 1;
267 		}
268 	}
269 
270 	page = alloc_page(GFP_KERNEL|__GFP_DMA32);
271 	if (!page)
272 		panic("Unable to allocate EFI runtime stack < 4GB\n");
273 
274 	efi_scratch.phys_stack = virt_to_phys(page_address(page));
275 	efi_scratch.phys_stack += PAGE_SIZE; /* stack grows down */
276 
277 	npages = (_etext - _text) >> PAGE_SHIFT;
278 	text = __pa(_text);
279 	pfn = text >> PAGE_SHIFT;
280 
281 	if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, _PAGE_RW)) {
282 		pr_err("Failed to map kernel text 1:1\n");
283 		return 1;
284 	}
285 
286 	return 0;
287 }
288 
289 static void __init __map_region(efi_memory_desc_t *md, u64 va)
290 {
291 	unsigned long flags = _PAGE_RW;
292 	unsigned long pfn;
293 	pgd_t *pgd = efi_pgd;
294 
295 	if (!(md->attribute & EFI_MEMORY_WB))
296 		flags |= _PAGE_PCD;
297 
298 	pfn = md->phys_addr >> PAGE_SHIFT;
299 	if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags))
300 		pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
301 			   md->phys_addr, va);
302 }
303 
304 void __init efi_map_region(efi_memory_desc_t *md)
305 {
306 	unsigned long size = md->num_pages << PAGE_SHIFT;
307 	u64 pa = md->phys_addr;
308 
309 	if (efi_enabled(EFI_OLD_MEMMAP))
310 		return old_map_region(md);
311 
312 	/*
313 	 * Make sure the 1:1 mappings are present as a catch-all for b0rked
314 	 * firmware which doesn't update all internal pointers after switching
315 	 * to virtual mode and would otherwise crap on us.
316 	 */
317 	__map_region(md, md->phys_addr);
318 
319 	/*
320 	 * Enforce the 1:1 mapping as the default virtual address when
321 	 * booting in EFI mixed mode, because even though we may be
322 	 * running a 64-bit kernel, the firmware may only be 32-bit.
323 	 */
324 	if (!efi_is_native () && IS_ENABLED(CONFIG_EFI_MIXED)) {
325 		md->virt_addr = md->phys_addr;
326 		return;
327 	}
328 
329 	efi_va -= size;
330 
331 	/* Is PA 2M-aligned? */
332 	if (!(pa & (PMD_SIZE - 1))) {
333 		efi_va &= PMD_MASK;
334 	} else {
335 		u64 pa_offset = pa & (PMD_SIZE - 1);
336 		u64 prev_va = efi_va;
337 
338 		/* get us the same offset within this 2M page */
339 		efi_va = (efi_va & PMD_MASK) + pa_offset;
340 
341 		if (efi_va > prev_va)
342 			efi_va -= PMD_SIZE;
343 	}
344 
345 	if (efi_va < EFI_VA_END) {
346 		pr_warn(FW_WARN "VA address range overflow!\n");
347 		return;
348 	}
349 
350 	/* Do the VA map */
351 	__map_region(md, efi_va);
352 	md->virt_addr = efi_va;
353 }
354 
355 /*
356  * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges.
357  * md->virt_addr is the original virtual address which had been mapped in kexec
358  * 1st kernel.
359  */
360 void __init efi_map_region_fixed(efi_memory_desc_t *md)
361 {
362 	__map_region(md, md->virt_addr);
363 }
364 
365 void __iomem *__init efi_ioremap(unsigned long phys_addr, unsigned long size,
366 				 u32 type, u64 attribute)
367 {
368 	unsigned long last_map_pfn;
369 
370 	if (type == EFI_MEMORY_MAPPED_IO)
371 		return ioremap(phys_addr, size);
372 
373 	last_map_pfn = init_memory_mapping(phys_addr, phys_addr + size);
374 	if ((last_map_pfn << PAGE_SHIFT) < phys_addr + size) {
375 		unsigned long top = last_map_pfn << PAGE_SHIFT;
376 		efi_ioremap(top, size - (top - phys_addr), type, attribute);
377 	}
378 
379 	if (!(attribute & EFI_MEMORY_WB))
380 		efi_memory_uc((u64)(unsigned long)__va(phys_addr), size);
381 
382 	return (void __iomem *)__va(phys_addr);
383 }
384 
385 void __init parse_efi_setup(u64 phys_addr, u32 data_len)
386 {
387 	efi_setup = phys_addr + sizeof(struct setup_data);
388 }
389 
390 void __init efi_runtime_update_mappings(void)
391 {
392 	unsigned long pfn;
393 	pgd_t *pgd = efi_pgd;
394 	efi_memory_desc_t *md;
395 
396 	if (efi_enabled(EFI_OLD_MEMMAP)) {
397 		if (__supported_pte_mask & _PAGE_NX)
398 			runtime_code_page_mkexec();
399 		return;
400 	}
401 
402 	if (!efi_enabled(EFI_NX_PE_DATA))
403 		return;
404 
405 	for_each_efi_memory_desc(md) {
406 		unsigned long pf = 0;
407 
408 		if (!(md->attribute & EFI_MEMORY_RUNTIME))
409 			continue;
410 
411 		if (!(md->attribute & EFI_MEMORY_WB))
412 			pf |= _PAGE_PCD;
413 
414 		if ((md->attribute & EFI_MEMORY_XP) ||
415 			(md->type == EFI_RUNTIME_SERVICES_DATA))
416 			pf |= _PAGE_NX;
417 
418 		if (!(md->attribute & EFI_MEMORY_RO) &&
419 			(md->type != EFI_RUNTIME_SERVICES_CODE))
420 			pf |= _PAGE_RW;
421 
422 		/* Update the 1:1 mapping */
423 		pfn = md->phys_addr >> PAGE_SHIFT;
424 		if (kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf))
425 			pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
426 				   md->phys_addr, md->virt_addr);
427 
428 		if (kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf))
429 			pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
430 				   md->phys_addr, md->virt_addr);
431 	}
432 }
433 
434 void __init efi_dump_pagetable(void)
435 {
436 #ifdef CONFIG_EFI_PGT_DUMP
437 	ptdump_walk_pgd_level(NULL, efi_pgd);
438 #endif
439 }
440 
441 #ifdef CONFIG_EFI_MIXED
442 extern efi_status_t efi64_thunk(u32, ...);
443 
444 #define runtime_service32(func)						 \
445 ({									 \
446 	u32 table = (u32)(unsigned long)efi.systab;			 \
447 	u32 *rt, *___f;							 \
448 									 \
449 	rt = (u32 *)(table + offsetof(efi_system_table_32_t, runtime));	 \
450 	___f = (u32 *)(*rt + offsetof(efi_runtime_services_32_t, func)); \
451 	*___f;								 \
452 })
453 
454 /*
455  * Switch to the EFI page tables early so that we can access the 1:1
456  * runtime services mappings which are not mapped in any other page
457  * tables. This function must be called before runtime_service32().
458  *
459  * Also, disable interrupts because the IDT points to 64-bit handlers,
460  * which aren't going to function correctly when we switch to 32-bit.
461  */
462 #define efi_thunk(f, ...)						\
463 ({									\
464 	efi_status_t __s;						\
465 	unsigned long __flags;						\
466 	u32 __func;							\
467 									\
468 	local_irq_save(__flags);					\
469 	arch_efi_call_virt_setup();					\
470 									\
471 	__func = runtime_service32(f);					\
472 	__s = efi64_thunk(__func, __VA_ARGS__);				\
473 									\
474 	arch_efi_call_virt_teardown();					\
475 	local_irq_restore(__flags);					\
476 									\
477 	__s;								\
478 })
479 
480 efi_status_t efi_thunk_set_virtual_address_map(
481 	void *phys_set_virtual_address_map,
482 	unsigned long memory_map_size,
483 	unsigned long descriptor_size,
484 	u32 descriptor_version,
485 	efi_memory_desc_t *virtual_map)
486 {
487 	efi_status_t status;
488 	unsigned long flags;
489 	u32 func;
490 
491 	efi_sync_low_kernel_mappings();
492 	local_irq_save(flags);
493 
494 	efi_scratch.prev_cr3 = read_cr3();
495 	write_cr3((unsigned long)efi_scratch.efi_pgt);
496 	__flush_tlb_all();
497 
498 	func = (u32)(unsigned long)phys_set_virtual_address_map;
499 	status = efi64_thunk(func, memory_map_size, descriptor_size,
500 			     descriptor_version, virtual_map);
501 
502 	write_cr3(efi_scratch.prev_cr3);
503 	__flush_tlb_all();
504 	local_irq_restore(flags);
505 
506 	return status;
507 }
508 
509 static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc)
510 {
511 	efi_status_t status;
512 	u32 phys_tm, phys_tc;
513 
514 	spin_lock(&rtc_lock);
515 
516 	phys_tm = virt_to_phys(tm);
517 	phys_tc = virt_to_phys(tc);
518 
519 	status = efi_thunk(get_time, phys_tm, phys_tc);
520 
521 	spin_unlock(&rtc_lock);
522 
523 	return status;
524 }
525 
526 static efi_status_t efi_thunk_set_time(efi_time_t *tm)
527 {
528 	efi_status_t status;
529 	u32 phys_tm;
530 
531 	spin_lock(&rtc_lock);
532 
533 	phys_tm = virt_to_phys(tm);
534 
535 	status = efi_thunk(set_time, phys_tm);
536 
537 	spin_unlock(&rtc_lock);
538 
539 	return status;
540 }
541 
542 static efi_status_t
543 efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending,
544 			  efi_time_t *tm)
545 {
546 	efi_status_t status;
547 	u32 phys_enabled, phys_pending, phys_tm;
548 
549 	spin_lock(&rtc_lock);
550 
551 	phys_enabled = virt_to_phys(enabled);
552 	phys_pending = virt_to_phys(pending);
553 	phys_tm = virt_to_phys(tm);
554 
555 	status = efi_thunk(get_wakeup_time, phys_enabled,
556 			     phys_pending, phys_tm);
557 
558 	spin_unlock(&rtc_lock);
559 
560 	return status;
561 }
562 
563 static efi_status_t
564 efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
565 {
566 	efi_status_t status;
567 	u32 phys_tm;
568 
569 	spin_lock(&rtc_lock);
570 
571 	phys_tm = virt_to_phys(tm);
572 
573 	status = efi_thunk(set_wakeup_time, enabled, phys_tm);
574 
575 	spin_unlock(&rtc_lock);
576 
577 	return status;
578 }
579 
580 
581 static efi_status_t
582 efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor,
583 		       u32 *attr, unsigned long *data_size, void *data)
584 {
585 	efi_status_t status;
586 	u32 phys_name, phys_vendor, phys_attr;
587 	u32 phys_data_size, phys_data;
588 
589 	phys_data_size = virt_to_phys(data_size);
590 	phys_vendor = virt_to_phys(vendor);
591 	phys_name = virt_to_phys(name);
592 	phys_attr = virt_to_phys(attr);
593 	phys_data = virt_to_phys(data);
594 
595 	status = efi_thunk(get_variable, phys_name, phys_vendor,
596 			   phys_attr, phys_data_size, phys_data);
597 
598 	return status;
599 }
600 
601 static efi_status_t
602 efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor,
603 		       u32 attr, unsigned long data_size, void *data)
604 {
605 	u32 phys_name, phys_vendor, phys_data;
606 	efi_status_t status;
607 
608 	phys_name = virt_to_phys(name);
609 	phys_vendor = virt_to_phys(vendor);
610 	phys_data = virt_to_phys(data);
611 
612 	/* If data_size is > sizeof(u32) we've got problems */
613 	status = efi_thunk(set_variable, phys_name, phys_vendor,
614 			   attr, data_size, phys_data);
615 
616 	return status;
617 }
618 
619 static efi_status_t
620 efi_thunk_get_next_variable(unsigned long *name_size,
621 			    efi_char16_t *name,
622 			    efi_guid_t *vendor)
623 {
624 	efi_status_t status;
625 	u32 phys_name_size, phys_name, phys_vendor;
626 
627 	phys_name_size = virt_to_phys(name_size);
628 	phys_vendor = virt_to_phys(vendor);
629 	phys_name = virt_to_phys(name);
630 
631 	status = efi_thunk(get_next_variable, phys_name_size,
632 			   phys_name, phys_vendor);
633 
634 	return status;
635 }
636 
637 static efi_status_t
638 efi_thunk_get_next_high_mono_count(u32 *count)
639 {
640 	efi_status_t status;
641 	u32 phys_count;
642 
643 	phys_count = virt_to_phys(count);
644 	status = efi_thunk(get_next_high_mono_count, phys_count);
645 
646 	return status;
647 }
648 
649 static void
650 efi_thunk_reset_system(int reset_type, efi_status_t status,
651 		       unsigned long data_size, efi_char16_t *data)
652 {
653 	u32 phys_data;
654 
655 	phys_data = virt_to_phys(data);
656 
657 	efi_thunk(reset_system, reset_type, status, data_size, phys_data);
658 }
659 
660 static efi_status_t
661 efi_thunk_update_capsule(efi_capsule_header_t **capsules,
662 			 unsigned long count, unsigned long sg_list)
663 {
664 	/*
665 	 * To properly support this function we would need to repackage
666 	 * 'capsules' because the firmware doesn't understand 64-bit
667 	 * pointers.
668 	 */
669 	return EFI_UNSUPPORTED;
670 }
671 
672 static efi_status_t
673 efi_thunk_query_variable_info(u32 attr, u64 *storage_space,
674 			      u64 *remaining_space,
675 			      u64 *max_variable_size)
676 {
677 	efi_status_t status;
678 	u32 phys_storage, phys_remaining, phys_max;
679 
680 	if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
681 		return EFI_UNSUPPORTED;
682 
683 	phys_storage = virt_to_phys(storage_space);
684 	phys_remaining = virt_to_phys(remaining_space);
685 	phys_max = virt_to_phys(max_variable_size);
686 
687 	status = efi_thunk(query_variable_info, attr, phys_storage,
688 			   phys_remaining, phys_max);
689 
690 	return status;
691 }
692 
693 static efi_status_t
694 efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules,
695 			     unsigned long count, u64 *max_size,
696 			     int *reset_type)
697 {
698 	/*
699 	 * To properly support this function we would need to repackage
700 	 * 'capsules' because the firmware doesn't understand 64-bit
701 	 * pointers.
702 	 */
703 	return EFI_UNSUPPORTED;
704 }
705 
706 void efi_thunk_runtime_setup(void)
707 {
708 	efi.get_time = efi_thunk_get_time;
709 	efi.set_time = efi_thunk_set_time;
710 	efi.get_wakeup_time = efi_thunk_get_wakeup_time;
711 	efi.set_wakeup_time = efi_thunk_set_wakeup_time;
712 	efi.get_variable = efi_thunk_get_variable;
713 	efi.get_next_variable = efi_thunk_get_next_variable;
714 	efi.set_variable = efi_thunk_set_variable;
715 	efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count;
716 	efi.reset_system = efi_thunk_reset_system;
717 	efi.query_variable_info = efi_thunk_query_variable_info;
718 	efi.update_capsule = efi_thunk_update_capsule;
719 	efi.query_capsule_caps = efi_thunk_query_capsule_caps;
720 }
721 #endif /* CONFIG_EFI_MIXED */
722