1 /* 2 * x86_64 specific EFI support functions 3 * Based on Extensible Firmware Interface Specification version 1.0 4 * 5 * Copyright (C) 2005-2008 Intel Co. 6 * Fenghua Yu <fenghua.yu@intel.com> 7 * Bibo Mao <bibo.mao@intel.com> 8 * Chandramouli Narayanan <mouli@linux.intel.com> 9 * Huang Ying <ying.huang@intel.com> 10 * 11 * Code to convert EFI to E820 map has been implemented in elilo bootloader 12 * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table 13 * is setup appropriately for EFI runtime code. 14 * - mouli 06/14/2007. 15 * 16 */ 17 18 #define pr_fmt(fmt) "efi: " fmt 19 20 #include <linux/kernel.h> 21 #include <linux/init.h> 22 #include <linux/mm.h> 23 #include <linux/types.h> 24 #include <linux/spinlock.h> 25 #include <linux/bootmem.h> 26 #include <linux/ioport.h> 27 #include <linux/init.h> 28 #include <linux/efi.h> 29 #include <linux/uaccess.h> 30 #include <linux/io.h> 31 #include <linux/reboot.h> 32 #include <linux/slab.h> 33 34 #include <asm/setup.h> 35 #include <asm/page.h> 36 #include <asm/e820.h> 37 #include <asm/pgtable.h> 38 #include <asm/tlbflush.h> 39 #include <asm/proto.h> 40 #include <asm/efi.h> 41 #include <asm/cacheflush.h> 42 #include <asm/fixmap.h> 43 #include <asm/realmode.h> 44 #include <asm/time.h> 45 #include <asm/pgalloc.h> 46 47 /* 48 * We allocate runtime services regions bottom-up, starting from -4G, i.e. 49 * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G. 50 */ 51 static u64 efi_va = EFI_VA_START; 52 53 struct efi_scratch efi_scratch; 54 55 static void __init early_code_mapping_set_exec(int executable) 56 { 57 efi_memory_desc_t *md; 58 59 if (!(__supported_pte_mask & _PAGE_NX)) 60 return; 61 62 /* Make EFI service code area executable */ 63 for_each_efi_memory_desc(md) { 64 if (md->type == EFI_RUNTIME_SERVICES_CODE || 65 md->type == EFI_BOOT_SERVICES_CODE) 66 efi_set_executable(md, executable); 67 } 68 } 69 70 pgd_t * __init efi_call_phys_prolog(void) 71 { 72 unsigned long vaddress; 73 pgd_t *save_pgd; 74 75 int pgd; 76 int n_pgds; 77 78 if (!efi_enabled(EFI_OLD_MEMMAP)) { 79 save_pgd = (pgd_t *)read_cr3(); 80 write_cr3((unsigned long)efi_scratch.efi_pgt); 81 goto out; 82 } 83 84 early_code_mapping_set_exec(1); 85 86 n_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT), PGDIR_SIZE); 87 save_pgd = kmalloc(n_pgds * sizeof(pgd_t), GFP_KERNEL); 88 89 for (pgd = 0; pgd < n_pgds; pgd++) { 90 save_pgd[pgd] = *pgd_offset_k(pgd * PGDIR_SIZE); 91 vaddress = (unsigned long)__va(pgd * PGDIR_SIZE); 92 set_pgd(pgd_offset_k(pgd * PGDIR_SIZE), *pgd_offset_k(vaddress)); 93 } 94 out: 95 __flush_tlb_all(); 96 97 return save_pgd; 98 } 99 100 void __init efi_call_phys_epilog(pgd_t *save_pgd) 101 { 102 /* 103 * After the lock is released, the original page table is restored. 104 */ 105 int pgd_idx; 106 int nr_pgds; 107 108 if (!efi_enabled(EFI_OLD_MEMMAP)) { 109 write_cr3((unsigned long)save_pgd); 110 __flush_tlb_all(); 111 return; 112 } 113 114 nr_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT) , PGDIR_SIZE); 115 116 for (pgd_idx = 0; pgd_idx < nr_pgds; pgd_idx++) 117 set_pgd(pgd_offset_k(pgd_idx * PGDIR_SIZE), save_pgd[pgd_idx]); 118 119 kfree(save_pgd); 120 121 __flush_tlb_all(); 122 early_code_mapping_set_exec(0); 123 } 124 125 static pgd_t *efi_pgd; 126 127 /* 128 * We need our own copy of the higher levels of the page tables 129 * because we want to avoid inserting EFI region mappings (EFI_VA_END 130 * to EFI_VA_START) into the standard kernel page tables. Everything 131 * else can be shared, see efi_sync_low_kernel_mappings(). 132 */ 133 int __init efi_alloc_page_tables(void) 134 { 135 pgd_t *pgd; 136 pud_t *pud; 137 gfp_t gfp_mask; 138 139 if (efi_enabled(EFI_OLD_MEMMAP)) 140 return 0; 141 142 gfp_mask = GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO; 143 efi_pgd = (pgd_t *)__get_free_page(gfp_mask); 144 if (!efi_pgd) 145 return -ENOMEM; 146 147 pgd = efi_pgd + pgd_index(EFI_VA_END); 148 149 pud = pud_alloc_one(NULL, 0); 150 if (!pud) { 151 free_page((unsigned long)efi_pgd); 152 return -ENOMEM; 153 } 154 155 pgd_populate(NULL, pgd, pud); 156 157 return 0; 158 } 159 160 /* 161 * Add low kernel mappings for passing arguments to EFI functions. 162 */ 163 void efi_sync_low_kernel_mappings(void) 164 { 165 unsigned num_entries; 166 pgd_t *pgd_k, *pgd_efi; 167 pud_t *pud_k, *pud_efi; 168 169 if (efi_enabled(EFI_OLD_MEMMAP)) 170 return; 171 172 /* 173 * We can share all PGD entries apart from the one entry that 174 * covers the EFI runtime mapping space. 175 * 176 * Make sure the EFI runtime region mappings are guaranteed to 177 * only span a single PGD entry and that the entry also maps 178 * other important kernel regions. 179 */ 180 BUILD_BUG_ON(pgd_index(EFI_VA_END) != pgd_index(MODULES_END)); 181 BUILD_BUG_ON((EFI_VA_START & PGDIR_MASK) != 182 (EFI_VA_END & PGDIR_MASK)); 183 184 pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET); 185 pgd_k = pgd_offset_k(PAGE_OFFSET); 186 187 num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET); 188 memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries); 189 190 /* 191 * We share all the PUD entries apart from those that map the 192 * EFI regions. Copy around them. 193 */ 194 BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0); 195 BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0); 196 197 pgd_efi = efi_pgd + pgd_index(EFI_VA_END); 198 pud_efi = pud_offset(pgd_efi, 0); 199 200 pgd_k = pgd_offset_k(EFI_VA_END); 201 pud_k = pud_offset(pgd_k, 0); 202 203 num_entries = pud_index(EFI_VA_END); 204 memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries); 205 206 pud_efi = pud_offset(pgd_efi, EFI_VA_START); 207 pud_k = pud_offset(pgd_k, EFI_VA_START); 208 209 num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START); 210 memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries); 211 } 212 213 int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages) 214 { 215 unsigned long pfn, text; 216 efi_memory_desc_t *md; 217 struct page *page; 218 unsigned npages; 219 pgd_t *pgd; 220 221 if (efi_enabled(EFI_OLD_MEMMAP)) 222 return 0; 223 224 efi_scratch.efi_pgt = (pgd_t *)__pa(efi_pgd); 225 pgd = efi_pgd; 226 227 /* 228 * It can happen that the physical address of new_memmap lands in memory 229 * which is not mapped in the EFI page table. Therefore we need to go 230 * and ident-map those pages containing the map before calling 231 * phys_efi_set_virtual_address_map(). 232 */ 233 pfn = pa_memmap >> PAGE_SHIFT; 234 if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, _PAGE_NX | _PAGE_RW)) { 235 pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap); 236 return 1; 237 } 238 239 efi_scratch.use_pgd = true; 240 241 /* 242 * When making calls to the firmware everything needs to be 1:1 243 * mapped and addressable with 32-bit pointers. Map the kernel 244 * text and allocate a new stack because we can't rely on the 245 * stack pointer being < 4GB. 246 */ 247 if (!IS_ENABLED(CONFIG_EFI_MIXED)) 248 return 0; 249 250 /* 251 * Map all of RAM so that we can access arguments in the 1:1 252 * mapping when making EFI runtime calls. 253 */ 254 for_each_efi_memory_desc(md) { 255 if (md->type != EFI_CONVENTIONAL_MEMORY && 256 md->type != EFI_LOADER_DATA && 257 md->type != EFI_LOADER_CODE) 258 continue; 259 260 pfn = md->phys_addr >> PAGE_SHIFT; 261 npages = md->num_pages; 262 263 if (kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, npages, _PAGE_RW)) { 264 pr_err("Failed to map 1:1 memory\n"); 265 return 1; 266 } 267 } 268 269 page = alloc_page(GFP_KERNEL|__GFP_DMA32); 270 if (!page) 271 panic("Unable to allocate EFI runtime stack < 4GB\n"); 272 273 efi_scratch.phys_stack = virt_to_phys(page_address(page)); 274 efi_scratch.phys_stack += PAGE_SIZE; /* stack grows down */ 275 276 npages = (_etext - _text) >> PAGE_SHIFT; 277 text = __pa(_text); 278 pfn = text >> PAGE_SHIFT; 279 280 if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, _PAGE_RW)) { 281 pr_err("Failed to map kernel text 1:1\n"); 282 return 1; 283 } 284 285 return 0; 286 } 287 288 static void __init __map_region(efi_memory_desc_t *md, u64 va) 289 { 290 unsigned long flags = _PAGE_RW; 291 unsigned long pfn; 292 pgd_t *pgd = efi_pgd; 293 294 if (!(md->attribute & EFI_MEMORY_WB)) 295 flags |= _PAGE_PCD; 296 297 pfn = md->phys_addr >> PAGE_SHIFT; 298 if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags)) 299 pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n", 300 md->phys_addr, va); 301 } 302 303 void __init efi_map_region(efi_memory_desc_t *md) 304 { 305 unsigned long size = md->num_pages << PAGE_SHIFT; 306 u64 pa = md->phys_addr; 307 308 if (efi_enabled(EFI_OLD_MEMMAP)) 309 return old_map_region(md); 310 311 /* 312 * Make sure the 1:1 mappings are present as a catch-all for b0rked 313 * firmware which doesn't update all internal pointers after switching 314 * to virtual mode and would otherwise crap on us. 315 */ 316 __map_region(md, md->phys_addr); 317 318 /* 319 * Enforce the 1:1 mapping as the default virtual address when 320 * booting in EFI mixed mode, because even though we may be 321 * running a 64-bit kernel, the firmware may only be 32-bit. 322 */ 323 if (!efi_is_native () && IS_ENABLED(CONFIG_EFI_MIXED)) { 324 md->virt_addr = md->phys_addr; 325 return; 326 } 327 328 efi_va -= size; 329 330 /* Is PA 2M-aligned? */ 331 if (!(pa & (PMD_SIZE - 1))) { 332 efi_va &= PMD_MASK; 333 } else { 334 u64 pa_offset = pa & (PMD_SIZE - 1); 335 u64 prev_va = efi_va; 336 337 /* get us the same offset within this 2M page */ 338 efi_va = (efi_va & PMD_MASK) + pa_offset; 339 340 if (efi_va > prev_va) 341 efi_va -= PMD_SIZE; 342 } 343 344 if (efi_va < EFI_VA_END) { 345 pr_warn(FW_WARN "VA address range overflow!\n"); 346 return; 347 } 348 349 /* Do the VA map */ 350 __map_region(md, efi_va); 351 md->virt_addr = efi_va; 352 } 353 354 /* 355 * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges. 356 * md->virt_addr is the original virtual address which had been mapped in kexec 357 * 1st kernel. 358 */ 359 void __init efi_map_region_fixed(efi_memory_desc_t *md) 360 { 361 __map_region(md, md->virt_addr); 362 } 363 364 void __iomem *__init efi_ioremap(unsigned long phys_addr, unsigned long size, 365 u32 type, u64 attribute) 366 { 367 unsigned long last_map_pfn; 368 369 if (type == EFI_MEMORY_MAPPED_IO) 370 return ioremap(phys_addr, size); 371 372 last_map_pfn = init_memory_mapping(phys_addr, phys_addr + size); 373 if ((last_map_pfn << PAGE_SHIFT) < phys_addr + size) { 374 unsigned long top = last_map_pfn << PAGE_SHIFT; 375 efi_ioremap(top, size - (top - phys_addr), type, attribute); 376 } 377 378 if (!(attribute & EFI_MEMORY_WB)) 379 efi_memory_uc((u64)(unsigned long)__va(phys_addr), size); 380 381 return (void __iomem *)__va(phys_addr); 382 } 383 384 void __init parse_efi_setup(u64 phys_addr, u32 data_len) 385 { 386 efi_setup = phys_addr + sizeof(struct setup_data); 387 } 388 389 void __init efi_runtime_update_mappings(void) 390 { 391 unsigned long pfn; 392 pgd_t *pgd = efi_pgd; 393 efi_memory_desc_t *md; 394 395 if (efi_enabled(EFI_OLD_MEMMAP)) { 396 if (__supported_pte_mask & _PAGE_NX) 397 runtime_code_page_mkexec(); 398 return; 399 } 400 401 if (!efi_enabled(EFI_NX_PE_DATA)) 402 return; 403 404 for_each_efi_memory_desc(md) { 405 unsigned long pf = 0; 406 407 if (!(md->attribute & EFI_MEMORY_RUNTIME)) 408 continue; 409 410 if (!(md->attribute & EFI_MEMORY_WB)) 411 pf |= _PAGE_PCD; 412 413 if ((md->attribute & EFI_MEMORY_XP) || 414 (md->type == EFI_RUNTIME_SERVICES_DATA)) 415 pf |= _PAGE_NX; 416 417 if (!(md->attribute & EFI_MEMORY_RO) && 418 (md->type != EFI_RUNTIME_SERVICES_CODE)) 419 pf |= _PAGE_RW; 420 421 /* Update the 1:1 mapping */ 422 pfn = md->phys_addr >> PAGE_SHIFT; 423 if (kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf)) 424 pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n", 425 md->phys_addr, md->virt_addr); 426 427 if (kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf)) 428 pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n", 429 md->phys_addr, md->virt_addr); 430 } 431 } 432 433 void __init efi_dump_pagetable(void) 434 { 435 #ifdef CONFIG_EFI_PGT_DUMP 436 ptdump_walk_pgd_level(NULL, efi_pgd); 437 #endif 438 } 439 440 #ifdef CONFIG_EFI_MIXED 441 extern efi_status_t efi64_thunk(u32, ...); 442 443 #define runtime_service32(func) \ 444 ({ \ 445 u32 table = (u32)(unsigned long)efi.systab; \ 446 u32 *rt, *___f; \ 447 \ 448 rt = (u32 *)(table + offsetof(efi_system_table_32_t, runtime)); \ 449 ___f = (u32 *)(*rt + offsetof(efi_runtime_services_32_t, func)); \ 450 *___f; \ 451 }) 452 453 /* 454 * Switch to the EFI page tables early so that we can access the 1:1 455 * runtime services mappings which are not mapped in any other page 456 * tables. This function must be called before runtime_service32(). 457 * 458 * Also, disable interrupts because the IDT points to 64-bit handlers, 459 * which aren't going to function correctly when we switch to 32-bit. 460 */ 461 #define efi_thunk(f, ...) \ 462 ({ \ 463 efi_status_t __s; \ 464 unsigned long __flags; \ 465 u32 __func; \ 466 \ 467 local_irq_save(__flags); \ 468 arch_efi_call_virt_setup(); \ 469 \ 470 __func = runtime_service32(f); \ 471 __s = efi64_thunk(__func, __VA_ARGS__); \ 472 \ 473 arch_efi_call_virt_teardown(); \ 474 local_irq_restore(__flags); \ 475 \ 476 __s; \ 477 }) 478 479 efi_status_t efi_thunk_set_virtual_address_map( 480 void *phys_set_virtual_address_map, 481 unsigned long memory_map_size, 482 unsigned long descriptor_size, 483 u32 descriptor_version, 484 efi_memory_desc_t *virtual_map) 485 { 486 efi_status_t status; 487 unsigned long flags; 488 u32 func; 489 490 efi_sync_low_kernel_mappings(); 491 local_irq_save(flags); 492 493 efi_scratch.prev_cr3 = read_cr3(); 494 write_cr3((unsigned long)efi_scratch.efi_pgt); 495 __flush_tlb_all(); 496 497 func = (u32)(unsigned long)phys_set_virtual_address_map; 498 status = efi64_thunk(func, memory_map_size, descriptor_size, 499 descriptor_version, virtual_map); 500 501 write_cr3(efi_scratch.prev_cr3); 502 __flush_tlb_all(); 503 local_irq_restore(flags); 504 505 return status; 506 } 507 508 static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc) 509 { 510 efi_status_t status; 511 u32 phys_tm, phys_tc; 512 513 spin_lock(&rtc_lock); 514 515 phys_tm = virt_to_phys(tm); 516 phys_tc = virt_to_phys(tc); 517 518 status = efi_thunk(get_time, phys_tm, phys_tc); 519 520 spin_unlock(&rtc_lock); 521 522 return status; 523 } 524 525 static efi_status_t efi_thunk_set_time(efi_time_t *tm) 526 { 527 efi_status_t status; 528 u32 phys_tm; 529 530 spin_lock(&rtc_lock); 531 532 phys_tm = virt_to_phys(tm); 533 534 status = efi_thunk(set_time, phys_tm); 535 536 spin_unlock(&rtc_lock); 537 538 return status; 539 } 540 541 static efi_status_t 542 efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending, 543 efi_time_t *tm) 544 { 545 efi_status_t status; 546 u32 phys_enabled, phys_pending, phys_tm; 547 548 spin_lock(&rtc_lock); 549 550 phys_enabled = virt_to_phys(enabled); 551 phys_pending = virt_to_phys(pending); 552 phys_tm = virt_to_phys(tm); 553 554 status = efi_thunk(get_wakeup_time, phys_enabled, 555 phys_pending, phys_tm); 556 557 spin_unlock(&rtc_lock); 558 559 return status; 560 } 561 562 static efi_status_t 563 efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm) 564 { 565 efi_status_t status; 566 u32 phys_tm; 567 568 spin_lock(&rtc_lock); 569 570 phys_tm = virt_to_phys(tm); 571 572 status = efi_thunk(set_wakeup_time, enabled, phys_tm); 573 574 spin_unlock(&rtc_lock); 575 576 return status; 577 } 578 579 580 static efi_status_t 581 efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor, 582 u32 *attr, unsigned long *data_size, void *data) 583 { 584 efi_status_t status; 585 u32 phys_name, phys_vendor, phys_attr; 586 u32 phys_data_size, phys_data; 587 588 phys_data_size = virt_to_phys(data_size); 589 phys_vendor = virt_to_phys(vendor); 590 phys_name = virt_to_phys(name); 591 phys_attr = virt_to_phys(attr); 592 phys_data = virt_to_phys(data); 593 594 status = efi_thunk(get_variable, phys_name, phys_vendor, 595 phys_attr, phys_data_size, phys_data); 596 597 return status; 598 } 599 600 static efi_status_t 601 efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor, 602 u32 attr, unsigned long data_size, void *data) 603 { 604 u32 phys_name, phys_vendor, phys_data; 605 efi_status_t status; 606 607 phys_name = virt_to_phys(name); 608 phys_vendor = virt_to_phys(vendor); 609 phys_data = virt_to_phys(data); 610 611 /* If data_size is > sizeof(u32) we've got problems */ 612 status = efi_thunk(set_variable, phys_name, phys_vendor, 613 attr, data_size, phys_data); 614 615 return status; 616 } 617 618 static efi_status_t 619 efi_thunk_get_next_variable(unsigned long *name_size, 620 efi_char16_t *name, 621 efi_guid_t *vendor) 622 { 623 efi_status_t status; 624 u32 phys_name_size, phys_name, phys_vendor; 625 626 phys_name_size = virt_to_phys(name_size); 627 phys_vendor = virt_to_phys(vendor); 628 phys_name = virt_to_phys(name); 629 630 status = efi_thunk(get_next_variable, phys_name_size, 631 phys_name, phys_vendor); 632 633 return status; 634 } 635 636 static efi_status_t 637 efi_thunk_get_next_high_mono_count(u32 *count) 638 { 639 efi_status_t status; 640 u32 phys_count; 641 642 phys_count = virt_to_phys(count); 643 status = efi_thunk(get_next_high_mono_count, phys_count); 644 645 return status; 646 } 647 648 static void 649 efi_thunk_reset_system(int reset_type, efi_status_t status, 650 unsigned long data_size, efi_char16_t *data) 651 { 652 u32 phys_data; 653 654 phys_data = virt_to_phys(data); 655 656 efi_thunk(reset_system, reset_type, status, data_size, phys_data); 657 } 658 659 static efi_status_t 660 efi_thunk_update_capsule(efi_capsule_header_t **capsules, 661 unsigned long count, unsigned long sg_list) 662 { 663 /* 664 * To properly support this function we would need to repackage 665 * 'capsules' because the firmware doesn't understand 64-bit 666 * pointers. 667 */ 668 return EFI_UNSUPPORTED; 669 } 670 671 static efi_status_t 672 efi_thunk_query_variable_info(u32 attr, u64 *storage_space, 673 u64 *remaining_space, 674 u64 *max_variable_size) 675 { 676 efi_status_t status; 677 u32 phys_storage, phys_remaining, phys_max; 678 679 if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION) 680 return EFI_UNSUPPORTED; 681 682 phys_storage = virt_to_phys(storage_space); 683 phys_remaining = virt_to_phys(remaining_space); 684 phys_max = virt_to_phys(max_variable_size); 685 686 status = efi_thunk(query_variable_info, attr, phys_storage, 687 phys_remaining, phys_max); 688 689 return status; 690 } 691 692 static efi_status_t 693 efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules, 694 unsigned long count, u64 *max_size, 695 int *reset_type) 696 { 697 /* 698 * To properly support this function we would need to repackage 699 * 'capsules' because the firmware doesn't understand 64-bit 700 * pointers. 701 */ 702 return EFI_UNSUPPORTED; 703 } 704 705 void efi_thunk_runtime_setup(void) 706 { 707 efi.get_time = efi_thunk_get_time; 708 efi.set_time = efi_thunk_set_time; 709 efi.get_wakeup_time = efi_thunk_get_wakeup_time; 710 efi.set_wakeup_time = efi_thunk_set_wakeup_time; 711 efi.get_variable = efi_thunk_get_variable; 712 efi.get_next_variable = efi_thunk_get_next_variable; 713 efi.set_variable = efi_thunk_set_variable; 714 efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count; 715 efi.reset_system = efi_thunk_reset_system; 716 efi.query_variable_info = efi_thunk_query_variable_info; 717 efi.update_capsule = efi_thunk_update_capsule; 718 efi.query_capsule_caps = efi_thunk_query_capsule_caps; 719 } 720 #endif /* CONFIG_EFI_MIXED */ 721