xref: /openbmc/linux/arch/x86/platform/efi/efi_64.c (revision 7663edc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * x86_64 specific EFI support functions
4  * Based on Extensible Firmware Interface Specification version 1.0
5  *
6  * Copyright (C) 2005-2008 Intel Co.
7  *	Fenghua Yu <fenghua.yu@intel.com>
8  *	Bibo Mao <bibo.mao@intel.com>
9  *	Chandramouli Narayanan <mouli@linux.intel.com>
10  *	Huang Ying <ying.huang@intel.com>
11  *
12  * Code to convert EFI to E820 map has been implemented in elilo bootloader
13  * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table
14  * is setup appropriately for EFI runtime code.
15  * - mouli 06/14/2007.
16  *
17  */
18 
19 #define pr_fmt(fmt) "efi: " fmt
20 
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/mm.h>
24 #include <linux/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/memblock.h>
27 #include <linux/ioport.h>
28 #include <linux/mc146818rtc.h>
29 #include <linux/efi.h>
30 #include <linux/export.h>
31 #include <linux/uaccess.h>
32 #include <linux/io.h>
33 #include <linux/reboot.h>
34 #include <linux/slab.h>
35 #include <linux/ucs2_string.h>
36 #include <linux/mem_encrypt.h>
37 #include <linux/sched/task.h>
38 
39 #include <asm/setup.h>
40 #include <asm/page.h>
41 #include <asm/e820/api.h>
42 #include <asm/tlbflush.h>
43 #include <asm/proto.h>
44 #include <asm/efi.h>
45 #include <asm/cacheflush.h>
46 #include <asm/fixmap.h>
47 #include <asm/realmode.h>
48 #include <asm/time.h>
49 #include <asm/pgalloc.h>
50 
51 /*
52  * We allocate runtime services regions top-down, starting from -4G, i.e.
53  * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G.
54  */
55 static u64 efi_va = EFI_VA_START;
56 
57 struct efi_scratch efi_scratch;
58 
59 EXPORT_SYMBOL_GPL(efi_mm);
60 
61 /*
62  * We need our own copy of the higher levels of the page tables
63  * because we want to avoid inserting EFI region mappings (EFI_VA_END
64  * to EFI_VA_START) into the standard kernel page tables. Everything
65  * else can be shared, see efi_sync_low_kernel_mappings().
66  *
67  * We don't want the pgd on the pgd_list and cannot use pgd_alloc() for the
68  * allocation.
69  */
70 int __init efi_alloc_page_tables(void)
71 {
72 	pgd_t *pgd, *efi_pgd;
73 	p4d_t *p4d;
74 	pud_t *pud;
75 	gfp_t gfp_mask;
76 
77 	gfp_mask = GFP_KERNEL | __GFP_ZERO;
78 	efi_pgd = (pgd_t *)__get_free_pages(gfp_mask, PGD_ALLOCATION_ORDER);
79 	if (!efi_pgd)
80 		return -ENOMEM;
81 
82 	pgd = efi_pgd + pgd_index(EFI_VA_END);
83 	p4d = p4d_alloc(&init_mm, pgd, EFI_VA_END);
84 	if (!p4d) {
85 		free_page((unsigned long)efi_pgd);
86 		return -ENOMEM;
87 	}
88 
89 	pud = pud_alloc(&init_mm, p4d, EFI_VA_END);
90 	if (!pud) {
91 		if (pgtable_l5_enabled())
92 			free_page((unsigned long) pgd_page_vaddr(*pgd));
93 		free_pages((unsigned long)efi_pgd, PGD_ALLOCATION_ORDER);
94 		return -ENOMEM;
95 	}
96 
97 	efi_mm.pgd = efi_pgd;
98 	mm_init_cpumask(&efi_mm);
99 	init_new_context(NULL, &efi_mm);
100 
101 	return 0;
102 }
103 
104 /*
105  * Add low kernel mappings for passing arguments to EFI functions.
106  */
107 void efi_sync_low_kernel_mappings(void)
108 {
109 	unsigned num_entries;
110 	pgd_t *pgd_k, *pgd_efi;
111 	p4d_t *p4d_k, *p4d_efi;
112 	pud_t *pud_k, *pud_efi;
113 	pgd_t *efi_pgd = efi_mm.pgd;
114 
115 	/*
116 	 * We can share all PGD entries apart from the one entry that
117 	 * covers the EFI runtime mapping space.
118 	 *
119 	 * Make sure the EFI runtime region mappings are guaranteed to
120 	 * only span a single PGD entry and that the entry also maps
121 	 * other important kernel regions.
122 	 */
123 	MAYBE_BUILD_BUG_ON(pgd_index(EFI_VA_END) != pgd_index(MODULES_END));
124 	MAYBE_BUILD_BUG_ON((EFI_VA_START & PGDIR_MASK) !=
125 			(EFI_VA_END & PGDIR_MASK));
126 
127 	pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET);
128 	pgd_k = pgd_offset_k(PAGE_OFFSET);
129 
130 	num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET);
131 	memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries);
132 
133 	/*
134 	 * As with PGDs, we share all P4D entries apart from the one entry
135 	 * that covers the EFI runtime mapping space.
136 	 */
137 	BUILD_BUG_ON(p4d_index(EFI_VA_END) != p4d_index(MODULES_END));
138 	BUILD_BUG_ON((EFI_VA_START & P4D_MASK) != (EFI_VA_END & P4D_MASK));
139 
140 	pgd_efi = efi_pgd + pgd_index(EFI_VA_END);
141 	pgd_k = pgd_offset_k(EFI_VA_END);
142 	p4d_efi = p4d_offset(pgd_efi, 0);
143 	p4d_k = p4d_offset(pgd_k, 0);
144 
145 	num_entries = p4d_index(EFI_VA_END);
146 	memcpy(p4d_efi, p4d_k, sizeof(p4d_t) * num_entries);
147 
148 	/*
149 	 * We share all the PUD entries apart from those that map the
150 	 * EFI regions. Copy around them.
151 	 */
152 	BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0);
153 	BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0);
154 
155 	p4d_efi = p4d_offset(pgd_efi, EFI_VA_END);
156 	p4d_k = p4d_offset(pgd_k, EFI_VA_END);
157 	pud_efi = pud_offset(p4d_efi, 0);
158 	pud_k = pud_offset(p4d_k, 0);
159 
160 	num_entries = pud_index(EFI_VA_END);
161 	memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
162 
163 	pud_efi = pud_offset(p4d_efi, EFI_VA_START);
164 	pud_k = pud_offset(p4d_k, EFI_VA_START);
165 
166 	num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START);
167 	memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
168 }
169 
170 /*
171  * Wrapper for slow_virt_to_phys() that handles NULL addresses.
172  */
173 static inline phys_addr_t
174 virt_to_phys_or_null_size(void *va, unsigned long size)
175 {
176 	phys_addr_t pa;
177 
178 	if (!va)
179 		return 0;
180 
181 	if (virt_addr_valid(va))
182 		return virt_to_phys(va);
183 
184 	pa = slow_virt_to_phys(va);
185 
186 	/* check if the object crosses a page boundary */
187 	if (WARN_ON((pa ^ (pa + size - 1)) & PAGE_MASK))
188 		return 0;
189 
190 	return pa;
191 }
192 
193 #define virt_to_phys_or_null(addr)				\
194 	virt_to_phys_or_null_size((addr), sizeof(*(addr)))
195 
196 int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
197 {
198 	unsigned long pfn, text, pf, rodata;
199 	struct page *page;
200 	unsigned npages;
201 	pgd_t *pgd = efi_mm.pgd;
202 
203 	/*
204 	 * It can happen that the physical address of new_memmap lands in memory
205 	 * which is not mapped in the EFI page table. Therefore we need to go
206 	 * and ident-map those pages containing the map before calling
207 	 * phys_efi_set_virtual_address_map().
208 	 */
209 	pfn = pa_memmap >> PAGE_SHIFT;
210 	pf = _PAGE_NX | _PAGE_RW | _PAGE_ENC;
211 	if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, pf)) {
212 		pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap);
213 		return 1;
214 	}
215 
216 	/*
217 	 * Certain firmware versions are way too sentimential and still believe
218 	 * they are exclusive and unquestionable owners of the first physical page,
219 	 * even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY
220 	 * (but then write-access it later during SetVirtualAddressMap()).
221 	 *
222 	 * Create a 1:1 mapping for this page, to avoid triple faults during early
223 	 * boot with such firmware. We are free to hand this page to the BIOS,
224 	 * as trim_bios_range() will reserve the first page and isolate it away
225 	 * from memory allocators anyway.
226 	 */
227 	if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, pf)) {
228 		pr_err("Failed to create 1:1 mapping for the first page!\n");
229 		return 1;
230 	}
231 
232 	/*
233 	 * When making calls to the firmware everything needs to be 1:1
234 	 * mapped and addressable with 32-bit pointers. Map the kernel
235 	 * text and allocate a new stack because we can't rely on the
236 	 * stack pointer being < 4GB.
237 	 */
238 	if (!efi_is_mixed())
239 		return 0;
240 
241 	page = alloc_page(GFP_KERNEL|__GFP_DMA32);
242 	if (!page) {
243 		pr_err("Unable to allocate EFI runtime stack < 4GB\n");
244 		return 1;
245 	}
246 
247 	efi_scratch.phys_stack = page_to_phys(page + 1); /* stack grows down */
248 
249 	npages = (_etext - _text) >> PAGE_SHIFT;
250 	text = __pa(_text);
251 	pfn = text >> PAGE_SHIFT;
252 
253 	pf = _PAGE_ENC;
254 	if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, pf)) {
255 		pr_err("Failed to map kernel text 1:1\n");
256 		return 1;
257 	}
258 
259 	npages = (__end_rodata - __start_rodata) >> PAGE_SHIFT;
260 	rodata = __pa(__start_rodata);
261 	pfn = rodata >> PAGE_SHIFT;
262 
263 	pf = _PAGE_NX | _PAGE_ENC;
264 	if (kernel_map_pages_in_pgd(pgd, pfn, rodata, npages, pf)) {
265 		pr_err("Failed to map kernel rodata 1:1\n");
266 		return 1;
267 	}
268 
269 	return 0;
270 }
271 
272 static void __init __map_region(efi_memory_desc_t *md, u64 va)
273 {
274 	unsigned long flags = _PAGE_RW;
275 	unsigned long pfn;
276 	pgd_t *pgd = efi_mm.pgd;
277 
278 	/*
279 	 * EFI_RUNTIME_SERVICES_CODE regions typically cover PE/COFF
280 	 * executable images in memory that consist of both R-X and
281 	 * RW- sections, so we cannot apply read-only or non-exec
282 	 * permissions just yet. However, modern EFI systems provide
283 	 * a memory attributes table that describes those sections
284 	 * with the appropriate restricted permissions, which are
285 	 * applied in efi_runtime_update_mappings() below. All other
286 	 * regions can be mapped non-executable at this point, with
287 	 * the exception of boot services code regions, but those will
288 	 * be unmapped again entirely in efi_free_boot_services().
289 	 */
290 	if (md->type != EFI_BOOT_SERVICES_CODE &&
291 	    md->type != EFI_RUNTIME_SERVICES_CODE)
292 		flags |= _PAGE_NX;
293 
294 	if (!(md->attribute & EFI_MEMORY_WB))
295 		flags |= _PAGE_PCD;
296 
297 	if (sev_active() && md->type != EFI_MEMORY_MAPPED_IO)
298 		flags |= _PAGE_ENC;
299 
300 	pfn = md->phys_addr >> PAGE_SHIFT;
301 	if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags))
302 		pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
303 			   md->phys_addr, va);
304 }
305 
306 void __init efi_map_region(efi_memory_desc_t *md)
307 {
308 	unsigned long size = md->num_pages << PAGE_SHIFT;
309 	u64 pa = md->phys_addr;
310 
311 	/*
312 	 * Make sure the 1:1 mappings are present as a catch-all for b0rked
313 	 * firmware which doesn't update all internal pointers after switching
314 	 * to virtual mode and would otherwise crap on us.
315 	 */
316 	__map_region(md, md->phys_addr);
317 
318 	/*
319 	 * Enforce the 1:1 mapping as the default virtual address when
320 	 * booting in EFI mixed mode, because even though we may be
321 	 * running a 64-bit kernel, the firmware may only be 32-bit.
322 	 */
323 	if (efi_is_mixed()) {
324 		md->virt_addr = md->phys_addr;
325 		return;
326 	}
327 
328 	efi_va -= size;
329 
330 	/* Is PA 2M-aligned? */
331 	if (!(pa & (PMD_SIZE - 1))) {
332 		efi_va &= PMD_MASK;
333 	} else {
334 		u64 pa_offset = pa & (PMD_SIZE - 1);
335 		u64 prev_va = efi_va;
336 
337 		/* get us the same offset within this 2M page */
338 		efi_va = (efi_va & PMD_MASK) + pa_offset;
339 
340 		if (efi_va > prev_va)
341 			efi_va -= PMD_SIZE;
342 	}
343 
344 	if (efi_va < EFI_VA_END) {
345 		pr_warn(FW_WARN "VA address range overflow!\n");
346 		return;
347 	}
348 
349 	/* Do the VA map */
350 	__map_region(md, efi_va);
351 	md->virt_addr = efi_va;
352 }
353 
354 /*
355  * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges.
356  * md->virt_addr is the original virtual address which had been mapped in kexec
357  * 1st kernel.
358  */
359 void __init efi_map_region_fixed(efi_memory_desc_t *md)
360 {
361 	__map_region(md, md->phys_addr);
362 	__map_region(md, md->virt_addr);
363 }
364 
365 void __init parse_efi_setup(u64 phys_addr, u32 data_len)
366 {
367 	efi_setup = phys_addr + sizeof(struct setup_data);
368 }
369 
370 static int __init efi_update_mappings(efi_memory_desc_t *md, unsigned long pf)
371 {
372 	unsigned long pfn;
373 	pgd_t *pgd = efi_mm.pgd;
374 	int err1, err2;
375 
376 	/* Update the 1:1 mapping */
377 	pfn = md->phys_addr >> PAGE_SHIFT;
378 	err1 = kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf);
379 	if (err1) {
380 		pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n",
381 			   md->phys_addr, md->virt_addr);
382 	}
383 
384 	err2 = kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf);
385 	if (err2) {
386 		pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n",
387 			   md->phys_addr, md->virt_addr);
388 	}
389 
390 	return err1 || err2;
391 }
392 
393 static int __init efi_update_mem_attr(struct mm_struct *mm, efi_memory_desc_t *md)
394 {
395 	unsigned long pf = 0;
396 
397 	if (md->attribute & EFI_MEMORY_XP)
398 		pf |= _PAGE_NX;
399 
400 	if (!(md->attribute & EFI_MEMORY_RO))
401 		pf |= _PAGE_RW;
402 
403 	if (sev_active())
404 		pf |= _PAGE_ENC;
405 
406 	return efi_update_mappings(md, pf);
407 }
408 
409 void __init efi_runtime_update_mappings(void)
410 {
411 	efi_memory_desc_t *md;
412 
413 	/*
414 	 * Use the EFI Memory Attribute Table for mapping permissions if it
415 	 * exists, since it is intended to supersede EFI_PROPERTIES_TABLE.
416 	 */
417 	if (efi_enabled(EFI_MEM_ATTR)) {
418 		efi_memattr_apply_permissions(NULL, efi_update_mem_attr);
419 		return;
420 	}
421 
422 	/*
423 	 * EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace
424 	 * EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update
425 	 * permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not
426 	 * published by the firmware. Even if we find a buggy implementation of
427 	 * EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to
428 	 * EFI_PROPERTIES_TABLE, because of the same reason.
429 	 */
430 
431 	if (!efi_enabled(EFI_NX_PE_DATA))
432 		return;
433 
434 	for_each_efi_memory_desc(md) {
435 		unsigned long pf = 0;
436 
437 		if (!(md->attribute & EFI_MEMORY_RUNTIME))
438 			continue;
439 
440 		if (!(md->attribute & EFI_MEMORY_WB))
441 			pf |= _PAGE_PCD;
442 
443 		if ((md->attribute & EFI_MEMORY_XP) ||
444 			(md->type == EFI_RUNTIME_SERVICES_DATA))
445 			pf |= _PAGE_NX;
446 
447 		if (!(md->attribute & EFI_MEMORY_RO) &&
448 			(md->type != EFI_RUNTIME_SERVICES_CODE))
449 			pf |= _PAGE_RW;
450 
451 		if (sev_active())
452 			pf |= _PAGE_ENC;
453 
454 		efi_update_mappings(md, pf);
455 	}
456 }
457 
458 void __init efi_dump_pagetable(void)
459 {
460 #ifdef CONFIG_EFI_PGT_DUMP
461 	ptdump_walk_pgd_level(NULL, &efi_mm);
462 #endif
463 }
464 
465 /*
466  * Makes the calling thread switch to/from efi_mm context. Can be used
467  * in a kernel thread and user context. Preemption needs to remain disabled
468  * while the EFI-mm is borrowed. mmgrab()/mmdrop() is not used because the mm
469  * can not change under us.
470  * It should be ensured that there are no concurent calls to this function.
471  */
472 void efi_switch_mm(struct mm_struct *mm)
473 {
474 	efi_scratch.prev_mm = current->active_mm;
475 	current->active_mm = mm;
476 	switch_mm(efi_scratch.prev_mm, mm, NULL);
477 }
478 
479 static DEFINE_SPINLOCK(efi_runtime_lock);
480 
481 /*
482  * DS and ES contain user values.  We need to save them.
483  * The 32-bit EFI code needs a valid DS, ES, and SS.  There's no
484  * need to save the old SS: __KERNEL_DS is always acceptable.
485  */
486 #define __efi_thunk(func, ...)						\
487 ({									\
488 	unsigned short __ds, __es;					\
489 	efi_status_t ____s;						\
490 									\
491 	savesegment(ds, __ds);						\
492 	savesegment(es, __es);						\
493 									\
494 	loadsegment(ss, __KERNEL_DS);					\
495 	loadsegment(ds, __KERNEL_DS);					\
496 	loadsegment(es, __KERNEL_DS);					\
497 									\
498 	____s = efi64_thunk(efi.runtime->mixed_mode.func, __VA_ARGS__);	\
499 									\
500 	loadsegment(ds, __ds);						\
501 	loadsegment(es, __es);						\
502 									\
503 	____s ^= (____s & BIT(31)) | (____s & BIT_ULL(31)) << 32;	\
504 	____s;								\
505 })
506 
507 /*
508  * Switch to the EFI page tables early so that we can access the 1:1
509  * runtime services mappings which are not mapped in any other page
510  * tables.
511  *
512  * Also, disable interrupts because the IDT points to 64-bit handlers,
513  * which aren't going to function correctly when we switch to 32-bit.
514  */
515 #define efi_thunk(func...)						\
516 ({									\
517 	efi_status_t __s;						\
518 									\
519 	arch_efi_call_virt_setup();					\
520 									\
521 	__s = __efi_thunk(func);					\
522 									\
523 	arch_efi_call_virt_teardown();					\
524 									\
525 	__s;								\
526 })
527 
528 static efi_status_t __init __no_sanitize_address
529 efi_thunk_set_virtual_address_map(unsigned long memory_map_size,
530 				  unsigned long descriptor_size,
531 				  u32 descriptor_version,
532 				  efi_memory_desc_t *virtual_map)
533 {
534 	efi_status_t status;
535 	unsigned long flags;
536 
537 	efi_sync_low_kernel_mappings();
538 	local_irq_save(flags);
539 
540 	efi_switch_mm(&efi_mm);
541 
542 	status = __efi_thunk(set_virtual_address_map, memory_map_size,
543 			     descriptor_size, descriptor_version, virtual_map);
544 
545 	efi_switch_mm(efi_scratch.prev_mm);
546 	local_irq_restore(flags);
547 
548 	return status;
549 }
550 
551 static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc)
552 {
553 	return EFI_UNSUPPORTED;
554 }
555 
556 static efi_status_t efi_thunk_set_time(efi_time_t *tm)
557 {
558 	return EFI_UNSUPPORTED;
559 }
560 
561 static efi_status_t
562 efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending,
563 			  efi_time_t *tm)
564 {
565 	return EFI_UNSUPPORTED;
566 }
567 
568 static efi_status_t
569 efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
570 {
571 	return EFI_UNSUPPORTED;
572 }
573 
574 static unsigned long efi_name_size(efi_char16_t *name)
575 {
576 	return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1;
577 }
578 
579 static efi_status_t
580 efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor,
581 		       u32 *attr, unsigned long *data_size, void *data)
582 {
583 	u8 buf[24] __aligned(8);
584 	efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
585 	efi_status_t status;
586 	u32 phys_name, phys_vendor, phys_attr;
587 	u32 phys_data_size, phys_data;
588 	unsigned long flags;
589 
590 	spin_lock_irqsave(&efi_runtime_lock, flags);
591 
592 	*vnd = *vendor;
593 
594 	phys_data_size = virt_to_phys_or_null(data_size);
595 	phys_vendor = virt_to_phys_or_null(vnd);
596 	phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
597 	phys_attr = virt_to_phys_or_null(attr);
598 	phys_data = virt_to_phys_or_null_size(data, *data_size);
599 
600 	if (!phys_name || (data && !phys_data))
601 		status = EFI_INVALID_PARAMETER;
602 	else
603 		status = efi_thunk(get_variable, phys_name, phys_vendor,
604 				   phys_attr, phys_data_size, phys_data);
605 
606 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
607 
608 	return status;
609 }
610 
611 static efi_status_t
612 efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor,
613 		       u32 attr, unsigned long data_size, void *data)
614 {
615 	u8 buf[24] __aligned(8);
616 	efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
617 	u32 phys_name, phys_vendor, phys_data;
618 	efi_status_t status;
619 	unsigned long flags;
620 
621 	spin_lock_irqsave(&efi_runtime_lock, flags);
622 
623 	*vnd = *vendor;
624 
625 	phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
626 	phys_vendor = virt_to_phys_or_null(vnd);
627 	phys_data = virt_to_phys_or_null_size(data, data_size);
628 
629 	if (!phys_name || (data && !phys_data))
630 		status = EFI_INVALID_PARAMETER;
631 	else
632 		status = efi_thunk(set_variable, phys_name, phys_vendor,
633 				   attr, data_size, phys_data);
634 
635 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
636 
637 	return status;
638 }
639 
640 static efi_status_t
641 efi_thunk_set_variable_nonblocking(efi_char16_t *name, efi_guid_t *vendor,
642 				   u32 attr, unsigned long data_size,
643 				   void *data)
644 {
645 	u8 buf[24] __aligned(8);
646 	efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
647 	u32 phys_name, phys_vendor, phys_data;
648 	efi_status_t status;
649 	unsigned long flags;
650 
651 	if (!spin_trylock_irqsave(&efi_runtime_lock, flags))
652 		return EFI_NOT_READY;
653 
654 	*vnd = *vendor;
655 
656 	phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
657 	phys_vendor = virt_to_phys_or_null(vnd);
658 	phys_data = virt_to_phys_or_null_size(data, data_size);
659 
660 	if (!phys_name || (data && !phys_data))
661 		status = EFI_INVALID_PARAMETER;
662 	else
663 		status = efi_thunk(set_variable, phys_name, phys_vendor,
664 				   attr, data_size, phys_data);
665 
666 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
667 
668 	return status;
669 }
670 
671 static efi_status_t
672 efi_thunk_get_next_variable(unsigned long *name_size,
673 			    efi_char16_t *name,
674 			    efi_guid_t *vendor)
675 {
676 	u8 buf[24] __aligned(8);
677 	efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
678 	efi_status_t status;
679 	u32 phys_name_size, phys_name, phys_vendor;
680 	unsigned long flags;
681 
682 	spin_lock_irqsave(&efi_runtime_lock, flags);
683 
684 	*vnd = *vendor;
685 
686 	phys_name_size = virt_to_phys_or_null(name_size);
687 	phys_vendor = virt_to_phys_or_null(vnd);
688 	phys_name = virt_to_phys_or_null_size(name, *name_size);
689 
690 	if (!phys_name)
691 		status = EFI_INVALID_PARAMETER;
692 	else
693 		status = efi_thunk(get_next_variable, phys_name_size,
694 				   phys_name, phys_vendor);
695 
696 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
697 
698 	*vendor = *vnd;
699 	return status;
700 }
701 
702 static efi_status_t
703 efi_thunk_get_next_high_mono_count(u32 *count)
704 {
705 	return EFI_UNSUPPORTED;
706 }
707 
708 static void
709 efi_thunk_reset_system(int reset_type, efi_status_t status,
710 		       unsigned long data_size, efi_char16_t *data)
711 {
712 	u32 phys_data;
713 	unsigned long flags;
714 
715 	spin_lock_irqsave(&efi_runtime_lock, flags);
716 
717 	phys_data = virt_to_phys_or_null_size(data, data_size);
718 
719 	efi_thunk(reset_system, reset_type, status, data_size, phys_data);
720 
721 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
722 }
723 
724 static efi_status_t
725 efi_thunk_update_capsule(efi_capsule_header_t **capsules,
726 			 unsigned long count, unsigned long sg_list)
727 {
728 	/*
729 	 * To properly support this function we would need to repackage
730 	 * 'capsules' because the firmware doesn't understand 64-bit
731 	 * pointers.
732 	 */
733 	return EFI_UNSUPPORTED;
734 }
735 
736 static efi_status_t
737 efi_thunk_query_variable_info(u32 attr, u64 *storage_space,
738 			      u64 *remaining_space,
739 			      u64 *max_variable_size)
740 {
741 	efi_status_t status;
742 	u32 phys_storage, phys_remaining, phys_max;
743 	unsigned long flags;
744 
745 	if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
746 		return EFI_UNSUPPORTED;
747 
748 	spin_lock_irqsave(&efi_runtime_lock, flags);
749 
750 	phys_storage = virt_to_phys_or_null(storage_space);
751 	phys_remaining = virt_to_phys_or_null(remaining_space);
752 	phys_max = virt_to_phys_or_null(max_variable_size);
753 
754 	status = efi_thunk(query_variable_info, attr, phys_storage,
755 			   phys_remaining, phys_max);
756 
757 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
758 
759 	return status;
760 }
761 
762 static efi_status_t
763 efi_thunk_query_variable_info_nonblocking(u32 attr, u64 *storage_space,
764 					  u64 *remaining_space,
765 					  u64 *max_variable_size)
766 {
767 	efi_status_t status;
768 	u32 phys_storage, phys_remaining, phys_max;
769 	unsigned long flags;
770 
771 	if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
772 		return EFI_UNSUPPORTED;
773 
774 	if (!spin_trylock_irqsave(&efi_runtime_lock, flags))
775 		return EFI_NOT_READY;
776 
777 	phys_storage = virt_to_phys_or_null(storage_space);
778 	phys_remaining = virt_to_phys_or_null(remaining_space);
779 	phys_max = virt_to_phys_or_null(max_variable_size);
780 
781 	status = efi_thunk(query_variable_info, attr, phys_storage,
782 			   phys_remaining, phys_max);
783 
784 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
785 
786 	return status;
787 }
788 
789 static efi_status_t
790 efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules,
791 			     unsigned long count, u64 *max_size,
792 			     int *reset_type)
793 {
794 	/*
795 	 * To properly support this function we would need to repackage
796 	 * 'capsules' because the firmware doesn't understand 64-bit
797 	 * pointers.
798 	 */
799 	return EFI_UNSUPPORTED;
800 }
801 
802 void __init efi_thunk_runtime_setup(void)
803 {
804 	if (!IS_ENABLED(CONFIG_EFI_MIXED))
805 		return;
806 
807 	efi.get_time = efi_thunk_get_time;
808 	efi.set_time = efi_thunk_set_time;
809 	efi.get_wakeup_time = efi_thunk_get_wakeup_time;
810 	efi.set_wakeup_time = efi_thunk_set_wakeup_time;
811 	efi.get_variable = efi_thunk_get_variable;
812 	efi.get_next_variable = efi_thunk_get_next_variable;
813 	efi.set_variable = efi_thunk_set_variable;
814 	efi.set_variable_nonblocking = efi_thunk_set_variable_nonblocking;
815 	efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count;
816 	efi.reset_system = efi_thunk_reset_system;
817 	efi.query_variable_info = efi_thunk_query_variable_info;
818 	efi.query_variable_info_nonblocking = efi_thunk_query_variable_info_nonblocking;
819 	efi.update_capsule = efi_thunk_update_capsule;
820 	efi.query_capsule_caps = efi_thunk_query_capsule_caps;
821 }
822 
823 efi_status_t __init __no_sanitize_address
824 efi_set_virtual_address_map(unsigned long memory_map_size,
825 			    unsigned long descriptor_size,
826 			    u32 descriptor_version,
827 			    efi_memory_desc_t *virtual_map,
828 			    unsigned long systab_phys)
829 {
830 	const efi_system_table_t *systab = (efi_system_table_t *)systab_phys;
831 	efi_status_t status;
832 	unsigned long flags;
833 
834 	if (efi_is_mixed())
835 		return efi_thunk_set_virtual_address_map(memory_map_size,
836 							 descriptor_size,
837 							 descriptor_version,
838 							 virtual_map);
839 	efi_switch_mm(&efi_mm);
840 
841 	kernel_fpu_begin();
842 
843 	/* Disable interrupts around EFI calls: */
844 	local_irq_save(flags);
845 	status = efi_call(efi.runtime->set_virtual_address_map,
846 			  memory_map_size, descriptor_size,
847 			  descriptor_version, virtual_map);
848 	local_irq_restore(flags);
849 
850 	kernel_fpu_end();
851 
852 	/* grab the virtually remapped EFI runtime services table pointer */
853 	efi.runtime = READ_ONCE(systab->runtime);
854 
855 	efi_switch_mm(efi_scratch.prev_mm);
856 
857 	return status;
858 }
859