xref: /openbmc/linux/arch/x86/platform/efi/efi_64.c (revision 70a59dd8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * x86_64 specific EFI support functions
4  * Based on Extensible Firmware Interface Specification version 1.0
5  *
6  * Copyright (C) 2005-2008 Intel Co.
7  *	Fenghua Yu <fenghua.yu@intel.com>
8  *	Bibo Mao <bibo.mao@intel.com>
9  *	Chandramouli Narayanan <mouli@linux.intel.com>
10  *	Huang Ying <ying.huang@intel.com>
11  *
12  * Code to convert EFI to E820 map has been implemented in elilo bootloader
13  * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table
14  * is setup appropriately for EFI runtime code.
15  * - mouli 06/14/2007.
16  *
17  */
18 
19 #define pr_fmt(fmt) "efi: " fmt
20 
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/mm.h>
24 #include <linux/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/memblock.h>
27 #include <linux/ioport.h>
28 #include <linux/mc146818rtc.h>
29 #include <linux/efi.h>
30 #include <linux/export.h>
31 #include <linux/uaccess.h>
32 #include <linux/io.h>
33 #include <linux/reboot.h>
34 #include <linux/slab.h>
35 #include <linux/ucs2_string.h>
36 #include <linux/mem_encrypt.h>
37 #include <linux/sched/task.h>
38 
39 #include <asm/setup.h>
40 #include <asm/page.h>
41 #include <asm/e820/api.h>
42 #include <asm/tlbflush.h>
43 #include <asm/proto.h>
44 #include <asm/efi.h>
45 #include <asm/cacheflush.h>
46 #include <asm/fixmap.h>
47 #include <asm/realmode.h>
48 #include <asm/time.h>
49 #include <asm/pgalloc.h>
50 #include <asm/sev-es.h>
51 
52 /*
53  * We allocate runtime services regions top-down, starting from -4G, i.e.
54  * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G.
55  */
56 static u64 efi_va = EFI_VA_START;
57 
58 struct efi_scratch efi_scratch;
59 
60 EXPORT_SYMBOL_GPL(efi_mm);
61 
62 /*
63  * We need our own copy of the higher levels of the page tables
64  * because we want to avoid inserting EFI region mappings (EFI_VA_END
65  * to EFI_VA_START) into the standard kernel page tables. Everything
66  * else can be shared, see efi_sync_low_kernel_mappings().
67  *
68  * We don't want the pgd on the pgd_list and cannot use pgd_alloc() for the
69  * allocation.
70  */
71 int __init efi_alloc_page_tables(void)
72 {
73 	pgd_t *pgd, *efi_pgd;
74 	p4d_t *p4d;
75 	pud_t *pud;
76 	gfp_t gfp_mask;
77 
78 	gfp_mask = GFP_KERNEL | __GFP_ZERO;
79 	efi_pgd = (pgd_t *)__get_free_pages(gfp_mask, PGD_ALLOCATION_ORDER);
80 	if (!efi_pgd)
81 		return -ENOMEM;
82 
83 	pgd = efi_pgd + pgd_index(EFI_VA_END);
84 	p4d = p4d_alloc(&init_mm, pgd, EFI_VA_END);
85 	if (!p4d) {
86 		free_page((unsigned long)efi_pgd);
87 		return -ENOMEM;
88 	}
89 
90 	pud = pud_alloc(&init_mm, p4d, EFI_VA_END);
91 	if (!pud) {
92 		if (pgtable_l5_enabled())
93 			free_page((unsigned long) pgd_page_vaddr(*pgd));
94 		free_pages((unsigned long)efi_pgd, PGD_ALLOCATION_ORDER);
95 		return -ENOMEM;
96 	}
97 
98 	efi_mm.pgd = efi_pgd;
99 	mm_init_cpumask(&efi_mm);
100 	init_new_context(NULL, &efi_mm);
101 
102 	return 0;
103 }
104 
105 /*
106  * Add low kernel mappings for passing arguments to EFI functions.
107  */
108 void efi_sync_low_kernel_mappings(void)
109 {
110 	unsigned num_entries;
111 	pgd_t *pgd_k, *pgd_efi;
112 	p4d_t *p4d_k, *p4d_efi;
113 	pud_t *pud_k, *pud_efi;
114 	pgd_t *efi_pgd = efi_mm.pgd;
115 
116 	/*
117 	 * We can share all PGD entries apart from the one entry that
118 	 * covers the EFI runtime mapping space.
119 	 *
120 	 * Make sure the EFI runtime region mappings are guaranteed to
121 	 * only span a single PGD entry and that the entry also maps
122 	 * other important kernel regions.
123 	 */
124 	MAYBE_BUILD_BUG_ON(pgd_index(EFI_VA_END) != pgd_index(MODULES_END));
125 	MAYBE_BUILD_BUG_ON((EFI_VA_START & PGDIR_MASK) !=
126 			(EFI_VA_END & PGDIR_MASK));
127 
128 	pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET);
129 	pgd_k = pgd_offset_k(PAGE_OFFSET);
130 
131 	num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET);
132 	memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries);
133 
134 	/*
135 	 * As with PGDs, we share all P4D entries apart from the one entry
136 	 * that covers the EFI runtime mapping space.
137 	 */
138 	BUILD_BUG_ON(p4d_index(EFI_VA_END) != p4d_index(MODULES_END));
139 	BUILD_BUG_ON((EFI_VA_START & P4D_MASK) != (EFI_VA_END & P4D_MASK));
140 
141 	pgd_efi = efi_pgd + pgd_index(EFI_VA_END);
142 	pgd_k = pgd_offset_k(EFI_VA_END);
143 	p4d_efi = p4d_offset(pgd_efi, 0);
144 	p4d_k = p4d_offset(pgd_k, 0);
145 
146 	num_entries = p4d_index(EFI_VA_END);
147 	memcpy(p4d_efi, p4d_k, sizeof(p4d_t) * num_entries);
148 
149 	/*
150 	 * We share all the PUD entries apart from those that map the
151 	 * EFI regions. Copy around them.
152 	 */
153 	BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0);
154 	BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0);
155 
156 	p4d_efi = p4d_offset(pgd_efi, EFI_VA_END);
157 	p4d_k = p4d_offset(pgd_k, EFI_VA_END);
158 	pud_efi = pud_offset(p4d_efi, 0);
159 	pud_k = pud_offset(p4d_k, 0);
160 
161 	num_entries = pud_index(EFI_VA_END);
162 	memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
163 
164 	pud_efi = pud_offset(p4d_efi, EFI_VA_START);
165 	pud_k = pud_offset(p4d_k, EFI_VA_START);
166 
167 	num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START);
168 	memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
169 }
170 
171 /*
172  * Wrapper for slow_virt_to_phys() that handles NULL addresses.
173  */
174 static inline phys_addr_t
175 virt_to_phys_or_null_size(void *va, unsigned long size)
176 {
177 	phys_addr_t pa;
178 
179 	if (!va)
180 		return 0;
181 
182 	if (virt_addr_valid(va))
183 		return virt_to_phys(va);
184 
185 	pa = slow_virt_to_phys(va);
186 
187 	/* check if the object crosses a page boundary */
188 	if (WARN_ON((pa ^ (pa + size - 1)) & PAGE_MASK))
189 		return 0;
190 
191 	return pa;
192 }
193 
194 #define virt_to_phys_or_null(addr)				\
195 	virt_to_phys_or_null_size((addr), sizeof(*(addr)))
196 
197 int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
198 {
199 	unsigned long pfn, text, pf, rodata;
200 	struct page *page;
201 	unsigned npages;
202 	pgd_t *pgd = efi_mm.pgd;
203 
204 	/*
205 	 * It can happen that the physical address of new_memmap lands in memory
206 	 * which is not mapped in the EFI page table. Therefore we need to go
207 	 * and ident-map those pages containing the map before calling
208 	 * phys_efi_set_virtual_address_map().
209 	 */
210 	pfn = pa_memmap >> PAGE_SHIFT;
211 	pf = _PAGE_NX | _PAGE_RW | _PAGE_ENC;
212 	if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, pf)) {
213 		pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap);
214 		return 1;
215 	}
216 
217 	/*
218 	 * Certain firmware versions are way too sentimential and still believe
219 	 * they are exclusive and unquestionable owners of the first physical page,
220 	 * even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY
221 	 * (but then write-access it later during SetVirtualAddressMap()).
222 	 *
223 	 * Create a 1:1 mapping for this page, to avoid triple faults during early
224 	 * boot with such firmware. We are free to hand this page to the BIOS,
225 	 * as trim_bios_range() will reserve the first page and isolate it away
226 	 * from memory allocators anyway.
227 	 */
228 	if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, pf)) {
229 		pr_err("Failed to create 1:1 mapping for the first page!\n");
230 		return 1;
231 	}
232 
233 	/*
234 	 * When SEV-ES is active, the GHCB as set by the kernel will be used
235 	 * by firmware. Create a 1:1 unencrypted mapping for each GHCB.
236 	 */
237 	if (sev_es_efi_map_ghcbs(pgd)) {
238 		pr_err("Failed to create 1:1 mapping for the GHCBs!\n");
239 		return 1;
240 	}
241 
242 	/*
243 	 * When making calls to the firmware everything needs to be 1:1
244 	 * mapped and addressable with 32-bit pointers. Map the kernel
245 	 * text and allocate a new stack because we can't rely on the
246 	 * stack pointer being < 4GB.
247 	 */
248 	if (!efi_is_mixed())
249 		return 0;
250 
251 	page = alloc_page(GFP_KERNEL|__GFP_DMA32);
252 	if (!page) {
253 		pr_err("Unable to allocate EFI runtime stack < 4GB\n");
254 		return 1;
255 	}
256 
257 	efi_scratch.phys_stack = page_to_phys(page + 1); /* stack grows down */
258 
259 	npages = (_etext - _text) >> PAGE_SHIFT;
260 	text = __pa(_text);
261 	pfn = text >> PAGE_SHIFT;
262 
263 	pf = _PAGE_ENC;
264 	if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, pf)) {
265 		pr_err("Failed to map kernel text 1:1\n");
266 		return 1;
267 	}
268 
269 	npages = (__end_rodata - __start_rodata) >> PAGE_SHIFT;
270 	rodata = __pa(__start_rodata);
271 	pfn = rodata >> PAGE_SHIFT;
272 
273 	pf = _PAGE_NX | _PAGE_ENC;
274 	if (kernel_map_pages_in_pgd(pgd, pfn, rodata, npages, pf)) {
275 		pr_err("Failed to map kernel rodata 1:1\n");
276 		return 1;
277 	}
278 
279 	return 0;
280 }
281 
282 static void __init __map_region(efi_memory_desc_t *md, u64 va)
283 {
284 	unsigned long flags = _PAGE_RW;
285 	unsigned long pfn;
286 	pgd_t *pgd = efi_mm.pgd;
287 
288 	/*
289 	 * EFI_RUNTIME_SERVICES_CODE regions typically cover PE/COFF
290 	 * executable images in memory that consist of both R-X and
291 	 * RW- sections, so we cannot apply read-only or non-exec
292 	 * permissions just yet. However, modern EFI systems provide
293 	 * a memory attributes table that describes those sections
294 	 * with the appropriate restricted permissions, which are
295 	 * applied in efi_runtime_update_mappings() below. All other
296 	 * regions can be mapped non-executable at this point, with
297 	 * the exception of boot services code regions, but those will
298 	 * be unmapped again entirely in efi_free_boot_services().
299 	 */
300 	if (md->type != EFI_BOOT_SERVICES_CODE &&
301 	    md->type != EFI_RUNTIME_SERVICES_CODE)
302 		flags |= _PAGE_NX;
303 
304 	if (!(md->attribute & EFI_MEMORY_WB))
305 		flags |= _PAGE_PCD;
306 
307 	if (sev_active() && md->type != EFI_MEMORY_MAPPED_IO)
308 		flags |= _PAGE_ENC;
309 
310 	pfn = md->phys_addr >> PAGE_SHIFT;
311 	if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags))
312 		pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
313 			   md->phys_addr, va);
314 }
315 
316 void __init efi_map_region(efi_memory_desc_t *md)
317 {
318 	unsigned long size = md->num_pages << PAGE_SHIFT;
319 	u64 pa = md->phys_addr;
320 
321 	/*
322 	 * Make sure the 1:1 mappings are present as a catch-all for b0rked
323 	 * firmware which doesn't update all internal pointers after switching
324 	 * to virtual mode and would otherwise crap on us.
325 	 */
326 	__map_region(md, md->phys_addr);
327 
328 	/*
329 	 * Enforce the 1:1 mapping as the default virtual address when
330 	 * booting in EFI mixed mode, because even though we may be
331 	 * running a 64-bit kernel, the firmware may only be 32-bit.
332 	 */
333 	if (efi_is_mixed()) {
334 		md->virt_addr = md->phys_addr;
335 		return;
336 	}
337 
338 	efi_va -= size;
339 
340 	/* Is PA 2M-aligned? */
341 	if (!(pa & (PMD_SIZE - 1))) {
342 		efi_va &= PMD_MASK;
343 	} else {
344 		u64 pa_offset = pa & (PMD_SIZE - 1);
345 		u64 prev_va = efi_va;
346 
347 		/* get us the same offset within this 2M page */
348 		efi_va = (efi_va & PMD_MASK) + pa_offset;
349 
350 		if (efi_va > prev_va)
351 			efi_va -= PMD_SIZE;
352 	}
353 
354 	if (efi_va < EFI_VA_END) {
355 		pr_warn(FW_WARN "VA address range overflow!\n");
356 		return;
357 	}
358 
359 	/* Do the VA map */
360 	__map_region(md, efi_va);
361 	md->virt_addr = efi_va;
362 }
363 
364 /*
365  * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges.
366  * md->virt_addr is the original virtual address which had been mapped in kexec
367  * 1st kernel.
368  */
369 void __init efi_map_region_fixed(efi_memory_desc_t *md)
370 {
371 	__map_region(md, md->phys_addr);
372 	__map_region(md, md->virt_addr);
373 }
374 
375 void __init parse_efi_setup(u64 phys_addr, u32 data_len)
376 {
377 	efi_setup = phys_addr + sizeof(struct setup_data);
378 }
379 
380 static int __init efi_update_mappings(efi_memory_desc_t *md, unsigned long pf)
381 {
382 	unsigned long pfn;
383 	pgd_t *pgd = efi_mm.pgd;
384 	int err1, err2;
385 
386 	/* Update the 1:1 mapping */
387 	pfn = md->phys_addr >> PAGE_SHIFT;
388 	err1 = kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf);
389 	if (err1) {
390 		pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n",
391 			   md->phys_addr, md->virt_addr);
392 	}
393 
394 	err2 = kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf);
395 	if (err2) {
396 		pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n",
397 			   md->phys_addr, md->virt_addr);
398 	}
399 
400 	return err1 || err2;
401 }
402 
403 static int __init efi_update_mem_attr(struct mm_struct *mm, efi_memory_desc_t *md)
404 {
405 	unsigned long pf = 0;
406 
407 	if (md->attribute & EFI_MEMORY_XP)
408 		pf |= _PAGE_NX;
409 
410 	if (!(md->attribute & EFI_MEMORY_RO))
411 		pf |= _PAGE_RW;
412 
413 	if (sev_active())
414 		pf |= _PAGE_ENC;
415 
416 	return efi_update_mappings(md, pf);
417 }
418 
419 void __init efi_runtime_update_mappings(void)
420 {
421 	efi_memory_desc_t *md;
422 
423 	/*
424 	 * Use the EFI Memory Attribute Table for mapping permissions if it
425 	 * exists, since it is intended to supersede EFI_PROPERTIES_TABLE.
426 	 */
427 	if (efi_enabled(EFI_MEM_ATTR)) {
428 		efi_memattr_apply_permissions(NULL, efi_update_mem_attr);
429 		return;
430 	}
431 
432 	/*
433 	 * EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace
434 	 * EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update
435 	 * permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not
436 	 * published by the firmware. Even if we find a buggy implementation of
437 	 * EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to
438 	 * EFI_PROPERTIES_TABLE, because of the same reason.
439 	 */
440 
441 	if (!efi_enabled(EFI_NX_PE_DATA))
442 		return;
443 
444 	for_each_efi_memory_desc(md) {
445 		unsigned long pf = 0;
446 
447 		if (!(md->attribute & EFI_MEMORY_RUNTIME))
448 			continue;
449 
450 		if (!(md->attribute & EFI_MEMORY_WB))
451 			pf |= _PAGE_PCD;
452 
453 		if ((md->attribute & EFI_MEMORY_XP) ||
454 			(md->type == EFI_RUNTIME_SERVICES_DATA))
455 			pf |= _PAGE_NX;
456 
457 		if (!(md->attribute & EFI_MEMORY_RO) &&
458 			(md->type != EFI_RUNTIME_SERVICES_CODE))
459 			pf |= _PAGE_RW;
460 
461 		if (sev_active())
462 			pf |= _PAGE_ENC;
463 
464 		efi_update_mappings(md, pf);
465 	}
466 }
467 
468 void __init efi_dump_pagetable(void)
469 {
470 #ifdef CONFIG_EFI_PGT_DUMP
471 	ptdump_walk_pgd_level(NULL, &efi_mm);
472 #endif
473 }
474 
475 /*
476  * Makes the calling thread switch to/from efi_mm context. Can be used
477  * in a kernel thread and user context. Preemption needs to remain disabled
478  * while the EFI-mm is borrowed. mmgrab()/mmdrop() is not used because the mm
479  * can not change under us.
480  * It should be ensured that there are no concurent calls to this function.
481  */
482 void efi_switch_mm(struct mm_struct *mm)
483 {
484 	efi_scratch.prev_mm = current->active_mm;
485 	current->active_mm = mm;
486 	switch_mm(efi_scratch.prev_mm, mm, NULL);
487 }
488 
489 static DEFINE_SPINLOCK(efi_runtime_lock);
490 
491 /*
492  * DS and ES contain user values.  We need to save them.
493  * The 32-bit EFI code needs a valid DS, ES, and SS.  There's no
494  * need to save the old SS: __KERNEL_DS is always acceptable.
495  */
496 #define __efi_thunk(func, ...)						\
497 ({									\
498 	unsigned short __ds, __es;					\
499 	efi_status_t ____s;						\
500 									\
501 	savesegment(ds, __ds);						\
502 	savesegment(es, __es);						\
503 									\
504 	loadsegment(ss, __KERNEL_DS);					\
505 	loadsegment(ds, __KERNEL_DS);					\
506 	loadsegment(es, __KERNEL_DS);					\
507 									\
508 	____s = efi64_thunk(efi.runtime->mixed_mode.func, __VA_ARGS__);	\
509 									\
510 	loadsegment(ds, __ds);						\
511 	loadsegment(es, __es);						\
512 									\
513 	____s ^= (____s & BIT(31)) | (____s & BIT_ULL(31)) << 32;	\
514 	____s;								\
515 })
516 
517 /*
518  * Switch to the EFI page tables early so that we can access the 1:1
519  * runtime services mappings which are not mapped in any other page
520  * tables.
521  *
522  * Also, disable interrupts because the IDT points to 64-bit handlers,
523  * which aren't going to function correctly when we switch to 32-bit.
524  */
525 #define efi_thunk(func...)						\
526 ({									\
527 	efi_status_t __s;						\
528 									\
529 	arch_efi_call_virt_setup();					\
530 									\
531 	__s = __efi_thunk(func);					\
532 									\
533 	arch_efi_call_virt_teardown();					\
534 									\
535 	__s;								\
536 })
537 
538 static efi_status_t __init __no_sanitize_address
539 efi_thunk_set_virtual_address_map(unsigned long memory_map_size,
540 				  unsigned long descriptor_size,
541 				  u32 descriptor_version,
542 				  efi_memory_desc_t *virtual_map)
543 {
544 	efi_status_t status;
545 	unsigned long flags;
546 
547 	efi_sync_low_kernel_mappings();
548 	local_irq_save(flags);
549 
550 	efi_switch_mm(&efi_mm);
551 
552 	status = __efi_thunk(set_virtual_address_map, memory_map_size,
553 			     descriptor_size, descriptor_version, virtual_map);
554 
555 	efi_switch_mm(efi_scratch.prev_mm);
556 	local_irq_restore(flags);
557 
558 	return status;
559 }
560 
561 static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc)
562 {
563 	return EFI_UNSUPPORTED;
564 }
565 
566 static efi_status_t efi_thunk_set_time(efi_time_t *tm)
567 {
568 	return EFI_UNSUPPORTED;
569 }
570 
571 static efi_status_t
572 efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending,
573 			  efi_time_t *tm)
574 {
575 	return EFI_UNSUPPORTED;
576 }
577 
578 static efi_status_t
579 efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
580 {
581 	return EFI_UNSUPPORTED;
582 }
583 
584 static unsigned long efi_name_size(efi_char16_t *name)
585 {
586 	return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1;
587 }
588 
589 static efi_status_t
590 efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor,
591 		       u32 *attr, unsigned long *data_size, void *data)
592 {
593 	u8 buf[24] __aligned(8);
594 	efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
595 	efi_status_t status;
596 	u32 phys_name, phys_vendor, phys_attr;
597 	u32 phys_data_size, phys_data;
598 	unsigned long flags;
599 
600 	spin_lock_irqsave(&efi_runtime_lock, flags);
601 
602 	*vnd = *vendor;
603 
604 	phys_data_size = virt_to_phys_or_null(data_size);
605 	phys_vendor = virt_to_phys_or_null(vnd);
606 	phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
607 	phys_attr = virt_to_phys_or_null(attr);
608 	phys_data = virt_to_phys_or_null_size(data, *data_size);
609 
610 	if (!phys_name || (data && !phys_data))
611 		status = EFI_INVALID_PARAMETER;
612 	else
613 		status = efi_thunk(get_variable, phys_name, phys_vendor,
614 				   phys_attr, phys_data_size, phys_data);
615 
616 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
617 
618 	return status;
619 }
620 
621 static efi_status_t
622 efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor,
623 		       u32 attr, unsigned long data_size, void *data)
624 {
625 	u8 buf[24] __aligned(8);
626 	efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
627 	u32 phys_name, phys_vendor, phys_data;
628 	efi_status_t status;
629 	unsigned long flags;
630 
631 	spin_lock_irqsave(&efi_runtime_lock, flags);
632 
633 	*vnd = *vendor;
634 
635 	phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
636 	phys_vendor = virt_to_phys_or_null(vnd);
637 	phys_data = virt_to_phys_or_null_size(data, data_size);
638 
639 	if (!phys_name || (data && !phys_data))
640 		status = EFI_INVALID_PARAMETER;
641 	else
642 		status = efi_thunk(set_variable, phys_name, phys_vendor,
643 				   attr, data_size, phys_data);
644 
645 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
646 
647 	return status;
648 }
649 
650 static efi_status_t
651 efi_thunk_set_variable_nonblocking(efi_char16_t *name, efi_guid_t *vendor,
652 				   u32 attr, unsigned long data_size,
653 				   void *data)
654 {
655 	u8 buf[24] __aligned(8);
656 	efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
657 	u32 phys_name, phys_vendor, phys_data;
658 	efi_status_t status;
659 	unsigned long flags;
660 
661 	if (!spin_trylock_irqsave(&efi_runtime_lock, flags))
662 		return EFI_NOT_READY;
663 
664 	*vnd = *vendor;
665 
666 	phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
667 	phys_vendor = virt_to_phys_or_null(vnd);
668 	phys_data = virt_to_phys_or_null_size(data, data_size);
669 
670 	if (!phys_name || (data && !phys_data))
671 		status = EFI_INVALID_PARAMETER;
672 	else
673 		status = efi_thunk(set_variable, phys_name, phys_vendor,
674 				   attr, data_size, phys_data);
675 
676 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
677 
678 	return status;
679 }
680 
681 static efi_status_t
682 efi_thunk_get_next_variable(unsigned long *name_size,
683 			    efi_char16_t *name,
684 			    efi_guid_t *vendor)
685 {
686 	u8 buf[24] __aligned(8);
687 	efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
688 	efi_status_t status;
689 	u32 phys_name_size, phys_name, phys_vendor;
690 	unsigned long flags;
691 
692 	spin_lock_irqsave(&efi_runtime_lock, flags);
693 
694 	*vnd = *vendor;
695 
696 	phys_name_size = virt_to_phys_or_null(name_size);
697 	phys_vendor = virt_to_phys_or_null(vnd);
698 	phys_name = virt_to_phys_or_null_size(name, *name_size);
699 
700 	if (!phys_name)
701 		status = EFI_INVALID_PARAMETER;
702 	else
703 		status = efi_thunk(get_next_variable, phys_name_size,
704 				   phys_name, phys_vendor);
705 
706 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
707 
708 	*vendor = *vnd;
709 	return status;
710 }
711 
712 static efi_status_t
713 efi_thunk_get_next_high_mono_count(u32 *count)
714 {
715 	return EFI_UNSUPPORTED;
716 }
717 
718 static void
719 efi_thunk_reset_system(int reset_type, efi_status_t status,
720 		       unsigned long data_size, efi_char16_t *data)
721 {
722 	u32 phys_data;
723 	unsigned long flags;
724 
725 	spin_lock_irqsave(&efi_runtime_lock, flags);
726 
727 	phys_data = virt_to_phys_or_null_size(data, data_size);
728 
729 	efi_thunk(reset_system, reset_type, status, data_size, phys_data);
730 
731 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
732 }
733 
734 static efi_status_t
735 efi_thunk_update_capsule(efi_capsule_header_t **capsules,
736 			 unsigned long count, unsigned long sg_list)
737 {
738 	/*
739 	 * To properly support this function we would need to repackage
740 	 * 'capsules' because the firmware doesn't understand 64-bit
741 	 * pointers.
742 	 */
743 	return EFI_UNSUPPORTED;
744 }
745 
746 static efi_status_t
747 efi_thunk_query_variable_info(u32 attr, u64 *storage_space,
748 			      u64 *remaining_space,
749 			      u64 *max_variable_size)
750 {
751 	efi_status_t status;
752 	u32 phys_storage, phys_remaining, phys_max;
753 	unsigned long flags;
754 
755 	if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
756 		return EFI_UNSUPPORTED;
757 
758 	spin_lock_irqsave(&efi_runtime_lock, flags);
759 
760 	phys_storage = virt_to_phys_or_null(storage_space);
761 	phys_remaining = virt_to_phys_or_null(remaining_space);
762 	phys_max = virt_to_phys_or_null(max_variable_size);
763 
764 	status = efi_thunk(query_variable_info, attr, phys_storage,
765 			   phys_remaining, phys_max);
766 
767 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
768 
769 	return status;
770 }
771 
772 static efi_status_t
773 efi_thunk_query_variable_info_nonblocking(u32 attr, u64 *storage_space,
774 					  u64 *remaining_space,
775 					  u64 *max_variable_size)
776 {
777 	efi_status_t status;
778 	u32 phys_storage, phys_remaining, phys_max;
779 	unsigned long flags;
780 
781 	if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
782 		return EFI_UNSUPPORTED;
783 
784 	if (!spin_trylock_irqsave(&efi_runtime_lock, flags))
785 		return EFI_NOT_READY;
786 
787 	phys_storage = virt_to_phys_or_null(storage_space);
788 	phys_remaining = virt_to_phys_or_null(remaining_space);
789 	phys_max = virt_to_phys_or_null(max_variable_size);
790 
791 	status = efi_thunk(query_variable_info, attr, phys_storage,
792 			   phys_remaining, phys_max);
793 
794 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
795 
796 	return status;
797 }
798 
799 static efi_status_t
800 efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules,
801 			     unsigned long count, u64 *max_size,
802 			     int *reset_type)
803 {
804 	/*
805 	 * To properly support this function we would need to repackage
806 	 * 'capsules' because the firmware doesn't understand 64-bit
807 	 * pointers.
808 	 */
809 	return EFI_UNSUPPORTED;
810 }
811 
812 void __init efi_thunk_runtime_setup(void)
813 {
814 	if (!IS_ENABLED(CONFIG_EFI_MIXED))
815 		return;
816 
817 	efi.get_time = efi_thunk_get_time;
818 	efi.set_time = efi_thunk_set_time;
819 	efi.get_wakeup_time = efi_thunk_get_wakeup_time;
820 	efi.set_wakeup_time = efi_thunk_set_wakeup_time;
821 	efi.get_variable = efi_thunk_get_variable;
822 	efi.get_next_variable = efi_thunk_get_next_variable;
823 	efi.set_variable = efi_thunk_set_variable;
824 	efi.set_variable_nonblocking = efi_thunk_set_variable_nonblocking;
825 	efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count;
826 	efi.reset_system = efi_thunk_reset_system;
827 	efi.query_variable_info = efi_thunk_query_variable_info;
828 	efi.query_variable_info_nonblocking = efi_thunk_query_variable_info_nonblocking;
829 	efi.update_capsule = efi_thunk_update_capsule;
830 	efi.query_capsule_caps = efi_thunk_query_capsule_caps;
831 }
832 
833 efi_status_t __init __no_sanitize_address
834 efi_set_virtual_address_map(unsigned long memory_map_size,
835 			    unsigned long descriptor_size,
836 			    u32 descriptor_version,
837 			    efi_memory_desc_t *virtual_map,
838 			    unsigned long systab_phys)
839 {
840 	const efi_system_table_t *systab = (efi_system_table_t *)systab_phys;
841 	efi_status_t status;
842 	unsigned long flags;
843 
844 	if (efi_is_mixed())
845 		return efi_thunk_set_virtual_address_map(memory_map_size,
846 							 descriptor_size,
847 							 descriptor_version,
848 							 virtual_map);
849 	efi_switch_mm(&efi_mm);
850 
851 	kernel_fpu_begin();
852 
853 	/* Disable interrupts around EFI calls: */
854 	local_irq_save(flags);
855 	status = efi_call(efi.runtime->set_virtual_address_map,
856 			  memory_map_size, descriptor_size,
857 			  descriptor_version, virtual_map);
858 	local_irq_restore(flags);
859 
860 	kernel_fpu_end();
861 
862 	/* grab the virtually remapped EFI runtime services table pointer */
863 	efi.runtime = READ_ONCE(systab->runtime);
864 
865 	efi_switch_mm(efi_scratch.prev_mm);
866 
867 	return status;
868 }
869