xref: /openbmc/linux/arch/x86/platform/efi/efi_64.c (revision 5a244f48)
1 /*
2  * x86_64 specific EFI support functions
3  * Based on Extensible Firmware Interface Specification version 1.0
4  *
5  * Copyright (C) 2005-2008 Intel Co.
6  *	Fenghua Yu <fenghua.yu@intel.com>
7  *	Bibo Mao <bibo.mao@intel.com>
8  *	Chandramouli Narayanan <mouli@linux.intel.com>
9  *	Huang Ying <ying.huang@intel.com>
10  *
11  * Code to convert EFI to E820 map has been implemented in elilo bootloader
12  * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table
13  * is setup appropriately for EFI runtime code.
14  * - mouli 06/14/2007.
15  *
16  */
17 
18 #define pr_fmt(fmt) "efi: " fmt
19 
20 #include <linux/kernel.h>
21 #include <linux/init.h>
22 #include <linux/mm.h>
23 #include <linux/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/bootmem.h>
26 #include <linux/ioport.h>
27 #include <linux/init.h>
28 #include <linux/mc146818rtc.h>
29 #include <linux/efi.h>
30 #include <linux/uaccess.h>
31 #include <linux/io.h>
32 #include <linux/reboot.h>
33 #include <linux/slab.h>
34 #include <linux/ucs2_string.h>
35 
36 #include <asm/setup.h>
37 #include <asm/page.h>
38 #include <asm/e820/api.h>
39 #include <asm/pgtable.h>
40 #include <asm/tlbflush.h>
41 #include <asm/proto.h>
42 #include <asm/efi.h>
43 #include <asm/cacheflush.h>
44 #include <asm/fixmap.h>
45 #include <asm/realmode.h>
46 #include <asm/time.h>
47 #include <asm/pgalloc.h>
48 
49 /*
50  * We allocate runtime services regions top-down, starting from -4G, i.e.
51  * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G.
52  */
53 static u64 efi_va = EFI_VA_START;
54 
55 struct efi_scratch efi_scratch;
56 
57 static void __init early_code_mapping_set_exec(int executable)
58 {
59 	efi_memory_desc_t *md;
60 
61 	if (!(__supported_pte_mask & _PAGE_NX))
62 		return;
63 
64 	/* Make EFI service code area executable */
65 	for_each_efi_memory_desc(md) {
66 		if (md->type == EFI_RUNTIME_SERVICES_CODE ||
67 		    md->type == EFI_BOOT_SERVICES_CODE)
68 			efi_set_executable(md, executable);
69 	}
70 }
71 
72 pgd_t * __init efi_call_phys_prolog(void)
73 {
74 	unsigned long vaddr, addr_pgd, addr_p4d, addr_pud;
75 	pgd_t *save_pgd, *pgd_k, *pgd_efi;
76 	p4d_t *p4d, *p4d_k, *p4d_efi;
77 	pud_t *pud;
78 
79 	int pgd;
80 	int n_pgds, i, j;
81 
82 	if (!efi_enabled(EFI_OLD_MEMMAP)) {
83 		save_pgd = (pgd_t *)__read_cr3();
84 		write_cr3((unsigned long)efi_scratch.efi_pgt);
85 		goto out;
86 	}
87 
88 	early_code_mapping_set_exec(1);
89 
90 	n_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT), PGDIR_SIZE);
91 	save_pgd = kmalloc_array(n_pgds, sizeof(*save_pgd), GFP_KERNEL);
92 
93 	/*
94 	 * Build 1:1 identity mapping for efi=old_map usage. Note that
95 	 * PAGE_OFFSET is PGDIR_SIZE aligned when KASLR is disabled, while
96 	 * it is PUD_SIZE ALIGNED with KASLR enabled. So for a given physical
97 	 * address X, the pud_index(X) != pud_index(__va(X)), we can only copy
98 	 * PUD entry of __va(X) to fill in pud entry of X to build 1:1 mapping.
99 	 * This means here we can only reuse the PMD tables of the direct mapping.
100 	 */
101 	for (pgd = 0; pgd < n_pgds; pgd++) {
102 		addr_pgd = (unsigned long)(pgd * PGDIR_SIZE);
103 		vaddr = (unsigned long)__va(pgd * PGDIR_SIZE);
104 		pgd_efi = pgd_offset_k(addr_pgd);
105 		save_pgd[pgd] = *pgd_efi;
106 
107 		p4d = p4d_alloc(&init_mm, pgd_efi, addr_pgd);
108 		if (!p4d) {
109 			pr_err("Failed to allocate p4d table!\n");
110 			goto out;
111 		}
112 
113 		for (i = 0; i < PTRS_PER_P4D; i++) {
114 			addr_p4d = addr_pgd + i * P4D_SIZE;
115 			p4d_efi = p4d + p4d_index(addr_p4d);
116 
117 			pud = pud_alloc(&init_mm, p4d_efi, addr_p4d);
118 			if (!pud) {
119 				pr_err("Failed to allocate pud table!\n");
120 				goto out;
121 			}
122 
123 			for (j = 0; j < PTRS_PER_PUD; j++) {
124 				addr_pud = addr_p4d + j * PUD_SIZE;
125 
126 				if (addr_pud > (max_pfn << PAGE_SHIFT))
127 					break;
128 
129 				vaddr = (unsigned long)__va(addr_pud);
130 
131 				pgd_k = pgd_offset_k(vaddr);
132 				p4d_k = p4d_offset(pgd_k, vaddr);
133 				pud[j] = *pud_offset(p4d_k, vaddr);
134 			}
135 		}
136 	}
137 out:
138 	__flush_tlb_all();
139 
140 	return save_pgd;
141 }
142 
143 void __init efi_call_phys_epilog(pgd_t *save_pgd)
144 {
145 	/*
146 	 * After the lock is released, the original page table is restored.
147 	 */
148 	int pgd_idx, i;
149 	int nr_pgds;
150 	pgd_t *pgd;
151 	p4d_t *p4d;
152 	pud_t *pud;
153 
154 	if (!efi_enabled(EFI_OLD_MEMMAP)) {
155 		write_cr3((unsigned long)save_pgd);
156 		__flush_tlb_all();
157 		return;
158 	}
159 
160 	nr_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT) , PGDIR_SIZE);
161 
162 	for (pgd_idx = 0; pgd_idx < nr_pgds; pgd_idx++) {
163 		pgd = pgd_offset_k(pgd_idx * PGDIR_SIZE);
164 		set_pgd(pgd_offset_k(pgd_idx * PGDIR_SIZE), save_pgd[pgd_idx]);
165 
166 		if (!(pgd_val(*pgd) & _PAGE_PRESENT))
167 			continue;
168 
169 		for (i = 0; i < PTRS_PER_P4D; i++) {
170 			p4d = p4d_offset(pgd,
171 					 pgd_idx * PGDIR_SIZE + i * P4D_SIZE);
172 
173 			if (!(p4d_val(*p4d) & _PAGE_PRESENT))
174 				continue;
175 
176 			pud = (pud_t *)p4d_page_vaddr(*p4d);
177 			pud_free(&init_mm, pud);
178 		}
179 
180 		p4d = (p4d_t *)pgd_page_vaddr(*pgd);
181 		p4d_free(&init_mm, p4d);
182 	}
183 
184 	kfree(save_pgd);
185 
186 	__flush_tlb_all();
187 	early_code_mapping_set_exec(0);
188 }
189 
190 static pgd_t *efi_pgd;
191 
192 /*
193  * We need our own copy of the higher levels of the page tables
194  * because we want to avoid inserting EFI region mappings (EFI_VA_END
195  * to EFI_VA_START) into the standard kernel page tables. Everything
196  * else can be shared, see efi_sync_low_kernel_mappings().
197  */
198 int __init efi_alloc_page_tables(void)
199 {
200 	pgd_t *pgd;
201 	p4d_t *p4d;
202 	pud_t *pud;
203 	gfp_t gfp_mask;
204 
205 	if (efi_enabled(EFI_OLD_MEMMAP))
206 		return 0;
207 
208 	gfp_mask = GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO;
209 	efi_pgd = (pgd_t *)__get_free_page(gfp_mask);
210 	if (!efi_pgd)
211 		return -ENOMEM;
212 
213 	pgd = efi_pgd + pgd_index(EFI_VA_END);
214 	p4d = p4d_alloc(&init_mm, pgd, EFI_VA_END);
215 	if (!p4d) {
216 		free_page((unsigned long)efi_pgd);
217 		return -ENOMEM;
218 	}
219 
220 	pud = pud_alloc(&init_mm, p4d, EFI_VA_END);
221 	if (!pud) {
222 		if (CONFIG_PGTABLE_LEVELS > 4)
223 			free_page((unsigned long) pgd_page_vaddr(*pgd));
224 		free_page((unsigned long)efi_pgd);
225 		return -ENOMEM;
226 	}
227 
228 	return 0;
229 }
230 
231 /*
232  * Add low kernel mappings for passing arguments to EFI functions.
233  */
234 void efi_sync_low_kernel_mappings(void)
235 {
236 	unsigned num_entries;
237 	pgd_t *pgd_k, *pgd_efi;
238 	p4d_t *p4d_k, *p4d_efi;
239 	pud_t *pud_k, *pud_efi;
240 
241 	if (efi_enabled(EFI_OLD_MEMMAP))
242 		return;
243 
244 	/*
245 	 * We can share all PGD entries apart from the one entry that
246 	 * covers the EFI runtime mapping space.
247 	 *
248 	 * Make sure the EFI runtime region mappings are guaranteed to
249 	 * only span a single PGD entry and that the entry also maps
250 	 * other important kernel regions.
251 	 */
252 	BUILD_BUG_ON(pgd_index(EFI_VA_END) != pgd_index(MODULES_END));
253 	BUILD_BUG_ON((EFI_VA_START & PGDIR_MASK) !=
254 			(EFI_VA_END & PGDIR_MASK));
255 
256 	pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET);
257 	pgd_k = pgd_offset_k(PAGE_OFFSET);
258 
259 	num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET);
260 	memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries);
261 
262 	/*
263 	 * As with PGDs, we share all P4D entries apart from the one entry
264 	 * that covers the EFI runtime mapping space.
265 	 */
266 	BUILD_BUG_ON(p4d_index(EFI_VA_END) != p4d_index(MODULES_END));
267 	BUILD_BUG_ON((EFI_VA_START & P4D_MASK) != (EFI_VA_END & P4D_MASK));
268 
269 	pgd_efi = efi_pgd + pgd_index(EFI_VA_END);
270 	pgd_k = pgd_offset_k(EFI_VA_END);
271 	p4d_efi = p4d_offset(pgd_efi, 0);
272 	p4d_k = p4d_offset(pgd_k, 0);
273 
274 	num_entries = p4d_index(EFI_VA_END);
275 	memcpy(p4d_efi, p4d_k, sizeof(p4d_t) * num_entries);
276 
277 	/*
278 	 * We share all the PUD entries apart from those that map the
279 	 * EFI regions. Copy around them.
280 	 */
281 	BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0);
282 	BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0);
283 
284 	p4d_efi = p4d_offset(pgd_efi, EFI_VA_END);
285 	p4d_k = p4d_offset(pgd_k, EFI_VA_END);
286 	pud_efi = pud_offset(p4d_efi, 0);
287 	pud_k = pud_offset(p4d_k, 0);
288 
289 	num_entries = pud_index(EFI_VA_END);
290 	memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
291 
292 	pud_efi = pud_offset(p4d_efi, EFI_VA_START);
293 	pud_k = pud_offset(p4d_k, EFI_VA_START);
294 
295 	num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START);
296 	memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
297 }
298 
299 /*
300  * Wrapper for slow_virt_to_phys() that handles NULL addresses.
301  */
302 static inline phys_addr_t
303 virt_to_phys_or_null_size(void *va, unsigned long size)
304 {
305 	bool bad_size;
306 
307 	if (!va)
308 		return 0;
309 
310 	if (virt_addr_valid(va))
311 		return virt_to_phys(va);
312 
313 	/*
314 	 * A fully aligned variable on the stack is guaranteed not to
315 	 * cross a page bounary. Try to catch strings on the stack by
316 	 * checking that 'size' is a power of two.
317 	 */
318 	bad_size = size > PAGE_SIZE || !is_power_of_2(size);
319 
320 	WARN_ON(!IS_ALIGNED((unsigned long)va, size) || bad_size);
321 
322 	return slow_virt_to_phys(va);
323 }
324 
325 #define virt_to_phys_or_null(addr)				\
326 	virt_to_phys_or_null_size((addr), sizeof(*(addr)))
327 
328 int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
329 {
330 	unsigned long pfn, text, pf;
331 	struct page *page;
332 	unsigned npages;
333 	pgd_t *pgd;
334 
335 	if (efi_enabled(EFI_OLD_MEMMAP))
336 		return 0;
337 
338 	/*
339 	 * Since the PGD is encrypted, set the encryption mask so that when
340 	 * this value is loaded into cr3 the PGD will be decrypted during
341 	 * the pagetable walk.
342 	 */
343 	efi_scratch.efi_pgt = (pgd_t *)__sme_pa(efi_pgd);
344 	pgd = efi_pgd;
345 
346 	/*
347 	 * It can happen that the physical address of new_memmap lands in memory
348 	 * which is not mapped in the EFI page table. Therefore we need to go
349 	 * and ident-map those pages containing the map before calling
350 	 * phys_efi_set_virtual_address_map().
351 	 */
352 	pfn = pa_memmap >> PAGE_SHIFT;
353 	pf = _PAGE_NX | _PAGE_RW | _PAGE_ENC;
354 	if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, pf)) {
355 		pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap);
356 		return 1;
357 	}
358 
359 	efi_scratch.use_pgd = true;
360 
361 	/*
362 	 * Certain firmware versions are way too sentimential and still believe
363 	 * they are exclusive and unquestionable owners of the first physical page,
364 	 * even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY
365 	 * (but then write-access it later during SetVirtualAddressMap()).
366 	 *
367 	 * Create a 1:1 mapping for this page, to avoid triple faults during early
368 	 * boot with such firmware. We are free to hand this page to the BIOS,
369 	 * as trim_bios_range() will reserve the first page and isolate it away
370 	 * from memory allocators anyway.
371 	 */
372 	if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, _PAGE_RW)) {
373 		pr_err("Failed to create 1:1 mapping for the first page!\n");
374 		return 1;
375 	}
376 
377 	/*
378 	 * When making calls to the firmware everything needs to be 1:1
379 	 * mapped and addressable with 32-bit pointers. Map the kernel
380 	 * text and allocate a new stack because we can't rely on the
381 	 * stack pointer being < 4GB.
382 	 */
383 	if (!IS_ENABLED(CONFIG_EFI_MIXED) || efi_is_native())
384 		return 0;
385 
386 	page = alloc_page(GFP_KERNEL|__GFP_DMA32);
387 	if (!page)
388 		panic("Unable to allocate EFI runtime stack < 4GB\n");
389 
390 	efi_scratch.phys_stack = virt_to_phys(page_address(page));
391 	efi_scratch.phys_stack += PAGE_SIZE; /* stack grows down */
392 
393 	npages = (_etext - _text) >> PAGE_SHIFT;
394 	text = __pa(_text);
395 	pfn = text >> PAGE_SHIFT;
396 
397 	pf = _PAGE_RW | _PAGE_ENC;
398 	if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, pf)) {
399 		pr_err("Failed to map kernel text 1:1\n");
400 		return 1;
401 	}
402 
403 	return 0;
404 }
405 
406 static void __init __map_region(efi_memory_desc_t *md, u64 va)
407 {
408 	unsigned long flags = _PAGE_RW;
409 	unsigned long pfn;
410 	pgd_t *pgd = efi_pgd;
411 
412 	if (!(md->attribute & EFI_MEMORY_WB))
413 		flags |= _PAGE_PCD;
414 
415 	pfn = md->phys_addr >> PAGE_SHIFT;
416 	if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags))
417 		pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
418 			   md->phys_addr, va);
419 }
420 
421 void __init efi_map_region(efi_memory_desc_t *md)
422 {
423 	unsigned long size = md->num_pages << PAGE_SHIFT;
424 	u64 pa = md->phys_addr;
425 
426 	if (efi_enabled(EFI_OLD_MEMMAP))
427 		return old_map_region(md);
428 
429 	/*
430 	 * Make sure the 1:1 mappings are present as a catch-all for b0rked
431 	 * firmware which doesn't update all internal pointers after switching
432 	 * to virtual mode and would otherwise crap on us.
433 	 */
434 	__map_region(md, md->phys_addr);
435 
436 	/*
437 	 * Enforce the 1:1 mapping as the default virtual address when
438 	 * booting in EFI mixed mode, because even though we may be
439 	 * running a 64-bit kernel, the firmware may only be 32-bit.
440 	 */
441 	if (!efi_is_native () && IS_ENABLED(CONFIG_EFI_MIXED)) {
442 		md->virt_addr = md->phys_addr;
443 		return;
444 	}
445 
446 	efi_va -= size;
447 
448 	/* Is PA 2M-aligned? */
449 	if (!(pa & (PMD_SIZE - 1))) {
450 		efi_va &= PMD_MASK;
451 	} else {
452 		u64 pa_offset = pa & (PMD_SIZE - 1);
453 		u64 prev_va = efi_va;
454 
455 		/* get us the same offset within this 2M page */
456 		efi_va = (efi_va & PMD_MASK) + pa_offset;
457 
458 		if (efi_va > prev_va)
459 			efi_va -= PMD_SIZE;
460 	}
461 
462 	if (efi_va < EFI_VA_END) {
463 		pr_warn(FW_WARN "VA address range overflow!\n");
464 		return;
465 	}
466 
467 	/* Do the VA map */
468 	__map_region(md, efi_va);
469 	md->virt_addr = efi_va;
470 }
471 
472 /*
473  * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges.
474  * md->virt_addr is the original virtual address which had been mapped in kexec
475  * 1st kernel.
476  */
477 void __init efi_map_region_fixed(efi_memory_desc_t *md)
478 {
479 	__map_region(md, md->phys_addr);
480 	__map_region(md, md->virt_addr);
481 }
482 
483 void __iomem *__init efi_ioremap(unsigned long phys_addr, unsigned long size,
484 				 u32 type, u64 attribute)
485 {
486 	unsigned long last_map_pfn;
487 
488 	if (type == EFI_MEMORY_MAPPED_IO)
489 		return ioremap(phys_addr, size);
490 
491 	last_map_pfn = init_memory_mapping(phys_addr, phys_addr + size);
492 	if ((last_map_pfn << PAGE_SHIFT) < phys_addr + size) {
493 		unsigned long top = last_map_pfn << PAGE_SHIFT;
494 		efi_ioremap(top, size - (top - phys_addr), type, attribute);
495 	}
496 
497 	if (!(attribute & EFI_MEMORY_WB))
498 		efi_memory_uc((u64)(unsigned long)__va(phys_addr), size);
499 
500 	return (void __iomem *)__va(phys_addr);
501 }
502 
503 void __init parse_efi_setup(u64 phys_addr, u32 data_len)
504 {
505 	efi_setup = phys_addr + sizeof(struct setup_data);
506 }
507 
508 static int __init efi_update_mappings(efi_memory_desc_t *md, unsigned long pf)
509 {
510 	unsigned long pfn;
511 	pgd_t *pgd = efi_pgd;
512 	int err1, err2;
513 
514 	/* Update the 1:1 mapping */
515 	pfn = md->phys_addr >> PAGE_SHIFT;
516 	err1 = kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf);
517 	if (err1) {
518 		pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n",
519 			   md->phys_addr, md->virt_addr);
520 	}
521 
522 	err2 = kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf);
523 	if (err2) {
524 		pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n",
525 			   md->phys_addr, md->virt_addr);
526 	}
527 
528 	return err1 || err2;
529 }
530 
531 static int __init efi_update_mem_attr(struct mm_struct *mm, efi_memory_desc_t *md)
532 {
533 	unsigned long pf = 0;
534 
535 	if (md->attribute & EFI_MEMORY_XP)
536 		pf |= _PAGE_NX;
537 
538 	if (!(md->attribute & EFI_MEMORY_RO))
539 		pf |= _PAGE_RW;
540 
541 	return efi_update_mappings(md, pf);
542 }
543 
544 void __init efi_runtime_update_mappings(void)
545 {
546 	efi_memory_desc_t *md;
547 
548 	if (efi_enabled(EFI_OLD_MEMMAP)) {
549 		if (__supported_pte_mask & _PAGE_NX)
550 			runtime_code_page_mkexec();
551 		return;
552 	}
553 
554 	/*
555 	 * Use the EFI Memory Attribute Table for mapping permissions if it
556 	 * exists, since it is intended to supersede EFI_PROPERTIES_TABLE.
557 	 */
558 	if (efi_enabled(EFI_MEM_ATTR)) {
559 		efi_memattr_apply_permissions(NULL, efi_update_mem_attr);
560 		return;
561 	}
562 
563 	/*
564 	 * EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace
565 	 * EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update
566 	 * permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not
567 	 * published by the firmware. Even if we find a buggy implementation of
568 	 * EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to
569 	 * EFI_PROPERTIES_TABLE, because of the same reason.
570 	 */
571 
572 	if (!efi_enabled(EFI_NX_PE_DATA))
573 		return;
574 
575 	for_each_efi_memory_desc(md) {
576 		unsigned long pf = 0;
577 
578 		if (!(md->attribute & EFI_MEMORY_RUNTIME))
579 			continue;
580 
581 		if (!(md->attribute & EFI_MEMORY_WB))
582 			pf |= _PAGE_PCD;
583 
584 		if ((md->attribute & EFI_MEMORY_XP) ||
585 			(md->type == EFI_RUNTIME_SERVICES_DATA))
586 			pf |= _PAGE_NX;
587 
588 		if (!(md->attribute & EFI_MEMORY_RO) &&
589 			(md->type != EFI_RUNTIME_SERVICES_CODE))
590 			pf |= _PAGE_RW;
591 
592 		efi_update_mappings(md, pf);
593 	}
594 }
595 
596 void __init efi_dump_pagetable(void)
597 {
598 #ifdef CONFIG_EFI_PGT_DUMP
599 	if (efi_enabled(EFI_OLD_MEMMAP))
600 		ptdump_walk_pgd_level(NULL, swapper_pg_dir);
601 	else
602 		ptdump_walk_pgd_level(NULL, efi_pgd);
603 #endif
604 }
605 
606 #ifdef CONFIG_EFI_MIXED
607 extern efi_status_t efi64_thunk(u32, ...);
608 
609 #define runtime_service32(func)						 \
610 ({									 \
611 	u32 table = (u32)(unsigned long)efi.systab;			 \
612 	u32 *rt, *___f;							 \
613 									 \
614 	rt = (u32 *)(table + offsetof(efi_system_table_32_t, runtime));	 \
615 	___f = (u32 *)(*rt + offsetof(efi_runtime_services_32_t, func)); \
616 	*___f;								 \
617 })
618 
619 /*
620  * Switch to the EFI page tables early so that we can access the 1:1
621  * runtime services mappings which are not mapped in any other page
622  * tables. This function must be called before runtime_service32().
623  *
624  * Also, disable interrupts because the IDT points to 64-bit handlers,
625  * which aren't going to function correctly when we switch to 32-bit.
626  */
627 #define efi_thunk(f, ...)						\
628 ({									\
629 	efi_status_t __s;						\
630 	unsigned long __flags;						\
631 	u32 __func;							\
632 									\
633 	local_irq_save(__flags);					\
634 	arch_efi_call_virt_setup();					\
635 									\
636 	__func = runtime_service32(f);					\
637 	__s = efi64_thunk(__func, __VA_ARGS__);				\
638 									\
639 	arch_efi_call_virt_teardown();					\
640 	local_irq_restore(__flags);					\
641 									\
642 	__s;								\
643 })
644 
645 efi_status_t efi_thunk_set_virtual_address_map(
646 	void *phys_set_virtual_address_map,
647 	unsigned long memory_map_size,
648 	unsigned long descriptor_size,
649 	u32 descriptor_version,
650 	efi_memory_desc_t *virtual_map)
651 {
652 	efi_status_t status;
653 	unsigned long flags;
654 	u32 func;
655 
656 	efi_sync_low_kernel_mappings();
657 	local_irq_save(flags);
658 
659 	efi_scratch.prev_cr3 = __read_cr3();
660 	write_cr3((unsigned long)efi_scratch.efi_pgt);
661 	__flush_tlb_all();
662 
663 	func = (u32)(unsigned long)phys_set_virtual_address_map;
664 	status = efi64_thunk(func, memory_map_size, descriptor_size,
665 			     descriptor_version, virtual_map);
666 
667 	write_cr3(efi_scratch.prev_cr3);
668 	__flush_tlb_all();
669 	local_irq_restore(flags);
670 
671 	return status;
672 }
673 
674 static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc)
675 {
676 	efi_status_t status;
677 	u32 phys_tm, phys_tc;
678 
679 	spin_lock(&rtc_lock);
680 
681 	phys_tm = virt_to_phys_or_null(tm);
682 	phys_tc = virt_to_phys_or_null(tc);
683 
684 	status = efi_thunk(get_time, phys_tm, phys_tc);
685 
686 	spin_unlock(&rtc_lock);
687 
688 	return status;
689 }
690 
691 static efi_status_t efi_thunk_set_time(efi_time_t *tm)
692 {
693 	efi_status_t status;
694 	u32 phys_tm;
695 
696 	spin_lock(&rtc_lock);
697 
698 	phys_tm = virt_to_phys_or_null(tm);
699 
700 	status = efi_thunk(set_time, phys_tm);
701 
702 	spin_unlock(&rtc_lock);
703 
704 	return status;
705 }
706 
707 static efi_status_t
708 efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending,
709 			  efi_time_t *tm)
710 {
711 	efi_status_t status;
712 	u32 phys_enabled, phys_pending, phys_tm;
713 
714 	spin_lock(&rtc_lock);
715 
716 	phys_enabled = virt_to_phys_or_null(enabled);
717 	phys_pending = virt_to_phys_or_null(pending);
718 	phys_tm = virt_to_phys_or_null(tm);
719 
720 	status = efi_thunk(get_wakeup_time, phys_enabled,
721 			     phys_pending, phys_tm);
722 
723 	spin_unlock(&rtc_lock);
724 
725 	return status;
726 }
727 
728 static efi_status_t
729 efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
730 {
731 	efi_status_t status;
732 	u32 phys_tm;
733 
734 	spin_lock(&rtc_lock);
735 
736 	phys_tm = virt_to_phys_or_null(tm);
737 
738 	status = efi_thunk(set_wakeup_time, enabled, phys_tm);
739 
740 	spin_unlock(&rtc_lock);
741 
742 	return status;
743 }
744 
745 static unsigned long efi_name_size(efi_char16_t *name)
746 {
747 	return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1;
748 }
749 
750 static efi_status_t
751 efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor,
752 		       u32 *attr, unsigned long *data_size, void *data)
753 {
754 	efi_status_t status;
755 	u32 phys_name, phys_vendor, phys_attr;
756 	u32 phys_data_size, phys_data;
757 
758 	phys_data_size = virt_to_phys_or_null(data_size);
759 	phys_vendor = virt_to_phys_or_null(vendor);
760 	phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
761 	phys_attr = virt_to_phys_or_null(attr);
762 	phys_data = virt_to_phys_or_null_size(data, *data_size);
763 
764 	status = efi_thunk(get_variable, phys_name, phys_vendor,
765 			   phys_attr, phys_data_size, phys_data);
766 
767 	return status;
768 }
769 
770 static efi_status_t
771 efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor,
772 		       u32 attr, unsigned long data_size, void *data)
773 {
774 	u32 phys_name, phys_vendor, phys_data;
775 	efi_status_t status;
776 
777 	phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
778 	phys_vendor = virt_to_phys_or_null(vendor);
779 	phys_data = virt_to_phys_or_null_size(data, data_size);
780 
781 	/* If data_size is > sizeof(u32) we've got problems */
782 	status = efi_thunk(set_variable, phys_name, phys_vendor,
783 			   attr, data_size, phys_data);
784 
785 	return status;
786 }
787 
788 static efi_status_t
789 efi_thunk_get_next_variable(unsigned long *name_size,
790 			    efi_char16_t *name,
791 			    efi_guid_t *vendor)
792 {
793 	efi_status_t status;
794 	u32 phys_name_size, phys_name, phys_vendor;
795 
796 	phys_name_size = virt_to_phys_or_null(name_size);
797 	phys_vendor = virt_to_phys_or_null(vendor);
798 	phys_name = virt_to_phys_or_null_size(name, *name_size);
799 
800 	status = efi_thunk(get_next_variable, phys_name_size,
801 			   phys_name, phys_vendor);
802 
803 	return status;
804 }
805 
806 static efi_status_t
807 efi_thunk_get_next_high_mono_count(u32 *count)
808 {
809 	efi_status_t status;
810 	u32 phys_count;
811 
812 	phys_count = virt_to_phys_or_null(count);
813 	status = efi_thunk(get_next_high_mono_count, phys_count);
814 
815 	return status;
816 }
817 
818 static void
819 efi_thunk_reset_system(int reset_type, efi_status_t status,
820 		       unsigned long data_size, efi_char16_t *data)
821 {
822 	u32 phys_data;
823 
824 	phys_data = virt_to_phys_or_null_size(data, data_size);
825 
826 	efi_thunk(reset_system, reset_type, status, data_size, phys_data);
827 }
828 
829 static efi_status_t
830 efi_thunk_update_capsule(efi_capsule_header_t **capsules,
831 			 unsigned long count, unsigned long sg_list)
832 {
833 	/*
834 	 * To properly support this function we would need to repackage
835 	 * 'capsules' because the firmware doesn't understand 64-bit
836 	 * pointers.
837 	 */
838 	return EFI_UNSUPPORTED;
839 }
840 
841 static efi_status_t
842 efi_thunk_query_variable_info(u32 attr, u64 *storage_space,
843 			      u64 *remaining_space,
844 			      u64 *max_variable_size)
845 {
846 	efi_status_t status;
847 	u32 phys_storage, phys_remaining, phys_max;
848 
849 	if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
850 		return EFI_UNSUPPORTED;
851 
852 	phys_storage = virt_to_phys_or_null(storage_space);
853 	phys_remaining = virt_to_phys_or_null(remaining_space);
854 	phys_max = virt_to_phys_or_null(max_variable_size);
855 
856 	status = efi_thunk(query_variable_info, attr, phys_storage,
857 			   phys_remaining, phys_max);
858 
859 	return status;
860 }
861 
862 static efi_status_t
863 efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules,
864 			     unsigned long count, u64 *max_size,
865 			     int *reset_type)
866 {
867 	/*
868 	 * To properly support this function we would need to repackage
869 	 * 'capsules' because the firmware doesn't understand 64-bit
870 	 * pointers.
871 	 */
872 	return EFI_UNSUPPORTED;
873 }
874 
875 void efi_thunk_runtime_setup(void)
876 {
877 	efi.get_time = efi_thunk_get_time;
878 	efi.set_time = efi_thunk_set_time;
879 	efi.get_wakeup_time = efi_thunk_get_wakeup_time;
880 	efi.set_wakeup_time = efi_thunk_set_wakeup_time;
881 	efi.get_variable = efi_thunk_get_variable;
882 	efi.get_next_variable = efi_thunk_get_next_variable;
883 	efi.set_variable = efi_thunk_set_variable;
884 	efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count;
885 	efi.reset_system = efi_thunk_reset_system;
886 	efi.query_variable_info = efi_thunk_query_variable_info;
887 	efi.update_capsule = efi_thunk_update_capsule;
888 	efi.query_capsule_caps = efi_thunk_query_capsule_caps;
889 }
890 #endif /* CONFIG_EFI_MIXED */
891