xref: /openbmc/linux/arch/x86/platform/efi/efi_64.c (revision 50fdda70)
1 /*
2  * x86_64 specific EFI support functions
3  * Based on Extensible Firmware Interface Specification version 1.0
4  *
5  * Copyright (C) 2005-2008 Intel Co.
6  *	Fenghua Yu <fenghua.yu@intel.com>
7  *	Bibo Mao <bibo.mao@intel.com>
8  *	Chandramouli Narayanan <mouli@linux.intel.com>
9  *	Huang Ying <ying.huang@intel.com>
10  *
11  * Code to convert EFI to E820 map has been implemented in elilo bootloader
12  * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table
13  * is setup appropriately for EFI runtime code.
14  * - mouli 06/14/2007.
15  *
16  */
17 
18 #define pr_fmt(fmt) "efi: " fmt
19 
20 #include <linux/kernel.h>
21 #include <linux/init.h>
22 #include <linux/mm.h>
23 #include <linux/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/bootmem.h>
26 #include <linux/ioport.h>
27 #include <linux/module.h>
28 #include <linux/efi.h>
29 #include <linux/uaccess.h>
30 #include <linux/io.h>
31 #include <linux/reboot.h>
32 #include <linux/slab.h>
33 
34 #include <asm/setup.h>
35 #include <asm/page.h>
36 #include <asm/e820.h>
37 #include <asm/pgtable.h>
38 #include <asm/tlbflush.h>
39 #include <asm/proto.h>
40 #include <asm/efi.h>
41 #include <asm/cacheflush.h>
42 #include <asm/fixmap.h>
43 #include <asm/realmode.h>
44 #include <asm/time.h>
45 #include <asm/pgalloc.h>
46 
47 /*
48  * We allocate runtime services regions bottom-up, starting from -4G, i.e.
49  * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G.
50  */
51 static u64 efi_va = EFI_VA_START;
52 
53 struct efi_scratch efi_scratch;
54 
55 static void __init early_code_mapping_set_exec(int executable)
56 {
57 	efi_memory_desc_t *md;
58 
59 	if (!(__supported_pte_mask & _PAGE_NX))
60 		return;
61 
62 	/* Make EFI service code area executable */
63 	for_each_efi_memory_desc(md) {
64 		if (md->type == EFI_RUNTIME_SERVICES_CODE ||
65 		    md->type == EFI_BOOT_SERVICES_CODE)
66 			efi_set_executable(md, executable);
67 	}
68 }
69 
70 pgd_t * __init efi_call_phys_prolog(void)
71 {
72 	unsigned long vaddress;
73 	pgd_t *save_pgd;
74 
75 	int pgd;
76 	int n_pgds;
77 
78 	if (!efi_enabled(EFI_OLD_MEMMAP)) {
79 		save_pgd = (pgd_t *)read_cr3();
80 		write_cr3((unsigned long)efi_scratch.efi_pgt);
81 		goto out;
82 	}
83 
84 	early_code_mapping_set_exec(1);
85 
86 	n_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT), PGDIR_SIZE);
87 	save_pgd = kmalloc(n_pgds * sizeof(pgd_t), GFP_KERNEL);
88 
89 	for (pgd = 0; pgd < n_pgds; pgd++) {
90 		save_pgd[pgd] = *pgd_offset_k(pgd * PGDIR_SIZE);
91 		vaddress = (unsigned long)__va(pgd * PGDIR_SIZE);
92 		set_pgd(pgd_offset_k(pgd * PGDIR_SIZE), *pgd_offset_k(vaddress));
93 	}
94 out:
95 	__flush_tlb_all();
96 
97 	return save_pgd;
98 }
99 
100 void __init efi_call_phys_epilog(pgd_t *save_pgd)
101 {
102 	/*
103 	 * After the lock is released, the original page table is restored.
104 	 */
105 	int pgd_idx;
106 	int nr_pgds;
107 
108 	if (!efi_enabled(EFI_OLD_MEMMAP)) {
109 		write_cr3((unsigned long)save_pgd);
110 		__flush_tlb_all();
111 		return;
112 	}
113 
114 	nr_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT) , PGDIR_SIZE);
115 
116 	for (pgd_idx = 0; pgd_idx < nr_pgds; pgd_idx++)
117 		set_pgd(pgd_offset_k(pgd_idx * PGDIR_SIZE), save_pgd[pgd_idx]);
118 
119 	kfree(save_pgd);
120 
121 	__flush_tlb_all();
122 	early_code_mapping_set_exec(0);
123 }
124 
125 static pgd_t *efi_pgd;
126 
127 /*
128  * We need our own copy of the higher levels of the page tables
129  * because we want to avoid inserting EFI region mappings (EFI_VA_END
130  * to EFI_VA_START) into the standard kernel page tables. Everything
131  * else can be shared, see efi_sync_low_kernel_mappings().
132  */
133 int __init efi_alloc_page_tables(void)
134 {
135 	pgd_t *pgd;
136 	pud_t *pud;
137 	gfp_t gfp_mask;
138 
139 	if (efi_enabled(EFI_OLD_MEMMAP))
140 		return 0;
141 
142 	gfp_mask = GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO;
143 	efi_pgd = (pgd_t *)__get_free_page(gfp_mask);
144 	if (!efi_pgd)
145 		return -ENOMEM;
146 
147 	pgd = efi_pgd + pgd_index(EFI_VA_END);
148 
149 	pud = pud_alloc_one(NULL, 0);
150 	if (!pud) {
151 		free_page((unsigned long)efi_pgd);
152 		return -ENOMEM;
153 	}
154 
155 	pgd_populate(NULL, pgd, pud);
156 
157 	return 0;
158 }
159 
160 /*
161  * Add low kernel mappings for passing arguments to EFI functions.
162  */
163 void efi_sync_low_kernel_mappings(void)
164 {
165 	unsigned num_entries;
166 	pgd_t *pgd_k, *pgd_efi;
167 	pud_t *pud_k, *pud_efi;
168 
169 	if (efi_enabled(EFI_OLD_MEMMAP))
170 		return;
171 
172 	/*
173 	 * We can share all PGD entries apart from the one entry that
174 	 * covers the EFI runtime mapping space.
175 	 *
176 	 * Make sure the EFI runtime region mappings are guaranteed to
177 	 * only span a single PGD entry and that the entry also maps
178 	 * other important kernel regions.
179 	 */
180 	BUILD_BUG_ON(pgd_index(EFI_VA_END) != pgd_index(MODULES_END));
181 	BUILD_BUG_ON((EFI_VA_START & PGDIR_MASK) !=
182 			(EFI_VA_END & PGDIR_MASK));
183 
184 	pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET);
185 	pgd_k = pgd_offset_k(PAGE_OFFSET);
186 
187 	num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET);
188 	memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries);
189 
190 	/*
191 	 * We share all the PUD entries apart from those that map the
192 	 * EFI regions. Copy around them.
193 	 */
194 	BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0);
195 	BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0);
196 
197 	pgd_efi = efi_pgd + pgd_index(EFI_VA_END);
198 	pud_efi = pud_offset(pgd_efi, 0);
199 
200 	pgd_k = pgd_offset_k(EFI_VA_END);
201 	pud_k = pud_offset(pgd_k, 0);
202 
203 	num_entries = pud_index(EFI_VA_END);
204 	memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
205 
206 	pud_efi = pud_offset(pgd_efi, EFI_VA_START);
207 	pud_k = pud_offset(pgd_k, EFI_VA_START);
208 
209 	num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START);
210 	memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
211 }
212 
213 int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
214 {
215 	unsigned long pfn, text;
216 	efi_memory_desc_t *md;
217 	struct page *page;
218 	unsigned npages;
219 	pgd_t *pgd;
220 
221 	if (efi_enabled(EFI_OLD_MEMMAP))
222 		return 0;
223 
224 	efi_scratch.efi_pgt = (pgd_t *)__pa(efi_pgd);
225 	pgd = efi_pgd;
226 
227 	/*
228 	 * It can happen that the physical address of new_memmap lands in memory
229 	 * which is not mapped in the EFI page table. Therefore we need to go
230 	 * and ident-map those pages containing the map before calling
231 	 * phys_efi_set_virtual_address_map().
232 	 */
233 	pfn = pa_memmap >> PAGE_SHIFT;
234 	if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, _PAGE_NX | _PAGE_RW)) {
235 		pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap);
236 		return 1;
237 	}
238 
239 	efi_scratch.use_pgd = true;
240 
241 	/*
242 	 * When making calls to the firmware everything needs to be 1:1
243 	 * mapped and addressable with 32-bit pointers. Map the kernel
244 	 * text and allocate a new stack because we can't rely on the
245 	 * stack pointer being < 4GB.
246 	 */
247 	if (!IS_ENABLED(CONFIG_EFI_MIXED))
248 		return 0;
249 
250 	/*
251 	 * Map all of RAM so that we can access arguments in the 1:1
252 	 * mapping when making EFI runtime calls.
253 	 */
254 	for_each_efi_memory_desc(md) {
255 		if (md->type != EFI_CONVENTIONAL_MEMORY &&
256 		    md->type != EFI_LOADER_DATA &&
257 		    md->type != EFI_LOADER_CODE)
258 			continue;
259 
260 		pfn = md->phys_addr >> PAGE_SHIFT;
261 		npages = md->num_pages;
262 
263 		if (kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, npages, _PAGE_RW)) {
264 			pr_err("Failed to map 1:1 memory\n");
265 			return 1;
266 		}
267 	}
268 
269 	page = alloc_page(GFP_KERNEL|__GFP_DMA32);
270 	if (!page)
271 		panic("Unable to allocate EFI runtime stack < 4GB\n");
272 
273 	efi_scratch.phys_stack = virt_to_phys(page_address(page));
274 	efi_scratch.phys_stack += PAGE_SIZE; /* stack grows down */
275 
276 	npages = (_etext - _text) >> PAGE_SHIFT;
277 	text = __pa(_text);
278 	pfn = text >> PAGE_SHIFT;
279 
280 	if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, _PAGE_RW)) {
281 		pr_err("Failed to map kernel text 1:1\n");
282 		return 1;
283 	}
284 
285 	return 0;
286 }
287 
288 void __init efi_cleanup_page_tables(unsigned long pa_memmap, unsigned num_pages)
289 {
290 	kernel_unmap_pages_in_pgd(efi_pgd, pa_memmap, num_pages);
291 }
292 
293 static void __init __map_region(efi_memory_desc_t *md, u64 va)
294 {
295 	unsigned long flags = _PAGE_RW;
296 	unsigned long pfn;
297 	pgd_t *pgd = efi_pgd;
298 
299 	if (!(md->attribute & EFI_MEMORY_WB))
300 		flags |= _PAGE_PCD;
301 
302 	pfn = md->phys_addr >> PAGE_SHIFT;
303 	if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags))
304 		pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
305 			   md->phys_addr, va);
306 }
307 
308 void __init efi_map_region(efi_memory_desc_t *md)
309 {
310 	unsigned long size = md->num_pages << PAGE_SHIFT;
311 	u64 pa = md->phys_addr;
312 
313 	if (efi_enabled(EFI_OLD_MEMMAP))
314 		return old_map_region(md);
315 
316 	/*
317 	 * Make sure the 1:1 mappings are present as a catch-all for b0rked
318 	 * firmware which doesn't update all internal pointers after switching
319 	 * to virtual mode and would otherwise crap on us.
320 	 */
321 	__map_region(md, md->phys_addr);
322 
323 	/*
324 	 * Enforce the 1:1 mapping as the default virtual address when
325 	 * booting in EFI mixed mode, because even though we may be
326 	 * running a 64-bit kernel, the firmware may only be 32-bit.
327 	 */
328 	if (!efi_is_native () && IS_ENABLED(CONFIG_EFI_MIXED)) {
329 		md->virt_addr = md->phys_addr;
330 		return;
331 	}
332 
333 	efi_va -= size;
334 
335 	/* Is PA 2M-aligned? */
336 	if (!(pa & (PMD_SIZE - 1))) {
337 		efi_va &= PMD_MASK;
338 	} else {
339 		u64 pa_offset = pa & (PMD_SIZE - 1);
340 		u64 prev_va = efi_va;
341 
342 		/* get us the same offset within this 2M page */
343 		efi_va = (efi_va & PMD_MASK) + pa_offset;
344 
345 		if (efi_va > prev_va)
346 			efi_va -= PMD_SIZE;
347 	}
348 
349 	if (efi_va < EFI_VA_END) {
350 		pr_warn(FW_WARN "VA address range overflow!\n");
351 		return;
352 	}
353 
354 	/* Do the VA map */
355 	__map_region(md, efi_va);
356 	md->virt_addr = efi_va;
357 }
358 
359 /*
360  * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges.
361  * md->virt_addr is the original virtual address which had been mapped in kexec
362  * 1st kernel.
363  */
364 void __init efi_map_region_fixed(efi_memory_desc_t *md)
365 {
366 	__map_region(md, md->virt_addr);
367 }
368 
369 void __iomem *__init efi_ioremap(unsigned long phys_addr, unsigned long size,
370 				 u32 type, u64 attribute)
371 {
372 	unsigned long last_map_pfn;
373 
374 	if (type == EFI_MEMORY_MAPPED_IO)
375 		return ioremap(phys_addr, size);
376 
377 	last_map_pfn = init_memory_mapping(phys_addr, phys_addr + size);
378 	if ((last_map_pfn << PAGE_SHIFT) < phys_addr + size) {
379 		unsigned long top = last_map_pfn << PAGE_SHIFT;
380 		efi_ioremap(top, size - (top - phys_addr), type, attribute);
381 	}
382 
383 	if (!(attribute & EFI_MEMORY_WB))
384 		efi_memory_uc((u64)(unsigned long)__va(phys_addr), size);
385 
386 	return (void __iomem *)__va(phys_addr);
387 }
388 
389 void __init parse_efi_setup(u64 phys_addr, u32 data_len)
390 {
391 	efi_setup = phys_addr + sizeof(struct setup_data);
392 }
393 
394 void __init efi_runtime_update_mappings(void)
395 {
396 	unsigned long pfn;
397 	pgd_t *pgd = efi_pgd;
398 	efi_memory_desc_t *md;
399 
400 	if (efi_enabled(EFI_OLD_MEMMAP)) {
401 		if (__supported_pte_mask & _PAGE_NX)
402 			runtime_code_page_mkexec();
403 		return;
404 	}
405 
406 	if (!efi_enabled(EFI_NX_PE_DATA))
407 		return;
408 
409 	for_each_efi_memory_desc(md) {
410 		unsigned long pf = 0;
411 
412 		if (!(md->attribute & EFI_MEMORY_RUNTIME))
413 			continue;
414 
415 		if (!(md->attribute & EFI_MEMORY_WB))
416 			pf |= _PAGE_PCD;
417 
418 		if ((md->attribute & EFI_MEMORY_XP) ||
419 			(md->type == EFI_RUNTIME_SERVICES_DATA))
420 			pf |= _PAGE_NX;
421 
422 		if (!(md->attribute & EFI_MEMORY_RO) &&
423 			(md->type != EFI_RUNTIME_SERVICES_CODE))
424 			pf |= _PAGE_RW;
425 
426 		/* Update the 1:1 mapping */
427 		pfn = md->phys_addr >> PAGE_SHIFT;
428 		if (kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf))
429 			pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
430 				   md->phys_addr, md->virt_addr);
431 
432 		if (kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf))
433 			pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
434 				   md->phys_addr, md->virt_addr);
435 	}
436 }
437 
438 void __init efi_dump_pagetable(void)
439 {
440 #ifdef CONFIG_EFI_PGT_DUMP
441 	ptdump_walk_pgd_level(NULL, efi_pgd);
442 #endif
443 }
444 
445 #ifdef CONFIG_EFI_MIXED
446 extern efi_status_t efi64_thunk(u32, ...);
447 
448 #define runtime_service32(func)						 \
449 ({									 \
450 	u32 table = (u32)(unsigned long)efi.systab;			 \
451 	u32 *rt, *___f;							 \
452 									 \
453 	rt = (u32 *)(table + offsetof(efi_system_table_32_t, runtime));	 \
454 	___f = (u32 *)(*rt + offsetof(efi_runtime_services_32_t, func)); \
455 	*___f;								 \
456 })
457 
458 /*
459  * Switch to the EFI page tables early so that we can access the 1:1
460  * runtime services mappings which are not mapped in any other page
461  * tables. This function must be called before runtime_service32().
462  *
463  * Also, disable interrupts because the IDT points to 64-bit handlers,
464  * which aren't going to function correctly when we switch to 32-bit.
465  */
466 #define efi_thunk(f, ...)						\
467 ({									\
468 	efi_status_t __s;						\
469 	unsigned long flags;						\
470 	u32 func;							\
471 									\
472 	efi_sync_low_kernel_mappings();					\
473 	local_irq_save(flags);						\
474 									\
475 	efi_scratch.prev_cr3 = read_cr3();				\
476 	write_cr3((unsigned long)efi_scratch.efi_pgt);			\
477 	__flush_tlb_all();						\
478 									\
479 	func = runtime_service32(f);					\
480 	__s = efi64_thunk(func, __VA_ARGS__);			\
481 									\
482 	write_cr3(efi_scratch.prev_cr3);				\
483 	__flush_tlb_all();						\
484 	local_irq_restore(flags);					\
485 									\
486 	__s;								\
487 })
488 
489 efi_status_t efi_thunk_set_virtual_address_map(
490 	void *phys_set_virtual_address_map,
491 	unsigned long memory_map_size,
492 	unsigned long descriptor_size,
493 	u32 descriptor_version,
494 	efi_memory_desc_t *virtual_map)
495 {
496 	efi_status_t status;
497 	unsigned long flags;
498 	u32 func;
499 
500 	efi_sync_low_kernel_mappings();
501 	local_irq_save(flags);
502 
503 	efi_scratch.prev_cr3 = read_cr3();
504 	write_cr3((unsigned long)efi_scratch.efi_pgt);
505 	__flush_tlb_all();
506 
507 	func = (u32)(unsigned long)phys_set_virtual_address_map;
508 	status = efi64_thunk(func, memory_map_size, descriptor_size,
509 			     descriptor_version, virtual_map);
510 
511 	write_cr3(efi_scratch.prev_cr3);
512 	__flush_tlb_all();
513 	local_irq_restore(flags);
514 
515 	return status;
516 }
517 
518 static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc)
519 {
520 	efi_status_t status;
521 	u32 phys_tm, phys_tc;
522 
523 	spin_lock(&rtc_lock);
524 
525 	phys_tm = virt_to_phys(tm);
526 	phys_tc = virt_to_phys(tc);
527 
528 	status = efi_thunk(get_time, phys_tm, phys_tc);
529 
530 	spin_unlock(&rtc_lock);
531 
532 	return status;
533 }
534 
535 static efi_status_t efi_thunk_set_time(efi_time_t *tm)
536 {
537 	efi_status_t status;
538 	u32 phys_tm;
539 
540 	spin_lock(&rtc_lock);
541 
542 	phys_tm = virt_to_phys(tm);
543 
544 	status = efi_thunk(set_time, phys_tm);
545 
546 	spin_unlock(&rtc_lock);
547 
548 	return status;
549 }
550 
551 static efi_status_t
552 efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending,
553 			  efi_time_t *tm)
554 {
555 	efi_status_t status;
556 	u32 phys_enabled, phys_pending, phys_tm;
557 
558 	spin_lock(&rtc_lock);
559 
560 	phys_enabled = virt_to_phys(enabled);
561 	phys_pending = virt_to_phys(pending);
562 	phys_tm = virt_to_phys(tm);
563 
564 	status = efi_thunk(get_wakeup_time, phys_enabled,
565 			     phys_pending, phys_tm);
566 
567 	spin_unlock(&rtc_lock);
568 
569 	return status;
570 }
571 
572 static efi_status_t
573 efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
574 {
575 	efi_status_t status;
576 	u32 phys_tm;
577 
578 	spin_lock(&rtc_lock);
579 
580 	phys_tm = virt_to_phys(tm);
581 
582 	status = efi_thunk(set_wakeup_time, enabled, phys_tm);
583 
584 	spin_unlock(&rtc_lock);
585 
586 	return status;
587 }
588 
589 
590 static efi_status_t
591 efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor,
592 		       u32 *attr, unsigned long *data_size, void *data)
593 {
594 	efi_status_t status;
595 	u32 phys_name, phys_vendor, phys_attr;
596 	u32 phys_data_size, phys_data;
597 
598 	phys_data_size = virt_to_phys(data_size);
599 	phys_vendor = virt_to_phys(vendor);
600 	phys_name = virt_to_phys(name);
601 	phys_attr = virt_to_phys(attr);
602 	phys_data = virt_to_phys(data);
603 
604 	status = efi_thunk(get_variable, phys_name, phys_vendor,
605 			   phys_attr, phys_data_size, phys_data);
606 
607 	return status;
608 }
609 
610 static efi_status_t
611 efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor,
612 		       u32 attr, unsigned long data_size, void *data)
613 {
614 	u32 phys_name, phys_vendor, phys_data;
615 	efi_status_t status;
616 
617 	phys_name = virt_to_phys(name);
618 	phys_vendor = virt_to_phys(vendor);
619 	phys_data = virt_to_phys(data);
620 
621 	/* If data_size is > sizeof(u32) we've got problems */
622 	status = efi_thunk(set_variable, phys_name, phys_vendor,
623 			   attr, data_size, phys_data);
624 
625 	return status;
626 }
627 
628 static efi_status_t
629 efi_thunk_get_next_variable(unsigned long *name_size,
630 			    efi_char16_t *name,
631 			    efi_guid_t *vendor)
632 {
633 	efi_status_t status;
634 	u32 phys_name_size, phys_name, phys_vendor;
635 
636 	phys_name_size = virt_to_phys(name_size);
637 	phys_vendor = virt_to_phys(vendor);
638 	phys_name = virt_to_phys(name);
639 
640 	status = efi_thunk(get_next_variable, phys_name_size,
641 			   phys_name, phys_vendor);
642 
643 	return status;
644 }
645 
646 static efi_status_t
647 efi_thunk_get_next_high_mono_count(u32 *count)
648 {
649 	efi_status_t status;
650 	u32 phys_count;
651 
652 	phys_count = virt_to_phys(count);
653 	status = efi_thunk(get_next_high_mono_count, phys_count);
654 
655 	return status;
656 }
657 
658 static void
659 efi_thunk_reset_system(int reset_type, efi_status_t status,
660 		       unsigned long data_size, efi_char16_t *data)
661 {
662 	u32 phys_data;
663 
664 	phys_data = virt_to_phys(data);
665 
666 	efi_thunk(reset_system, reset_type, status, data_size, phys_data);
667 }
668 
669 static efi_status_t
670 efi_thunk_update_capsule(efi_capsule_header_t **capsules,
671 			 unsigned long count, unsigned long sg_list)
672 {
673 	/*
674 	 * To properly support this function we would need to repackage
675 	 * 'capsules' because the firmware doesn't understand 64-bit
676 	 * pointers.
677 	 */
678 	return EFI_UNSUPPORTED;
679 }
680 
681 static efi_status_t
682 efi_thunk_query_variable_info(u32 attr, u64 *storage_space,
683 			      u64 *remaining_space,
684 			      u64 *max_variable_size)
685 {
686 	efi_status_t status;
687 	u32 phys_storage, phys_remaining, phys_max;
688 
689 	if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
690 		return EFI_UNSUPPORTED;
691 
692 	phys_storage = virt_to_phys(storage_space);
693 	phys_remaining = virt_to_phys(remaining_space);
694 	phys_max = virt_to_phys(max_variable_size);
695 
696 	status = efi_thunk(query_variable_info, attr, phys_storage,
697 			   phys_remaining, phys_max);
698 
699 	return status;
700 }
701 
702 static efi_status_t
703 efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules,
704 			     unsigned long count, u64 *max_size,
705 			     int *reset_type)
706 {
707 	/*
708 	 * To properly support this function we would need to repackage
709 	 * 'capsules' because the firmware doesn't understand 64-bit
710 	 * pointers.
711 	 */
712 	return EFI_UNSUPPORTED;
713 }
714 
715 void efi_thunk_runtime_setup(void)
716 {
717 	efi.get_time = efi_thunk_get_time;
718 	efi.set_time = efi_thunk_set_time;
719 	efi.get_wakeup_time = efi_thunk_get_wakeup_time;
720 	efi.set_wakeup_time = efi_thunk_set_wakeup_time;
721 	efi.get_variable = efi_thunk_get_variable;
722 	efi.get_next_variable = efi_thunk_get_next_variable;
723 	efi.set_variable = efi_thunk_set_variable;
724 	efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count;
725 	efi.reset_system = efi_thunk_reset_system;
726 	efi.query_variable_info = efi_thunk_query_variable_info;
727 	efi.update_capsule = efi_thunk_update_capsule;
728 	efi.query_capsule_caps = efi_thunk_query_capsule_caps;
729 }
730 #endif /* CONFIG_EFI_MIXED */
731