1 /* 2 * x86_64 specific EFI support functions 3 * Based on Extensible Firmware Interface Specification version 1.0 4 * 5 * Copyright (C) 2005-2008 Intel Co. 6 * Fenghua Yu <fenghua.yu@intel.com> 7 * Bibo Mao <bibo.mao@intel.com> 8 * Chandramouli Narayanan <mouli@linux.intel.com> 9 * Huang Ying <ying.huang@intel.com> 10 * 11 * Code to convert EFI to E820 map has been implemented in elilo bootloader 12 * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table 13 * is setup appropriately for EFI runtime code. 14 * - mouli 06/14/2007. 15 * 16 */ 17 18 #define pr_fmt(fmt) "efi: " fmt 19 20 #include <linux/kernel.h> 21 #include <linux/init.h> 22 #include <linux/mm.h> 23 #include <linux/types.h> 24 #include <linux/spinlock.h> 25 #include <linux/bootmem.h> 26 #include <linux/ioport.h> 27 #include <linux/init.h> 28 #include <linux/mc146818rtc.h> 29 #include <linux/efi.h> 30 #include <linux/uaccess.h> 31 #include <linux/io.h> 32 #include <linux/reboot.h> 33 #include <linux/slab.h> 34 #include <linux/ucs2_string.h> 35 36 #include <asm/setup.h> 37 #include <asm/page.h> 38 #include <asm/e820/api.h> 39 #include <asm/pgtable.h> 40 #include <asm/tlbflush.h> 41 #include <asm/proto.h> 42 #include <asm/efi.h> 43 #include <asm/cacheflush.h> 44 #include <asm/fixmap.h> 45 #include <asm/realmode.h> 46 #include <asm/time.h> 47 #include <asm/pgalloc.h> 48 49 /* 50 * We allocate runtime services regions top-down, starting from -4G, i.e. 51 * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G. 52 */ 53 static u64 efi_va = EFI_VA_START; 54 55 struct efi_scratch efi_scratch; 56 57 static void __init early_code_mapping_set_exec(int executable) 58 { 59 efi_memory_desc_t *md; 60 61 if (!(__supported_pte_mask & _PAGE_NX)) 62 return; 63 64 /* Make EFI service code area executable */ 65 for_each_efi_memory_desc(md) { 66 if (md->type == EFI_RUNTIME_SERVICES_CODE || 67 md->type == EFI_BOOT_SERVICES_CODE) 68 efi_set_executable(md, executable); 69 } 70 } 71 72 pgd_t * __init efi_call_phys_prolog(void) 73 { 74 unsigned long vaddr, addr_pgd, addr_p4d, addr_pud; 75 pgd_t *save_pgd, *pgd_k, *pgd_efi; 76 p4d_t *p4d, *p4d_k, *p4d_efi; 77 pud_t *pud; 78 79 int pgd; 80 int n_pgds, i, j; 81 82 if (!efi_enabled(EFI_OLD_MEMMAP)) { 83 save_pgd = (pgd_t *)__read_cr3(); 84 write_cr3((unsigned long)efi_scratch.efi_pgt); 85 goto out; 86 } 87 88 early_code_mapping_set_exec(1); 89 90 n_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT), PGDIR_SIZE); 91 save_pgd = kmalloc_array(n_pgds, sizeof(*save_pgd), GFP_KERNEL); 92 93 /* 94 * Build 1:1 identity mapping for efi=old_map usage. Note that 95 * PAGE_OFFSET is PGDIR_SIZE aligned when KASLR is disabled, while 96 * it is PUD_SIZE ALIGNED with KASLR enabled. So for a given physical 97 * address X, the pud_index(X) != pud_index(__va(X)), we can only copy 98 * PUD entry of __va(X) to fill in pud entry of X to build 1:1 mapping. 99 * This means here we can only reuse the PMD tables of the direct mapping. 100 */ 101 for (pgd = 0; pgd < n_pgds; pgd++) { 102 addr_pgd = (unsigned long)(pgd * PGDIR_SIZE); 103 vaddr = (unsigned long)__va(pgd * PGDIR_SIZE); 104 pgd_efi = pgd_offset_k(addr_pgd); 105 save_pgd[pgd] = *pgd_efi; 106 107 p4d = p4d_alloc(&init_mm, pgd_efi, addr_pgd); 108 if (!p4d) { 109 pr_err("Failed to allocate p4d table!\n"); 110 goto out; 111 } 112 113 for (i = 0; i < PTRS_PER_P4D; i++) { 114 addr_p4d = addr_pgd + i * P4D_SIZE; 115 p4d_efi = p4d + p4d_index(addr_p4d); 116 117 pud = pud_alloc(&init_mm, p4d_efi, addr_p4d); 118 if (!pud) { 119 pr_err("Failed to allocate pud table!\n"); 120 goto out; 121 } 122 123 for (j = 0; j < PTRS_PER_PUD; j++) { 124 addr_pud = addr_p4d + j * PUD_SIZE; 125 126 if (addr_pud > (max_pfn << PAGE_SHIFT)) 127 break; 128 129 vaddr = (unsigned long)__va(addr_pud); 130 131 pgd_k = pgd_offset_k(vaddr); 132 p4d_k = p4d_offset(pgd_k, vaddr); 133 pud[j] = *pud_offset(p4d_k, vaddr); 134 } 135 } 136 } 137 out: 138 __flush_tlb_all(); 139 140 return save_pgd; 141 } 142 143 void __init efi_call_phys_epilog(pgd_t *save_pgd) 144 { 145 /* 146 * After the lock is released, the original page table is restored. 147 */ 148 int pgd_idx, i; 149 int nr_pgds; 150 pgd_t *pgd; 151 p4d_t *p4d; 152 pud_t *pud; 153 154 if (!efi_enabled(EFI_OLD_MEMMAP)) { 155 write_cr3((unsigned long)save_pgd); 156 __flush_tlb_all(); 157 return; 158 } 159 160 nr_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT) , PGDIR_SIZE); 161 162 for (pgd_idx = 0; pgd_idx < nr_pgds; pgd_idx++) { 163 pgd = pgd_offset_k(pgd_idx * PGDIR_SIZE); 164 set_pgd(pgd_offset_k(pgd_idx * PGDIR_SIZE), save_pgd[pgd_idx]); 165 166 if (!(pgd_val(*pgd) & _PAGE_PRESENT)) 167 continue; 168 169 for (i = 0; i < PTRS_PER_P4D; i++) { 170 p4d = p4d_offset(pgd, 171 pgd_idx * PGDIR_SIZE + i * P4D_SIZE); 172 173 if (!(p4d_val(*p4d) & _PAGE_PRESENT)) 174 continue; 175 176 pud = (pud_t *)p4d_page_vaddr(*p4d); 177 pud_free(&init_mm, pud); 178 } 179 180 p4d = (p4d_t *)pgd_page_vaddr(*pgd); 181 p4d_free(&init_mm, p4d); 182 } 183 184 kfree(save_pgd); 185 186 __flush_tlb_all(); 187 early_code_mapping_set_exec(0); 188 } 189 190 static pgd_t *efi_pgd; 191 192 /* 193 * We need our own copy of the higher levels of the page tables 194 * because we want to avoid inserting EFI region mappings (EFI_VA_END 195 * to EFI_VA_START) into the standard kernel page tables. Everything 196 * else can be shared, see efi_sync_low_kernel_mappings(). 197 */ 198 int __init efi_alloc_page_tables(void) 199 { 200 pgd_t *pgd; 201 p4d_t *p4d; 202 pud_t *pud; 203 gfp_t gfp_mask; 204 205 if (efi_enabled(EFI_OLD_MEMMAP)) 206 return 0; 207 208 gfp_mask = GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO; 209 efi_pgd = (pgd_t *)__get_free_page(gfp_mask); 210 if (!efi_pgd) 211 return -ENOMEM; 212 213 pgd = efi_pgd + pgd_index(EFI_VA_END); 214 p4d = p4d_alloc(&init_mm, pgd, EFI_VA_END); 215 if (!p4d) { 216 free_page((unsigned long)efi_pgd); 217 return -ENOMEM; 218 } 219 220 pud = pud_alloc(&init_mm, p4d, EFI_VA_END); 221 if (!pud) { 222 if (CONFIG_PGTABLE_LEVELS > 4) 223 free_page((unsigned long) pgd_page_vaddr(*pgd)); 224 free_page((unsigned long)efi_pgd); 225 return -ENOMEM; 226 } 227 228 return 0; 229 } 230 231 /* 232 * Add low kernel mappings for passing arguments to EFI functions. 233 */ 234 void efi_sync_low_kernel_mappings(void) 235 { 236 unsigned num_entries; 237 pgd_t *pgd_k, *pgd_efi; 238 p4d_t *p4d_k, *p4d_efi; 239 pud_t *pud_k, *pud_efi; 240 241 if (efi_enabled(EFI_OLD_MEMMAP)) 242 return; 243 244 /* 245 * We can share all PGD entries apart from the one entry that 246 * covers the EFI runtime mapping space. 247 * 248 * Make sure the EFI runtime region mappings are guaranteed to 249 * only span a single PGD entry and that the entry also maps 250 * other important kernel regions. 251 */ 252 BUILD_BUG_ON(pgd_index(EFI_VA_END) != pgd_index(MODULES_END)); 253 BUILD_BUG_ON((EFI_VA_START & PGDIR_MASK) != 254 (EFI_VA_END & PGDIR_MASK)); 255 256 pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET); 257 pgd_k = pgd_offset_k(PAGE_OFFSET); 258 259 num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET); 260 memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries); 261 262 /* 263 * As with PGDs, we share all P4D entries apart from the one entry 264 * that covers the EFI runtime mapping space. 265 */ 266 BUILD_BUG_ON(p4d_index(EFI_VA_END) != p4d_index(MODULES_END)); 267 BUILD_BUG_ON((EFI_VA_START & P4D_MASK) != (EFI_VA_END & P4D_MASK)); 268 269 pgd_efi = efi_pgd + pgd_index(EFI_VA_END); 270 pgd_k = pgd_offset_k(EFI_VA_END); 271 p4d_efi = p4d_offset(pgd_efi, 0); 272 p4d_k = p4d_offset(pgd_k, 0); 273 274 num_entries = p4d_index(EFI_VA_END); 275 memcpy(p4d_efi, p4d_k, sizeof(p4d_t) * num_entries); 276 277 /* 278 * We share all the PUD entries apart from those that map the 279 * EFI regions. Copy around them. 280 */ 281 BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0); 282 BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0); 283 284 p4d_efi = p4d_offset(pgd_efi, EFI_VA_END); 285 p4d_k = p4d_offset(pgd_k, EFI_VA_END); 286 pud_efi = pud_offset(p4d_efi, 0); 287 pud_k = pud_offset(p4d_k, 0); 288 289 num_entries = pud_index(EFI_VA_END); 290 memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries); 291 292 pud_efi = pud_offset(p4d_efi, EFI_VA_START); 293 pud_k = pud_offset(p4d_k, EFI_VA_START); 294 295 num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START); 296 memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries); 297 } 298 299 /* 300 * Wrapper for slow_virt_to_phys() that handles NULL addresses. 301 */ 302 static inline phys_addr_t 303 virt_to_phys_or_null_size(void *va, unsigned long size) 304 { 305 bool bad_size; 306 307 if (!va) 308 return 0; 309 310 if (virt_addr_valid(va)) 311 return virt_to_phys(va); 312 313 /* 314 * A fully aligned variable on the stack is guaranteed not to 315 * cross a page bounary. Try to catch strings on the stack by 316 * checking that 'size' is a power of two. 317 */ 318 bad_size = size > PAGE_SIZE || !is_power_of_2(size); 319 320 WARN_ON(!IS_ALIGNED((unsigned long)va, size) || bad_size); 321 322 return slow_virt_to_phys(va); 323 } 324 325 #define virt_to_phys_or_null(addr) \ 326 virt_to_phys_or_null_size((addr), sizeof(*(addr))) 327 328 int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages) 329 { 330 unsigned long pfn, text; 331 struct page *page; 332 unsigned npages; 333 pgd_t *pgd; 334 335 if (efi_enabled(EFI_OLD_MEMMAP)) 336 return 0; 337 338 efi_scratch.efi_pgt = (pgd_t *)__pa(efi_pgd); 339 pgd = efi_pgd; 340 341 /* 342 * It can happen that the physical address of new_memmap lands in memory 343 * which is not mapped in the EFI page table. Therefore we need to go 344 * and ident-map those pages containing the map before calling 345 * phys_efi_set_virtual_address_map(). 346 */ 347 pfn = pa_memmap >> PAGE_SHIFT; 348 if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, _PAGE_NX | _PAGE_RW)) { 349 pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap); 350 return 1; 351 } 352 353 efi_scratch.use_pgd = true; 354 355 /* 356 * Certain firmware versions are way too sentimential and still believe 357 * they are exclusive and unquestionable owners of the first physical page, 358 * even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY 359 * (but then write-access it later during SetVirtualAddressMap()). 360 * 361 * Create a 1:1 mapping for this page, to avoid triple faults during early 362 * boot with such firmware. We are free to hand this page to the BIOS, 363 * as trim_bios_range() will reserve the first page and isolate it away 364 * from memory allocators anyway. 365 */ 366 if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, _PAGE_RW)) { 367 pr_err("Failed to create 1:1 mapping for the first page!\n"); 368 return 1; 369 } 370 371 /* 372 * When making calls to the firmware everything needs to be 1:1 373 * mapped and addressable with 32-bit pointers. Map the kernel 374 * text and allocate a new stack because we can't rely on the 375 * stack pointer being < 4GB. 376 */ 377 if (!IS_ENABLED(CONFIG_EFI_MIXED) || efi_is_native()) 378 return 0; 379 380 page = alloc_page(GFP_KERNEL|__GFP_DMA32); 381 if (!page) 382 panic("Unable to allocate EFI runtime stack < 4GB\n"); 383 384 efi_scratch.phys_stack = virt_to_phys(page_address(page)); 385 efi_scratch.phys_stack += PAGE_SIZE; /* stack grows down */ 386 387 npages = (_etext - _text) >> PAGE_SHIFT; 388 text = __pa(_text); 389 pfn = text >> PAGE_SHIFT; 390 391 if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, _PAGE_RW)) { 392 pr_err("Failed to map kernel text 1:1\n"); 393 return 1; 394 } 395 396 return 0; 397 } 398 399 static void __init __map_region(efi_memory_desc_t *md, u64 va) 400 { 401 unsigned long flags = _PAGE_RW; 402 unsigned long pfn; 403 pgd_t *pgd = efi_pgd; 404 405 if (!(md->attribute & EFI_MEMORY_WB)) 406 flags |= _PAGE_PCD; 407 408 pfn = md->phys_addr >> PAGE_SHIFT; 409 if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags)) 410 pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n", 411 md->phys_addr, va); 412 } 413 414 void __init efi_map_region(efi_memory_desc_t *md) 415 { 416 unsigned long size = md->num_pages << PAGE_SHIFT; 417 u64 pa = md->phys_addr; 418 419 if (efi_enabled(EFI_OLD_MEMMAP)) 420 return old_map_region(md); 421 422 /* 423 * Make sure the 1:1 mappings are present as a catch-all for b0rked 424 * firmware which doesn't update all internal pointers after switching 425 * to virtual mode and would otherwise crap on us. 426 */ 427 __map_region(md, md->phys_addr); 428 429 /* 430 * Enforce the 1:1 mapping as the default virtual address when 431 * booting in EFI mixed mode, because even though we may be 432 * running a 64-bit kernel, the firmware may only be 32-bit. 433 */ 434 if (!efi_is_native () && IS_ENABLED(CONFIG_EFI_MIXED)) { 435 md->virt_addr = md->phys_addr; 436 return; 437 } 438 439 efi_va -= size; 440 441 /* Is PA 2M-aligned? */ 442 if (!(pa & (PMD_SIZE - 1))) { 443 efi_va &= PMD_MASK; 444 } else { 445 u64 pa_offset = pa & (PMD_SIZE - 1); 446 u64 prev_va = efi_va; 447 448 /* get us the same offset within this 2M page */ 449 efi_va = (efi_va & PMD_MASK) + pa_offset; 450 451 if (efi_va > prev_va) 452 efi_va -= PMD_SIZE; 453 } 454 455 if (efi_va < EFI_VA_END) { 456 pr_warn(FW_WARN "VA address range overflow!\n"); 457 return; 458 } 459 460 /* Do the VA map */ 461 __map_region(md, efi_va); 462 md->virt_addr = efi_va; 463 } 464 465 /* 466 * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges. 467 * md->virt_addr is the original virtual address which had been mapped in kexec 468 * 1st kernel. 469 */ 470 void __init efi_map_region_fixed(efi_memory_desc_t *md) 471 { 472 __map_region(md, md->phys_addr); 473 __map_region(md, md->virt_addr); 474 } 475 476 void __iomem *__init efi_ioremap(unsigned long phys_addr, unsigned long size, 477 u32 type, u64 attribute) 478 { 479 unsigned long last_map_pfn; 480 481 if (type == EFI_MEMORY_MAPPED_IO) 482 return ioremap(phys_addr, size); 483 484 last_map_pfn = init_memory_mapping(phys_addr, phys_addr + size); 485 if ((last_map_pfn << PAGE_SHIFT) < phys_addr + size) { 486 unsigned long top = last_map_pfn << PAGE_SHIFT; 487 efi_ioremap(top, size - (top - phys_addr), type, attribute); 488 } 489 490 if (!(attribute & EFI_MEMORY_WB)) 491 efi_memory_uc((u64)(unsigned long)__va(phys_addr), size); 492 493 return (void __iomem *)__va(phys_addr); 494 } 495 496 void __init parse_efi_setup(u64 phys_addr, u32 data_len) 497 { 498 efi_setup = phys_addr + sizeof(struct setup_data); 499 } 500 501 static int __init efi_update_mappings(efi_memory_desc_t *md, unsigned long pf) 502 { 503 unsigned long pfn; 504 pgd_t *pgd = efi_pgd; 505 int err1, err2; 506 507 /* Update the 1:1 mapping */ 508 pfn = md->phys_addr >> PAGE_SHIFT; 509 err1 = kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf); 510 if (err1) { 511 pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n", 512 md->phys_addr, md->virt_addr); 513 } 514 515 err2 = kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf); 516 if (err2) { 517 pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n", 518 md->phys_addr, md->virt_addr); 519 } 520 521 return err1 || err2; 522 } 523 524 static int __init efi_update_mem_attr(struct mm_struct *mm, efi_memory_desc_t *md) 525 { 526 unsigned long pf = 0; 527 528 if (md->attribute & EFI_MEMORY_XP) 529 pf |= _PAGE_NX; 530 531 if (!(md->attribute & EFI_MEMORY_RO)) 532 pf |= _PAGE_RW; 533 534 return efi_update_mappings(md, pf); 535 } 536 537 void __init efi_runtime_update_mappings(void) 538 { 539 efi_memory_desc_t *md; 540 541 if (efi_enabled(EFI_OLD_MEMMAP)) { 542 if (__supported_pte_mask & _PAGE_NX) 543 runtime_code_page_mkexec(); 544 return; 545 } 546 547 /* 548 * Use the EFI Memory Attribute Table for mapping permissions if it 549 * exists, since it is intended to supersede EFI_PROPERTIES_TABLE. 550 */ 551 if (efi_enabled(EFI_MEM_ATTR)) { 552 efi_memattr_apply_permissions(NULL, efi_update_mem_attr); 553 return; 554 } 555 556 /* 557 * EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace 558 * EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update 559 * permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not 560 * published by the firmware. Even if we find a buggy implementation of 561 * EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to 562 * EFI_PROPERTIES_TABLE, because of the same reason. 563 */ 564 565 if (!efi_enabled(EFI_NX_PE_DATA)) 566 return; 567 568 for_each_efi_memory_desc(md) { 569 unsigned long pf = 0; 570 571 if (!(md->attribute & EFI_MEMORY_RUNTIME)) 572 continue; 573 574 if (!(md->attribute & EFI_MEMORY_WB)) 575 pf |= _PAGE_PCD; 576 577 if ((md->attribute & EFI_MEMORY_XP) || 578 (md->type == EFI_RUNTIME_SERVICES_DATA)) 579 pf |= _PAGE_NX; 580 581 if (!(md->attribute & EFI_MEMORY_RO) && 582 (md->type != EFI_RUNTIME_SERVICES_CODE)) 583 pf |= _PAGE_RW; 584 585 efi_update_mappings(md, pf); 586 } 587 } 588 589 void __init efi_dump_pagetable(void) 590 { 591 #ifdef CONFIG_EFI_PGT_DUMP 592 if (efi_enabled(EFI_OLD_MEMMAP)) 593 ptdump_walk_pgd_level(NULL, swapper_pg_dir); 594 else 595 ptdump_walk_pgd_level(NULL, efi_pgd); 596 #endif 597 } 598 599 #ifdef CONFIG_EFI_MIXED 600 extern efi_status_t efi64_thunk(u32, ...); 601 602 #define runtime_service32(func) \ 603 ({ \ 604 u32 table = (u32)(unsigned long)efi.systab; \ 605 u32 *rt, *___f; \ 606 \ 607 rt = (u32 *)(table + offsetof(efi_system_table_32_t, runtime)); \ 608 ___f = (u32 *)(*rt + offsetof(efi_runtime_services_32_t, func)); \ 609 *___f; \ 610 }) 611 612 /* 613 * Switch to the EFI page tables early so that we can access the 1:1 614 * runtime services mappings which are not mapped in any other page 615 * tables. This function must be called before runtime_service32(). 616 * 617 * Also, disable interrupts because the IDT points to 64-bit handlers, 618 * which aren't going to function correctly when we switch to 32-bit. 619 */ 620 #define efi_thunk(f, ...) \ 621 ({ \ 622 efi_status_t __s; \ 623 unsigned long __flags; \ 624 u32 __func; \ 625 \ 626 local_irq_save(__flags); \ 627 arch_efi_call_virt_setup(); \ 628 \ 629 __func = runtime_service32(f); \ 630 __s = efi64_thunk(__func, __VA_ARGS__); \ 631 \ 632 arch_efi_call_virt_teardown(); \ 633 local_irq_restore(__flags); \ 634 \ 635 __s; \ 636 }) 637 638 efi_status_t efi_thunk_set_virtual_address_map( 639 void *phys_set_virtual_address_map, 640 unsigned long memory_map_size, 641 unsigned long descriptor_size, 642 u32 descriptor_version, 643 efi_memory_desc_t *virtual_map) 644 { 645 efi_status_t status; 646 unsigned long flags; 647 u32 func; 648 649 efi_sync_low_kernel_mappings(); 650 local_irq_save(flags); 651 652 efi_scratch.prev_cr3 = __read_cr3(); 653 write_cr3((unsigned long)efi_scratch.efi_pgt); 654 __flush_tlb_all(); 655 656 func = (u32)(unsigned long)phys_set_virtual_address_map; 657 status = efi64_thunk(func, memory_map_size, descriptor_size, 658 descriptor_version, virtual_map); 659 660 write_cr3(efi_scratch.prev_cr3); 661 __flush_tlb_all(); 662 local_irq_restore(flags); 663 664 return status; 665 } 666 667 static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc) 668 { 669 efi_status_t status; 670 u32 phys_tm, phys_tc; 671 672 spin_lock(&rtc_lock); 673 674 phys_tm = virt_to_phys_or_null(tm); 675 phys_tc = virt_to_phys_or_null(tc); 676 677 status = efi_thunk(get_time, phys_tm, phys_tc); 678 679 spin_unlock(&rtc_lock); 680 681 return status; 682 } 683 684 static efi_status_t efi_thunk_set_time(efi_time_t *tm) 685 { 686 efi_status_t status; 687 u32 phys_tm; 688 689 spin_lock(&rtc_lock); 690 691 phys_tm = virt_to_phys_or_null(tm); 692 693 status = efi_thunk(set_time, phys_tm); 694 695 spin_unlock(&rtc_lock); 696 697 return status; 698 } 699 700 static efi_status_t 701 efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending, 702 efi_time_t *tm) 703 { 704 efi_status_t status; 705 u32 phys_enabled, phys_pending, phys_tm; 706 707 spin_lock(&rtc_lock); 708 709 phys_enabled = virt_to_phys_or_null(enabled); 710 phys_pending = virt_to_phys_or_null(pending); 711 phys_tm = virt_to_phys_or_null(tm); 712 713 status = efi_thunk(get_wakeup_time, phys_enabled, 714 phys_pending, phys_tm); 715 716 spin_unlock(&rtc_lock); 717 718 return status; 719 } 720 721 static efi_status_t 722 efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm) 723 { 724 efi_status_t status; 725 u32 phys_tm; 726 727 spin_lock(&rtc_lock); 728 729 phys_tm = virt_to_phys_or_null(tm); 730 731 status = efi_thunk(set_wakeup_time, enabled, phys_tm); 732 733 spin_unlock(&rtc_lock); 734 735 return status; 736 } 737 738 static unsigned long efi_name_size(efi_char16_t *name) 739 { 740 return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1; 741 } 742 743 static efi_status_t 744 efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor, 745 u32 *attr, unsigned long *data_size, void *data) 746 { 747 efi_status_t status; 748 u32 phys_name, phys_vendor, phys_attr; 749 u32 phys_data_size, phys_data; 750 751 phys_data_size = virt_to_phys_or_null(data_size); 752 phys_vendor = virt_to_phys_or_null(vendor); 753 phys_name = virt_to_phys_or_null_size(name, efi_name_size(name)); 754 phys_attr = virt_to_phys_or_null(attr); 755 phys_data = virt_to_phys_or_null_size(data, *data_size); 756 757 status = efi_thunk(get_variable, phys_name, phys_vendor, 758 phys_attr, phys_data_size, phys_data); 759 760 return status; 761 } 762 763 static efi_status_t 764 efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor, 765 u32 attr, unsigned long data_size, void *data) 766 { 767 u32 phys_name, phys_vendor, phys_data; 768 efi_status_t status; 769 770 phys_name = virt_to_phys_or_null_size(name, efi_name_size(name)); 771 phys_vendor = virt_to_phys_or_null(vendor); 772 phys_data = virt_to_phys_or_null_size(data, data_size); 773 774 /* If data_size is > sizeof(u32) we've got problems */ 775 status = efi_thunk(set_variable, phys_name, phys_vendor, 776 attr, data_size, phys_data); 777 778 return status; 779 } 780 781 static efi_status_t 782 efi_thunk_get_next_variable(unsigned long *name_size, 783 efi_char16_t *name, 784 efi_guid_t *vendor) 785 { 786 efi_status_t status; 787 u32 phys_name_size, phys_name, phys_vendor; 788 789 phys_name_size = virt_to_phys_or_null(name_size); 790 phys_vendor = virt_to_phys_or_null(vendor); 791 phys_name = virt_to_phys_or_null_size(name, *name_size); 792 793 status = efi_thunk(get_next_variable, phys_name_size, 794 phys_name, phys_vendor); 795 796 return status; 797 } 798 799 static efi_status_t 800 efi_thunk_get_next_high_mono_count(u32 *count) 801 { 802 efi_status_t status; 803 u32 phys_count; 804 805 phys_count = virt_to_phys_or_null(count); 806 status = efi_thunk(get_next_high_mono_count, phys_count); 807 808 return status; 809 } 810 811 static void 812 efi_thunk_reset_system(int reset_type, efi_status_t status, 813 unsigned long data_size, efi_char16_t *data) 814 { 815 u32 phys_data; 816 817 phys_data = virt_to_phys_or_null_size(data, data_size); 818 819 efi_thunk(reset_system, reset_type, status, data_size, phys_data); 820 } 821 822 static efi_status_t 823 efi_thunk_update_capsule(efi_capsule_header_t **capsules, 824 unsigned long count, unsigned long sg_list) 825 { 826 /* 827 * To properly support this function we would need to repackage 828 * 'capsules' because the firmware doesn't understand 64-bit 829 * pointers. 830 */ 831 return EFI_UNSUPPORTED; 832 } 833 834 static efi_status_t 835 efi_thunk_query_variable_info(u32 attr, u64 *storage_space, 836 u64 *remaining_space, 837 u64 *max_variable_size) 838 { 839 efi_status_t status; 840 u32 phys_storage, phys_remaining, phys_max; 841 842 if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION) 843 return EFI_UNSUPPORTED; 844 845 phys_storage = virt_to_phys_or_null(storage_space); 846 phys_remaining = virt_to_phys_or_null(remaining_space); 847 phys_max = virt_to_phys_or_null(max_variable_size); 848 849 status = efi_thunk(query_variable_info, attr, phys_storage, 850 phys_remaining, phys_max); 851 852 return status; 853 } 854 855 static efi_status_t 856 efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules, 857 unsigned long count, u64 *max_size, 858 int *reset_type) 859 { 860 /* 861 * To properly support this function we would need to repackage 862 * 'capsules' because the firmware doesn't understand 64-bit 863 * pointers. 864 */ 865 return EFI_UNSUPPORTED; 866 } 867 868 void efi_thunk_runtime_setup(void) 869 { 870 efi.get_time = efi_thunk_get_time; 871 efi.set_time = efi_thunk_set_time; 872 efi.get_wakeup_time = efi_thunk_get_wakeup_time; 873 efi.set_wakeup_time = efi_thunk_set_wakeup_time; 874 efi.get_variable = efi_thunk_get_variable; 875 efi.get_next_variable = efi_thunk_get_next_variable; 876 efi.set_variable = efi_thunk_set_variable; 877 efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count; 878 efi.reset_system = efi_thunk_reset_system; 879 efi.query_variable_info = efi_thunk_query_variable_info; 880 efi.update_capsule = efi_thunk_update_capsule; 881 efi.query_capsule_caps = efi_thunk_query_capsule_caps; 882 } 883 #endif /* CONFIG_EFI_MIXED */ 884