xref: /openbmc/linux/arch/x86/platform/efi/efi_64.c (revision 4c5a116a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * x86_64 specific EFI support functions
4  * Based on Extensible Firmware Interface Specification version 1.0
5  *
6  * Copyright (C) 2005-2008 Intel Co.
7  *	Fenghua Yu <fenghua.yu@intel.com>
8  *	Bibo Mao <bibo.mao@intel.com>
9  *	Chandramouli Narayanan <mouli@linux.intel.com>
10  *	Huang Ying <ying.huang@intel.com>
11  *
12  * Code to convert EFI to E820 map has been implemented in elilo bootloader
13  * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table
14  * is setup appropriately for EFI runtime code.
15  * - mouli 06/14/2007.
16  *
17  */
18 
19 #define pr_fmt(fmt) "efi: " fmt
20 
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/mm.h>
24 #include <linux/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/memblock.h>
27 #include <linux/ioport.h>
28 #include <linux/mc146818rtc.h>
29 #include <linux/efi.h>
30 #include <linux/export.h>
31 #include <linux/uaccess.h>
32 #include <linux/io.h>
33 #include <linux/reboot.h>
34 #include <linux/slab.h>
35 #include <linux/ucs2_string.h>
36 #include <linux/mem_encrypt.h>
37 #include <linux/sched/task.h>
38 
39 #include <asm/setup.h>
40 #include <asm/page.h>
41 #include <asm/e820/api.h>
42 #include <asm/tlbflush.h>
43 #include <asm/proto.h>
44 #include <asm/efi.h>
45 #include <asm/cacheflush.h>
46 #include <asm/fixmap.h>
47 #include <asm/realmode.h>
48 #include <asm/time.h>
49 #include <asm/pgalloc.h>
50 
51 /*
52  * We allocate runtime services regions top-down, starting from -4G, i.e.
53  * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G.
54  */
55 static u64 efi_va = EFI_VA_START;
56 
57 struct efi_scratch efi_scratch;
58 
59 EXPORT_SYMBOL_GPL(efi_mm);
60 
61 /*
62  * We need our own copy of the higher levels of the page tables
63  * because we want to avoid inserting EFI region mappings (EFI_VA_END
64  * to EFI_VA_START) into the standard kernel page tables. Everything
65  * else can be shared, see efi_sync_low_kernel_mappings().
66  *
67  * We don't want the pgd on the pgd_list and cannot use pgd_alloc() for the
68  * allocation.
69  */
70 int __init efi_alloc_page_tables(void)
71 {
72 	pgd_t *pgd, *efi_pgd;
73 	p4d_t *p4d;
74 	pud_t *pud;
75 	gfp_t gfp_mask;
76 
77 	gfp_mask = GFP_KERNEL | __GFP_ZERO;
78 	efi_pgd = (pgd_t *)__get_free_pages(gfp_mask, PGD_ALLOCATION_ORDER);
79 	if (!efi_pgd)
80 		return -ENOMEM;
81 
82 	pgd = efi_pgd + pgd_index(EFI_VA_END);
83 	p4d = p4d_alloc(&init_mm, pgd, EFI_VA_END);
84 	if (!p4d) {
85 		free_page((unsigned long)efi_pgd);
86 		return -ENOMEM;
87 	}
88 
89 	pud = pud_alloc(&init_mm, p4d, EFI_VA_END);
90 	if (!pud) {
91 		if (pgtable_l5_enabled())
92 			free_page((unsigned long) pgd_page_vaddr(*pgd));
93 		free_pages((unsigned long)efi_pgd, PGD_ALLOCATION_ORDER);
94 		return -ENOMEM;
95 	}
96 
97 	efi_mm.pgd = efi_pgd;
98 	mm_init_cpumask(&efi_mm);
99 	init_new_context(NULL, &efi_mm);
100 
101 	return 0;
102 }
103 
104 /*
105  * Add low kernel mappings for passing arguments to EFI functions.
106  */
107 void efi_sync_low_kernel_mappings(void)
108 {
109 	unsigned num_entries;
110 	pgd_t *pgd_k, *pgd_efi;
111 	p4d_t *p4d_k, *p4d_efi;
112 	pud_t *pud_k, *pud_efi;
113 	pgd_t *efi_pgd = efi_mm.pgd;
114 
115 	/*
116 	 * We can share all PGD entries apart from the one entry that
117 	 * covers the EFI runtime mapping space.
118 	 *
119 	 * Make sure the EFI runtime region mappings are guaranteed to
120 	 * only span a single PGD entry and that the entry also maps
121 	 * other important kernel regions.
122 	 */
123 	MAYBE_BUILD_BUG_ON(pgd_index(EFI_VA_END) != pgd_index(MODULES_END));
124 	MAYBE_BUILD_BUG_ON((EFI_VA_START & PGDIR_MASK) !=
125 			(EFI_VA_END & PGDIR_MASK));
126 
127 	pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET);
128 	pgd_k = pgd_offset_k(PAGE_OFFSET);
129 
130 	num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET);
131 	memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries);
132 
133 	/*
134 	 * As with PGDs, we share all P4D entries apart from the one entry
135 	 * that covers the EFI runtime mapping space.
136 	 */
137 	BUILD_BUG_ON(p4d_index(EFI_VA_END) != p4d_index(MODULES_END));
138 	BUILD_BUG_ON((EFI_VA_START & P4D_MASK) != (EFI_VA_END & P4D_MASK));
139 
140 	pgd_efi = efi_pgd + pgd_index(EFI_VA_END);
141 	pgd_k = pgd_offset_k(EFI_VA_END);
142 	p4d_efi = p4d_offset(pgd_efi, 0);
143 	p4d_k = p4d_offset(pgd_k, 0);
144 
145 	num_entries = p4d_index(EFI_VA_END);
146 	memcpy(p4d_efi, p4d_k, sizeof(p4d_t) * num_entries);
147 
148 	/*
149 	 * We share all the PUD entries apart from those that map the
150 	 * EFI regions. Copy around them.
151 	 */
152 	BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0);
153 	BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0);
154 
155 	p4d_efi = p4d_offset(pgd_efi, EFI_VA_END);
156 	p4d_k = p4d_offset(pgd_k, EFI_VA_END);
157 	pud_efi = pud_offset(p4d_efi, 0);
158 	pud_k = pud_offset(p4d_k, 0);
159 
160 	num_entries = pud_index(EFI_VA_END);
161 	memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
162 
163 	pud_efi = pud_offset(p4d_efi, EFI_VA_START);
164 	pud_k = pud_offset(p4d_k, EFI_VA_START);
165 
166 	num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START);
167 	memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
168 }
169 
170 /*
171  * Wrapper for slow_virt_to_phys() that handles NULL addresses.
172  */
173 static inline phys_addr_t
174 virt_to_phys_or_null_size(void *va, unsigned long size)
175 {
176 	phys_addr_t pa;
177 
178 	if (!va)
179 		return 0;
180 
181 	if (virt_addr_valid(va))
182 		return virt_to_phys(va);
183 
184 	pa = slow_virt_to_phys(va);
185 
186 	/* check if the object crosses a page boundary */
187 	if (WARN_ON((pa ^ (pa + size - 1)) & PAGE_MASK))
188 		return 0;
189 
190 	return pa;
191 }
192 
193 #define virt_to_phys_or_null(addr)				\
194 	virt_to_phys_or_null_size((addr), sizeof(*(addr)))
195 
196 int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
197 {
198 	unsigned long pfn, text, pf, rodata;
199 	struct page *page;
200 	unsigned npages;
201 	pgd_t *pgd = efi_mm.pgd;
202 
203 	/*
204 	 * It can happen that the physical address of new_memmap lands in memory
205 	 * which is not mapped in the EFI page table. Therefore we need to go
206 	 * and ident-map those pages containing the map before calling
207 	 * phys_efi_set_virtual_address_map().
208 	 */
209 	pfn = pa_memmap >> PAGE_SHIFT;
210 	pf = _PAGE_NX | _PAGE_RW | _PAGE_ENC;
211 	if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, pf)) {
212 		pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap);
213 		return 1;
214 	}
215 
216 	/*
217 	 * Certain firmware versions are way too sentimential and still believe
218 	 * they are exclusive and unquestionable owners of the first physical page,
219 	 * even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY
220 	 * (but then write-access it later during SetVirtualAddressMap()).
221 	 *
222 	 * Create a 1:1 mapping for this page, to avoid triple faults during early
223 	 * boot with such firmware. We are free to hand this page to the BIOS,
224 	 * as trim_bios_range() will reserve the first page and isolate it away
225 	 * from memory allocators anyway.
226 	 */
227 	if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, pf)) {
228 		pr_err("Failed to create 1:1 mapping for the first page!\n");
229 		return 1;
230 	}
231 
232 	/*
233 	 * When making calls to the firmware everything needs to be 1:1
234 	 * mapped and addressable with 32-bit pointers. Map the kernel
235 	 * text and allocate a new stack because we can't rely on the
236 	 * stack pointer being < 4GB.
237 	 */
238 	if (!efi_is_mixed())
239 		return 0;
240 
241 	page = alloc_page(GFP_KERNEL|__GFP_DMA32);
242 	if (!page) {
243 		pr_err("Unable to allocate EFI runtime stack < 4GB\n");
244 		return 1;
245 	}
246 
247 	efi_scratch.phys_stack = page_to_phys(page + 1); /* stack grows down */
248 
249 	npages = (_etext - _text) >> PAGE_SHIFT;
250 	text = __pa(_text);
251 	pfn = text >> PAGE_SHIFT;
252 
253 	pf = _PAGE_ENC;
254 	if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, pf)) {
255 		pr_err("Failed to map kernel text 1:1\n");
256 		return 1;
257 	}
258 
259 	npages = (__end_rodata - __start_rodata) >> PAGE_SHIFT;
260 	rodata = __pa(__start_rodata);
261 	pfn = rodata >> PAGE_SHIFT;
262 	if (kernel_map_pages_in_pgd(pgd, pfn, rodata, npages, pf)) {
263 		pr_err("Failed to map kernel rodata 1:1\n");
264 		return 1;
265 	}
266 
267 	return 0;
268 }
269 
270 static void __init __map_region(efi_memory_desc_t *md, u64 va)
271 {
272 	unsigned long flags = _PAGE_RW;
273 	unsigned long pfn;
274 	pgd_t *pgd = efi_mm.pgd;
275 
276 	/*
277 	 * EFI_RUNTIME_SERVICES_CODE regions typically cover PE/COFF
278 	 * executable images in memory that consist of both R-X and
279 	 * RW- sections, so we cannot apply read-only or non-exec
280 	 * permissions just yet. However, modern EFI systems provide
281 	 * a memory attributes table that describes those sections
282 	 * with the appropriate restricted permissions, which are
283 	 * applied in efi_runtime_update_mappings() below. All other
284 	 * regions can be mapped non-executable at this point, with
285 	 * the exception of boot services code regions, but those will
286 	 * be unmapped again entirely in efi_free_boot_services().
287 	 */
288 	if (md->type != EFI_BOOT_SERVICES_CODE &&
289 	    md->type != EFI_RUNTIME_SERVICES_CODE)
290 		flags |= _PAGE_NX;
291 
292 	if (!(md->attribute & EFI_MEMORY_WB))
293 		flags |= _PAGE_PCD;
294 
295 	if (sev_active() && md->type != EFI_MEMORY_MAPPED_IO)
296 		flags |= _PAGE_ENC;
297 
298 	pfn = md->phys_addr >> PAGE_SHIFT;
299 	if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags))
300 		pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
301 			   md->phys_addr, va);
302 }
303 
304 void __init efi_map_region(efi_memory_desc_t *md)
305 {
306 	unsigned long size = md->num_pages << PAGE_SHIFT;
307 	u64 pa = md->phys_addr;
308 
309 	/*
310 	 * Make sure the 1:1 mappings are present as a catch-all for b0rked
311 	 * firmware which doesn't update all internal pointers after switching
312 	 * to virtual mode and would otherwise crap on us.
313 	 */
314 	__map_region(md, md->phys_addr);
315 
316 	/*
317 	 * Enforce the 1:1 mapping as the default virtual address when
318 	 * booting in EFI mixed mode, because even though we may be
319 	 * running a 64-bit kernel, the firmware may only be 32-bit.
320 	 */
321 	if (efi_is_mixed()) {
322 		md->virt_addr = md->phys_addr;
323 		return;
324 	}
325 
326 	efi_va -= size;
327 
328 	/* Is PA 2M-aligned? */
329 	if (!(pa & (PMD_SIZE - 1))) {
330 		efi_va &= PMD_MASK;
331 	} else {
332 		u64 pa_offset = pa & (PMD_SIZE - 1);
333 		u64 prev_va = efi_va;
334 
335 		/* get us the same offset within this 2M page */
336 		efi_va = (efi_va & PMD_MASK) + pa_offset;
337 
338 		if (efi_va > prev_va)
339 			efi_va -= PMD_SIZE;
340 	}
341 
342 	if (efi_va < EFI_VA_END) {
343 		pr_warn(FW_WARN "VA address range overflow!\n");
344 		return;
345 	}
346 
347 	/* Do the VA map */
348 	__map_region(md, efi_va);
349 	md->virt_addr = efi_va;
350 }
351 
352 /*
353  * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges.
354  * md->virt_addr is the original virtual address which had been mapped in kexec
355  * 1st kernel.
356  */
357 void __init efi_map_region_fixed(efi_memory_desc_t *md)
358 {
359 	__map_region(md, md->phys_addr);
360 	__map_region(md, md->virt_addr);
361 }
362 
363 void __init parse_efi_setup(u64 phys_addr, u32 data_len)
364 {
365 	efi_setup = phys_addr + sizeof(struct setup_data);
366 }
367 
368 static int __init efi_update_mappings(efi_memory_desc_t *md, unsigned long pf)
369 {
370 	unsigned long pfn;
371 	pgd_t *pgd = efi_mm.pgd;
372 	int err1, err2;
373 
374 	/* Update the 1:1 mapping */
375 	pfn = md->phys_addr >> PAGE_SHIFT;
376 	err1 = kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf);
377 	if (err1) {
378 		pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n",
379 			   md->phys_addr, md->virt_addr);
380 	}
381 
382 	err2 = kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf);
383 	if (err2) {
384 		pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n",
385 			   md->phys_addr, md->virt_addr);
386 	}
387 
388 	return err1 || err2;
389 }
390 
391 static int __init efi_update_mem_attr(struct mm_struct *mm, efi_memory_desc_t *md)
392 {
393 	unsigned long pf = 0;
394 
395 	if (md->attribute & EFI_MEMORY_XP)
396 		pf |= _PAGE_NX;
397 
398 	if (!(md->attribute & EFI_MEMORY_RO))
399 		pf |= _PAGE_RW;
400 
401 	if (sev_active())
402 		pf |= _PAGE_ENC;
403 
404 	return efi_update_mappings(md, pf);
405 }
406 
407 void __init efi_runtime_update_mappings(void)
408 {
409 	efi_memory_desc_t *md;
410 
411 	/*
412 	 * Use the EFI Memory Attribute Table for mapping permissions if it
413 	 * exists, since it is intended to supersede EFI_PROPERTIES_TABLE.
414 	 */
415 	if (efi_enabled(EFI_MEM_ATTR)) {
416 		efi_memattr_apply_permissions(NULL, efi_update_mem_attr);
417 		return;
418 	}
419 
420 	/*
421 	 * EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace
422 	 * EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update
423 	 * permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not
424 	 * published by the firmware. Even if we find a buggy implementation of
425 	 * EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to
426 	 * EFI_PROPERTIES_TABLE, because of the same reason.
427 	 */
428 
429 	if (!efi_enabled(EFI_NX_PE_DATA))
430 		return;
431 
432 	for_each_efi_memory_desc(md) {
433 		unsigned long pf = 0;
434 
435 		if (!(md->attribute & EFI_MEMORY_RUNTIME))
436 			continue;
437 
438 		if (!(md->attribute & EFI_MEMORY_WB))
439 			pf |= _PAGE_PCD;
440 
441 		if ((md->attribute & EFI_MEMORY_XP) ||
442 			(md->type == EFI_RUNTIME_SERVICES_DATA))
443 			pf |= _PAGE_NX;
444 
445 		if (!(md->attribute & EFI_MEMORY_RO) &&
446 			(md->type != EFI_RUNTIME_SERVICES_CODE))
447 			pf |= _PAGE_RW;
448 
449 		if (sev_active())
450 			pf |= _PAGE_ENC;
451 
452 		efi_update_mappings(md, pf);
453 	}
454 }
455 
456 void __init efi_dump_pagetable(void)
457 {
458 #ifdef CONFIG_EFI_PGT_DUMP
459 	ptdump_walk_pgd_level(NULL, &efi_mm);
460 #endif
461 }
462 
463 /*
464  * Makes the calling thread switch to/from efi_mm context. Can be used
465  * in a kernel thread and user context. Preemption needs to remain disabled
466  * while the EFI-mm is borrowed. mmgrab()/mmdrop() is not used because the mm
467  * can not change under us.
468  * It should be ensured that there are no concurent calls to this function.
469  */
470 void efi_switch_mm(struct mm_struct *mm)
471 {
472 	efi_scratch.prev_mm = current->active_mm;
473 	current->active_mm = mm;
474 	switch_mm(efi_scratch.prev_mm, mm, NULL);
475 }
476 
477 static DEFINE_SPINLOCK(efi_runtime_lock);
478 
479 /*
480  * DS and ES contain user values.  We need to save them.
481  * The 32-bit EFI code needs a valid DS, ES, and SS.  There's no
482  * need to save the old SS: __KERNEL_DS is always acceptable.
483  */
484 #define __efi_thunk(func, ...)						\
485 ({									\
486 	unsigned short __ds, __es;					\
487 	efi_status_t ____s;						\
488 									\
489 	savesegment(ds, __ds);						\
490 	savesegment(es, __es);						\
491 									\
492 	loadsegment(ss, __KERNEL_DS);					\
493 	loadsegment(ds, __KERNEL_DS);					\
494 	loadsegment(es, __KERNEL_DS);					\
495 									\
496 	____s = efi64_thunk(efi.runtime->mixed_mode.func, __VA_ARGS__);	\
497 									\
498 	loadsegment(ds, __ds);						\
499 	loadsegment(es, __es);						\
500 									\
501 	____s ^= (____s & BIT(31)) | (____s & BIT_ULL(31)) << 32;	\
502 	____s;								\
503 })
504 
505 /*
506  * Switch to the EFI page tables early so that we can access the 1:1
507  * runtime services mappings which are not mapped in any other page
508  * tables.
509  *
510  * Also, disable interrupts because the IDT points to 64-bit handlers,
511  * which aren't going to function correctly when we switch to 32-bit.
512  */
513 #define efi_thunk(func...)						\
514 ({									\
515 	efi_status_t __s;						\
516 									\
517 	arch_efi_call_virt_setup();					\
518 									\
519 	__s = __efi_thunk(func);					\
520 									\
521 	arch_efi_call_virt_teardown();					\
522 									\
523 	__s;								\
524 })
525 
526 static efi_status_t __init __no_sanitize_address
527 efi_thunk_set_virtual_address_map(unsigned long memory_map_size,
528 				  unsigned long descriptor_size,
529 				  u32 descriptor_version,
530 				  efi_memory_desc_t *virtual_map)
531 {
532 	efi_status_t status;
533 	unsigned long flags;
534 
535 	efi_sync_low_kernel_mappings();
536 	local_irq_save(flags);
537 
538 	efi_switch_mm(&efi_mm);
539 
540 	status = __efi_thunk(set_virtual_address_map, memory_map_size,
541 			     descriptor_size, descriptor_version, virtual_map);
542 
543 	efi_switch_mm(efi_scratch.prev_mm);
544 	local_irq_restore(flags);
545 
546 	return status;
547 }
548 
549 static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc)
550 {
551 	return EFI_UNSUPPORTED;
552 }
553 
554 static efi_status_t efi_thunk_set_time(efi_time_t *tm)
555 {
556 	return EFI_UNSUPPORTED;
557 }
558 
559 static efi_status_t
560 efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending,
561 			  efi_time_t *tm)
562 {
563 	return EFI_UNSUPPORTED;
564 }
565 
566 static efi_status_t
567 efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
568 {
569 	return EFI_UNSUPPORTED;
570 }
571 
572 static unsigned long efi_name_size(efi_char16_t *name)
573 {
574 	return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1;
575 }
576 
577 static efi_status_t
578 efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor,
579 		       u32 *attr, unsigned long *data_size, void *data)
580 {
581 	u8 buf[24] __aligned(8);
582 	efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
583 	efi_status_t status;
584 	u32 phys_name, phys_vendor, phys_attr;
585 	u32 phys_data_size, phys_data;
586 	unsigned long flags;
587 
588 	spin_lock_irqsave(&efi_runtime_lock, flags);
589 
590 	*vnd = *vendor;
591 
592 	phys_data_size = virt_to_phys_or_null(data_size);
593 	phys_vendor = virt_to_phys_or_null(vnd);
594 	phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
595 	phys_attr = virt_to_phys_or_null(attr);
596 	phys_data = virt_to_phys_or_null_size(data, *data_size);
597 
598 	if (!phys_name || (data && !phys_data))
599 		status = EFI_INVALID_PARAMETER;
600 	else
601 		status = efi_thunk(get_variable, phys_name, phys_vendor,
602 				   phys_attr, phys_data_size, phys_data);
603 
604 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
605 
606 	return status;
607 }
608 
609 static efi_status_t
610 efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor,
611 		       u32 attr, unsigned long data_size, void *data)
612 {
613 	u8 buf[24] __aligned(8);
614 	efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
615 	u32 phys_name, phys_vendor, phys_data;
616 	efi_status_t status;
617 	unsigned long flags;
618 
619 	spin_lock_irqsave(&efi_runtime_lock, flags);
620 
621 	*vnd = *vendor;
622 
623 	phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
624 	phys_vendor = virt_to_phys_or_null(vnd);
625 	phys_data = virt_to_phys_or_null_size(data, data_size);
626 
627 	if (!phys_name || (data && !phys_data))
628 		status = EFI_INVALID_PARAMETER;
629 	else
630 		status = efi_thunk(set_variable, phys_name, phys_vendor,
631 				   attr, data_size, phys_data);
632 
633 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
634 
635 	return status;
636 }
637 
638 static efi_status_t
639 efi_thunk_set_variable_nonblocking(efi_char16_t *name, efi_guid_t *vendor,
640 				   u32 attr, unsigned long data_size,
641 				   void *data)
642 {
643 	u8 buf[24] __aligned(8);
644 	efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
645 	u32 phys_name, phys_vendor, phys_data;
646 	efi_status_t status;
647 	unsigned long flags;
648 
649 	if (!spin_trylock_irqsave(&efi_runtime_lock, flags))
650 		return EFI_NOT_READY;
651 
652 	*vnd = *vendor;
653 
654 	phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
655 	phys_vendor = virt_to_phys_or_null(vnd);
656 	phys_data = virt_to_phys_or_null_size(data, data_size);
657 
658 	if (!phys_name || (data && !phys_data))
659 		status = EFI_INVALID_PARAMETER;
660 	else
661 		status = efi_thunk(set_variable, phys_name, phys_vendor,
662 				   attr, data_size, phys_data);
663 
664 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
665 
666 	return status;
667 }
668 
669 static efi_status_t
670 efi_thunk_get_next_variable(unsigned long *name_size,
671 			    efi_char16_t *name,
672 			    efi_guid_t *vendor)
673 {
674 	u8 buf[24] __aligned(8);
675 	efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
676 	efi_status_t status;
677 	u32 phys_name_size, phys_name, phys_vendor;
678 	unsigned long flags;
679 
680 	spin_lock_irqsave(&efi_runtime_lock, flags);
681 
682 	*vnd = *vendor;
683 
684 	phys_name_size = virt_to_phys_or_null(name_size);
685 	phys_vendor = virt_to_phys_or_null(vnd);
686 	phys_name = virt_to_phys_or_null_size(name, *name_size);
687 
688 	if (!phys_name)
689 		status = EFI_INVALID_PARAMETER;
690 	else
691 		status = efi_thunk(get_next_variable, phys_name_size,
692 				   phys_name, phys_vendor);
693 
694 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
695 
696 	*vendor = *vnd;
697 	return status;
698 }
699 
700 static efi_status_t
701 efi_thunk_get_next_high_mono_count(u32 *count)
702 {
703 	return EFI_UNSUPPORTED;
704 }
705 
706 static void
707 efi_thunk_reset_system(int reset_type, efi_status_t status,
708 		       unsigned long data_size, efi_char16_t *data)
709 {
710 	u32 phys_data;
711 	unsigned long flags;
712 
713 	spin_lock_irqsave(&efi_runtime_lock, flags);
714 
715 	phys_data = virt_to_phys_or_null_size(data, data_size);
716 
717 	efi_thunk(reset_system, reset_type, status, data_size, phys_data);
718 
719 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
720 }
721 
722 static efi_status_t
723 efi_thunk_update_capsule(efi_capsule_header_t **capsules,
724 			 unsigned long count, unsigned long sg_list)
725 {
726 	/*
727 	 * To properly support this function we would need to repackage
728 	 * 'capsules' because the firmware doesn't understand 64-bit
729 	 * pointers.
730 	 */
731 	return EFI_UNSUPPORTED;
732 }
733 
734 static efi_status_t
735 efi_thunk_query_variable_info(u32 attr, u64 *storage_space,
736 			      u64 *remaining_space,
737 			      u64 *max_variable_size)
738 {
739 	efi_status_t status;
740 	u32 phys_storage, phys_remaining, phys_max;
741 	unsigned long flags;
742 
743 	if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
744 		return EFI_UNSUPPORTED;
745 
746 	spin_lock_irqsave(&efi_runtime_lock, flags);
747 
748 	phys_storage = virt_to_phys_or_null(storage_space);
749 	phys_remaining = virt_to_phys_or_null(remaining_space);
750 	phys_max = virt_to_phys_or_null(max_variable_size);
751 
752 	status = efi_thunk(query_variable_info, attr, phys_storage,
753 			   phys_remaining, phys_max);
754 
755 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
756 
757 	return status;
758 }
759 
760 static efi_status_t
761 efi_thunk_query_variable_info_nonblocking(u32 attr, u64 *storage_space,
762 					  u64 *remaining_space,
763 					  u64 *max_variable_size)
764 {
765 	efi_status_t status;
766 	u32 phys_storage, phys_remaining, phys_max;
767 	unsigned long flags;
768 
769 	if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
770 		return EFI_UNSUPPORTED;
771 
772 	if (!spin_trylock_irqsave(&efi_runtime_lock, flags))
773 		return EFI_NOT_READY;
774 
775 	phys_storage = virt_to_phys_or_null(storage_space);
776 	phys_remaining = virt_to_phys_or_null(remaining_space);
777 	phys_max = virt_to_phys_or_null(max_variable_size);
778 
779 	status = efi_thunk(query_variable_info, attr, phys_storage,
780 			   phys_remaining, phys_max);
781 
782 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
783 
784 	return status;
785 }
786 
787 static efi_status_t
788 efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules,
789 			     unsigned long count, u64 *max_size,
790 			     int *reset_type)
791 {
792 	/*
793 	 * To properly support this function we would need to repackage
794 	 * 'capsules' because the firmware doesn't understand 64-bit
795 	 * pointers.
796 	 */
797 	return EFI_UNSUPPORTED;
798 }
799 
800 void __init efi_thunk_runtime_setup(void)
801 {
802 	if (!IS_ENABLED(CONFIG_EFI_MIXED))
803 		return;
804 
805 	efi.get_time = efi_thunk_get_time;
806 	efi.set_time = efi_thunk_set_time;
807 	efi.get_wakeup_time = efi_thunk_get_wakeup_time;
808 	efi.set_wakeup_time = efi_thunk_set_wakeup_time;
809 	efi.get_variable = efi_thunk_get_variable;
810 	efi.get_next_variable = efi_thunk_get_next_variable;
811 	efi.set_variable = efi_thunk_set_variable;
812 	efi.set_variable_nonblocking = efi_thunk_set_variable_nonblocking;
813 	efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count;
814 	efi.reset_system = efi_thunk_reset_system;
815 	efi.query_variable_info = efi_thunk_query_variable_info;
816 	efi.query_variable_info_nonblocking = efi_thunk_query_variable_info_nonblocking;
817 	efi.update_capsule = efi_thunk_update_capsule;
818 	efi.query_capsule_caps = efi_thunk_query_capsule_caps;
819 }
820 
821 efi_status_t __init __no_sanitize_address
822 efi_set_virtual_address_map(unsigned long memory_map_size,
823 			    unsigned long descriptor_size,
824 			    u32 descriptor_version,
825 			    efi_memory_desc_t *virtual_map,
826 			    unsigned long systab_phys)
827 {
828 	const efi_system_table_t *systab = (efi_system_table_t *)systab_phys;
829 	efi_status_t status;
830 	unsigned long flags;
831 
832 	if (efi_is_mixed())
833 		return efi_thunk_set_virtual_address_map(memory_map_size,
834 							 descriptor_size,
835 							 descriptor_version,
836 							 virtual_map);
837 	efi_switch_mm(&efi_mm);
838 
839 	kernel_fpu_begin();
840 
841 	/* Disable interrupts around EFI calls: */
842 	local_irq_save(flags);
843 	status = efi_call(efi.runtime->set_virtual_address_map,
844 			  memory_map_size, descriptor_size,
845 			  descriptor_version, virtual_map);
846 	local_irq_restore(flags);
847 
848 	kernel_fpu_end();
849 
850 	/* grab the virtually remapped EFI runtime services table pointer */
851 	efi.runtime = READ_ONCE(systab->runtime);
852 
853 	efi_switch_mm(efi_scratch.prev_mm);
854 
855 	return status;
856 }
857