1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * x86_64 specific EFI support functions 4 * Based on Extensible Firmware Interface Specification version 1.0 5 * 6 * Copyright (C) 2005-2008 Intel Co. 7 * Fenghua Yu <fenghua.yu@intel.com> 8 * Bibo Mao <bibo.mao@intel.com> 9 * Chandramouli Narayanan <mouli@linux.intel.com> 10 * Huang Ying <ying.huang@intel.com> 11 * 12 * Code to convert EFI to E820 map has been implemented in elilo bootloader 13 * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table 14 * is setup appropriately for EFI runtime code. 15 * - mouli 06/14/2007. 16 * 17 */ 18 19 #define pr_fmt(fmt) "efi: " fmt 20 21 #include <linux/kernel.h> 22 #include <linux/init.h> 23 #include <linux/mm.h> 24 #include <linux/types.h> 25 #include <linux/spinlock.h> 26 #include <linux/memblock.h> 27 #include <linux/ioport.h> 28 #include <linux/mc146818rtc.h> 29 #include <linux/efi.h> 30 #include <linux/export.h> 31 #include <linux/uaccess.h> 32 #include <linux/io.h> 33 #include <linux/reboot.h> 34 #include <linux/slab.h> 35 #include <linux/ucs2_string.h> 36 #include <linux/mem_encrypt.h> 37 #include <linux/sched/task.h> 38 39 #include <asm/setup.h> 40 #include <asm/page.h> 41 #include <asm/e820/api.h> 42 #include <asm/tlbflush.h> 43 #include <asm/proto.h> 44 #include <asm/efi.h> 45 #include <asm/cacheflush.h> 46 #include <asm/fixmap.h> 47 #include <asm/realmode.h> 48 #include <asm/time.h> 49 #include <asm/pgalloc.h> 50 51 /* 52 * We allocate runtime services regions top-down, starting from -4G, i.e. 53 * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G. 54 */ 55 static u64 efi_va = EFI_VA_START; 56 57 struct efi_scratch efi_scratch; 58 59 EXPORT_SYMBOL_GPL(efi_mm); 60 61 /* 62 * We need our own copy of the higher levels of the page tables 63 * because we want to avoid inserting EFI region mappings (EFI_VA_END 64 * to EFI_VA_START) into the standard kernel page tables. Everything 65 * else can be shared, see efi_sync_low_kernel_mappings(). 66 * 67 * We don't want the pgd on the pgd_list and cannot use pgd_alloc() for the 68 * allocation. 69 */ 70 int __init efi_alloc_page_tables(void) 71 { 72 pgd_t *pgd, *efi_pgd; 73 p4d_t *p4d; 74 pud_t *pud; 75 gfp_t gfp_mask; 76 77 gfp_mask = GFP_KERNEL | __GFP_ZERO; 78 efi_pgd = (pgd_t *)__get_free_pages(gfp_mask, PGD_ALLOCATION_ORDER); 79 if (!efi_pgd) 80 return -ENOMEM; 81 82 pgd = efi_pgd + pgd_index(EFI_VA_END); 83 p4d = p4d_alloc(&init_mm, pgd, EFI_VA_END); 84 if (!p4d) { 85 free_page((unsigned long)efi_pgd); 86 return -ENOMEM; 87 } 88 89 pud = pud_alloc(&init_mm, p4d, EFI_VA_END); 90 if (!pud) { 91 if (pgtable_l5_enabled()) 92 free_page((unsigned long) pgd_page_vaddr(*pgd)); 93 free_pages((unsigned long)efi_pgd, PGD_ALLOCATION_ORDER); 94 return -ENOMEM; 95 } 96 97 efi_mm.pgd = efi_pgd; 98 mm_init_cpumask(&efi_mm); 99 init_new_context(NULL, &efi_mm); 100 101 return 0; 102 } 103 104 /* 105 * Add low kernel mappings for passing arguments to EFI functions. 106 */ 107 void efi_sync_low_kernel_mappings(void) 108 { 109 unsigned num_entries; 110 pgd_t *pgd_k, *pgd_efi; 111 p4d_t *p4d_k, *p4d_efi; 112 pud_t *pud_k, *pud_efi; 113 pgd_t *efi_pgd = efi_mm.pgd; 114 115 /* 116 * We can share all PGD entries apart from the one entry that 117 * covers the EFI runtime mapping space. 118 * 119 * Make sure the EFI runtime region mappings are guaranteed to 120 * only span a single PGD entry and that the entry also maps 121 * other important kernel regions. 122 */ 123 MAYBE_BUILD_BUG_ON(pgd_index(EFI_VA_END) != pgd_index(MODULES_END)); 124 MAYBE_BUILD_BUG_ON((EFI_VA_START & PGDIR_MASK) != 125 (EFI_VA_END & PGDIR_MASK)); 126 127 pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET); 128 pgd_k = pgd_offset_k(PAGE_OFFSET); 129 130 num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET); 131 memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries); 132 133 /* 134 * As with PGDs, we share all P4D entries apart from the one entry 135 * that covers the EFI runtime mapping space. 136 */ 137 BUILD_BUG_ON(p4d_index(EFI_VA_END) != p4d_index(MODULES_END)); 138 BUILD_BUG_ON((EFI_VA_START & P4D_MASK) != (EFI_VA_END & P4D_MASK)); 139 140 pgd_efi = efi_pgd + pgd_index(EFI_VA_END); 141 pgd_k = pgd_offset_k(EFI_VA_END); 142 p4d_efi = p4d_offset(pgd_efi, 0); 143 p4d_k = p4d_offset(pgd_k, 0); 144 145 num_entries = p4d_index(EFI_VA_END); 146 memcpy(p4d_efi, p4d_k, sizeof(p4d_t) * num_entries); 147 148 /* 149 * We share all the PUD entries apart from those that map the 150 * EFI regions. Copy around them. 151 */ 152 BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0); 153 BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0); 154 155 p4d_efi = p4d_offset(pgd_efi, EFI_VA_END); 156 p4d_k = p4d_offset(pgd_k, EFI_VA_END); 157 pud_efi = pud_offset(p4d_efi, 0); 158 pud_k = pud_offset(p4d_k, 0); 159 160 num_entries = pud_index(EFI_VA_END); 161 memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries); 162 163 pud_efi = pud_offset(p4d_efi, EFI_VA_START); 164 pud_k = pud_offset(p4d_k, EFI_VA_START); 165 166 num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START); 167 memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries); 168 } 169 170 /* 171 * Wrapper for slow_virt_to_phys() that handles NULL addresses. 172 */ 173 static inline phys_addr_t 174 virt_to_phys_or_null_size(void *va, unsigned long size) 175 { 176 phys_addr_t pa; 177 178 if (!va) 179 return 0; 180 181 if (virt_addr_valid(va)) 182 return virt_to_phys(va); 183 184 pa = slow_virt_to_phys(va); 185 186 /* check if the object crosses a page boundary */ 187 if (WARN_ON((pa ^ (pa + size - 1)) & PAGE_MASK)) 188 return 0; 189 190 return pa; 191 } 192 193 #define virt_to_phys_or_null(addr) \ 194 virt_to_phys_or_null_size((addr), sizeof(*(addr))) 195 196 int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages) 197 { 198 unsigned long pfn, text, pf, rodata; 199 struct page *page; 200 unsigned npages; 201 pgd_t *pgd = efi_mm.pgd; 202 203 /* 204 * It can happen that the physical address of new_memmap lands in memory 205 * which is not mapped in the EFI page table. Therefore we need to go 206 * and ident-map those pages containing the map before calling 207 * phys_efi_set_virtual_address_map(). 208 */ 209 pfn = pa_memmap >> PAGE_SHIFT; 210 pf = _PAGE_NX | _PAGE_RW | _PAGE_ENC; 211 if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, pf)) { 212 pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap); 213 return 1; 214 } 215 216 /* 217 * Certain firmware versions are way too sentimential and still believe 218 * they are exclusive and unquestionable owners of the first physical page, 219 * even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY 220 * (but then write-access it later during SetVirtualAddressMap()). 221 * 222 * Create a 1:1 mapping for this page, to avoid triple faults during early 223 * boot with such firmware. We are free to hand this page to the BIOS, 224 * as trim_bios_range() will reserve the first page and isolate it away 225 * from memory allocators anyway. 226 */ 227 if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, pf)) { 228 pr_err("Failed to create 1:1 mapping for the first page!\n"); 229 return 1; 230 } 231 232 /* 233 * When making calls to the firmware everything needs to be 1:1 234 * mapped and addressable with 32-bit pointers. Map the kernel 235 * text and allocate a new stack because we can't rely on the 236 * stack pointer being < 4GB. 237 */ 238 if (!efi_is_mixed()) 239 return 0; 240 241 page = alloc_page(GFP_KERNEL|__GFP_DMA32); 242 if (!page) { 243 pr_err("Unable to allocate EFI runtime stack < 4GB\n"); 244 return 1; 245 } 246 247 efi_scratch.phys_stack = page_to_phys(page + 1); /* stack grows down */ 248 249 npages = (_etext - _text) >> PAGE_SHIFT; 250 text = __pa(_text); 251 pfn = text >> PAGE_SHIFT; 252 253 pf = _PAGE_ENC; 254 if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, pf)) { 255 pr_err("Failed to map kernel text 1:1\n"); 256 return 1; 257 } 258 259 npages = (__end_rodata - __start_rodata) >> PAGE_SHIFT; 260 rodata = __pa(__start_rodata); 261 pfn = rodata >> PAGE_SHIFT; 262 if (kernel_map_pages_in_pgd(pgd, pfn, rodata, npages, pf)) { 263 pr_err("Failed to map kernel rodata 1:1\n"); 264 return 1; 265 } 266 267 return 0; 268 } 269 270 static void __init __map_region(efi_memory_desc_t *md, u64 va) 271 { 272 unsigned long flags = _PAGE_RW; 273 unsigned long pfn; 274 pgd_t *pgd = efi_mm.pgd; 275 276 /* 277 * EFI_RUNTIME_SERVICES_CODE regions typically cover PE/COFF 278 * executable images in memory that consist of both R-X and 279 * RW- sections, so we cannot apply read-only or non-exec 280 * permissions just yet. However, modern EFI systems provide 281 * a memory attributes table that describes those sections 282 * with the appropriate restricted permissions, which are 283 * applied in efi_runtime_update_mappings() below. All other 284 * regions can be mapped non-executable at this point, with 285 * the exception of boot services code regions, but those will 286 * be unmapped again entirely in efi_free_boot_services(). 287 */ 288 if (md->type != EFI_BOOT_SERVICES_CODE && 289 md->type != EFI_RUNTIME_SERVICES_CODE) 290 flags |= _PAGE_NX; 291 292 if (!(md->attribute & EFI_MEMORY_WB)) 293 flags |= _PAGE_PCD; 294 295 if (sev_active() && md->type != EFI_MEMORY_MAPPED_IO) 296 flags |= _PAGE_ENC; 297 298 pfn = md->phys_addr >> PAGE_SHIFT; 299 if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags)) 300 pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n", 301 md->phys_addr, va); 302 } 303 304 void __init efi_map_region(efi_memory_desc_t *md) 305 { 306 unsigned long size = md->num_pages << PAGE_SHIFT; 307 u64 pa = md->phys_addr; 308 309 /* 310 * Make sure the 1:1 mappings are present as a catch-all for b0rked 311 * firmware which doesn't update all internal pointers after switching 312 * to virtual mode and would otherwise crap on us. 313 */ 314 __map_region(md, md->phys_addr); 315 316 /* 317 * Enforce the 1:1 mapping as the default virtual address when 318 * booting in EFI mixed mode, because even though we may be 319 * running a 64-bit kernel, the firmware may only be 32-bit. 320 */ 321 if (efi_is_mixed()) { 322 md->virt_addr = md->phys_addr; 323 return; 324 } 325 326 efi_va -= size; 327 328 /* Is PA 2M-aligned? */ 329 if (!(pa & (PMD_SIZE - 1))) { 330 efi_va &= PMD_MASK; 331 } else { 332 u64 pa_offset = pa & (PMD_SIZE - 1); 333 u64 prev_va = efi_va; 334 335 /* get us the same offset within this 2M page */ 336 efi_va = (efi_va & PMD_MASK) + pa_offset; 337 338 if (efi_va > prev_va) 339 efi_va -= PMD_SIZE; 340 } 341 342 if (efi_va < EFI_VA_END) { 343 pr_warn(FW_WARN "VA address range overflow!\n"); 344 return; 345 } 346 347 /* Do the VA map */ 348 __map_region(md, efi_va); 349 md->virt_addr = efi_va; 350 } 351 352 /* 353 * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges. 354 * md->virt_addr is the original virtual address which had been mapped in kexec 355 * 1st kernel. 356 */ 357 void __init efi_map_region_fixed(efi_memory_desc_t *md) 358 { 359 __map_region(md, md->phys_addr); 360 __map_region(md, md->virt_addr); 361 } 362 363 void __init parse_efi_setup(u64 phys_addr, u32 data_len) 364 { 365 efi_setup = phys_addr + sizeof(struct setup_data); 366 } 367 368 static int __init efi_update_mappings(efi_memory_desc_t *md, unsigned long pf) 369 { 370 unsigned long pfn; 371 pgd_t *pgd = efi_mm.pgd; 372 int err1, err2; 373 374 /* Update the 1:1 mapping */ 375 pfn = md->phys_addr >> PAGE_SHIFT; 376 err1 = kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf); 377 if (err1) { 378 pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n", 379 md->phys_addr, md->virt_addr); 380 } 381 382 err2 = kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf); 383 if (err2) { 384 pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n", 385 md->phys_addr, md->virt_addr); 386 } 387 388 return err1 || err2; 389 } 390 391 static int __init efi_update_mem_attr(struct mm_struct *mm, efi_memory_desc_t *md) 392 { 393 unsigned long pf = 0; 394 395 if (md->attribute & EFI_MEMORY_XP) 396 pf |= _PAGE_NX; 397 398 if (!(md->attribute & EFI_MEMORY_RO)) 399 pf |= _PAGE_RW; 400 401 if (sev_active()) 402 pf |= _PAGE_ENC; 403 404 return efi_update_mappings(md, pf); 405 } 406 407 void __init efi_runtime_update_mappings(void) 408 { 409 efi_memory_desc_t *md; 410 411 /* 412 * Use the EFI Memory Attribute Table for mapping permissions if it 413 * exists, since it is intended to supersede EFI_PROPERTIES_TABLE. 414 */ 415 if (efi_enabled(EFI_MEM_ATTR)) { 416 efi_memattr_apply_permissions(NULL, efi_update_mem_attr); 417 return; 418 } 419 420 /* 421 * EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace 422 * EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update 423 * permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not 424 * published by the firmware. Even if we find a buggy implementation of 425 * EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to 426 * EFI_PROPERTIES_TABLE, because of the same reason. 427 */ 428 429 if (!efi_enabled(EFI_NX_PE_DATA)) 430 return; 431 432 for_each_efi_memory_desc(md) { 433 unsigned long pf = 0; 434 435 if (!(md->attribute & EFI_MEMORY_RUNTIME)) 436 continue; 437 438 if (!(md->attribute & EFI_MEMORY_WB)) 439 pf |= _PAGE_PCD; 440 441 if ((md->attribute & EFI_MEMORY_XP) || 442 (md->type == EFI_RUNTIME_SERVICES_DATA)) 443 pf |= _PAGE_NX; 444 445 if (!(md->attribute & EFI_MEMORY_RO) && 446 (md->type != EFI_RUNTIME_SERVICES_CODE)) 447 pf |= _PAGE_RW; 448 449 if (sev_active()) 450 pf |= _PAGE_ENC; 451 452 efi_update_mappings(md, pf); 453 } 454 } 455 456 void __init efi_dump_pagetable(void) 457 { 458 #ifdef CONFIG_EFI_PGT_DUMP 459 ptdump_walk_pgd_level(NULL, &efi_mm); 460 #endif 461 } 462 463 /* 464 * Makes the calling thread switch to/from efi_mm context. Can be used 465 * in a kernel thread and user context. Preemption needs to remain disabled 466 * while the EFI-mm is borrowed. mmgrab()/mmdrop() is not used because the mm 467 * can not change under us. 468 * It should be ensured that there are no concurent calls to this function. 469 */ 470 void efi_switch_mm(struct mm_struct *mm) 471 { 472 efi_scratch.prev_mm = current->active_mm; 473 current->active_mm = mm; 474 switch_mm(efi_scratch.prev_mm, mm, NULL); 475 } 476 477 static DEFINE_SPINLOCK(efi_runtime_lock); 478 479 /* 480 * DS and ES contain user values. We need to save them. 481 * The 32-bit EFI code needs a valid DS, ES, and SS. There's no 482 * need to save the old SS: __KERNEL_DS is always acceptable. 483 */ 484 #define __efi_thunk(func, ...) \ 485 ({ \ 486 unsigned short __ds, __es; \ 487 efi_status_t ____s; \ 488 \ 489 savesegment(ds, __ds); \ 490 savesegment(es, __es); \ 491 \ 492 loadsegment(ss, __KERNEL_DS); \ 493 loadsegment(ds, __KERNEL_DS); \ 494 loadsegment(es, __KERNEL_DS); \ 495 \ 496 ____s = efi64_thunk(efi.runtime->mixed_mode.func, __VA_ARGS__); \ 497 \ 498 loadsegment(ds, __ds); \ 499 loadsegment(es, __es); \ 500 \ 501 ____s ^= (____s & BIT(31)) | (____s & BIT_ULL(31)) << 32; \ 502 ____s; \ 503 }) 504 505 /* 506 * Switch to the EFI page tables early so that we can access the 1:1 507 * runtime services mappings which are not mapped in any other page 508 * tables. 509 * 510 * Also, disable interrupts because the IDT points to 64-bit handlers, 511 * which aren't going to function correctly when we switch to 32-bit. 512 */ 513 #define efi_thunk(func...) \ 514 ({ \ 515 efi_status_t __s; \ 516 \ 517 arch_efi_call_virt_setup(); \ 518 \ 519 __s = __efi_thunk(func); \ 520 \ 521 arch_efi_call_virt_teardown(); \ 522 \ 523 __s; \ 524 }) 525 526 static efi_status_t __init __no_sanitize_address 527 efi_thunk_set_virtual_address_map(unsigned long memory_map_size, 528 unsigned long descriptor_size, 529 u32 descriptor_version, 530 efi_memory_desc_t *virtual_map) 531 { 532 efi_status_t status; 533 unsigned long flags; 534 535 efi_sync_low_kernel_mappings(); 536 local_irq_save(flags); 537 538 efi_switch_mm(&efi_mm); 539 540 status = __efi_thunk(set_virtual_address_map, memory_map_size, 541 descriptor_size, descriptor_version, virtual_map); 542 543 efi_switch_mm(efi_scratch.prev_mm); 544 local_irq_restore(flags); 545 546 return status; 547 } 548 549 static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc) 550 { 551 return EFI_UNSUPPORTED; 552 } 553 554 static efi_status_t efi_thunk_set_time(efi_time_t *tm) 555 { 556 return EFI_UNSUPPORTED; 557 } 558 559 static efi_status_t 560 efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending, 561 efi_time_t *tm) 562 { 563 return EFI_UNSUPPORTED; 564 } 565 566 static efi_status_t 567 efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm) 568 { 569 return EFI_UNSUPPORTED; 570 } 571 572 static unsigned long efi_name_size(efi_char16_t *name) 573 { 574 return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1; 575 } 576 577 static efi_status_t 578 efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor, 579 u32 *attr, unsigned long *data_size, void *data) 580 { 581 u8 buf[24] __aligned(8); 582 efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd)); 583 efi_status_t status; 584 u32 phys_name, phys_vendor, phys_attr; 585 u32 phys_data_size, phys_data; 586 unsigned long flags; 587 588 spin_lock_irqsave(&efi_runtime_lock, flags); 589 590 *vnd = *vendor; 591 592 phys_data_size = virt_to_phys_or_null(data_size); 593 phys_vendor = virt_to_phys_or_null(vnd); 594 phys_name = virt_to_phys_or_null_size(name, efi_name_size(name)); 595 phys_attr = virt_to_phys_or_null(attr); 596 phys_data = virt_to_phys_or_null_size(data, *data_size); 597 598 if (!phys_name || (data && !phys_data)) 599 status = EFI_INVALID_PARAMETER; 600 else 601 status = efi_thunk(get_variable, phys_name, phys_vendor, 602 phys_attr, phys_data_size, phys_data); 603 604 spin_unlock_irqrestore(&efi_runtime_lock, flags); 605 606 return status; 607 } 608 609 static efi_status_t 610 efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor, 611 u32 attr, unsigned long data_size, void *data) 612 { 613 u8 buf[24] __aligned(8); 614 efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd)); 615 u32 phys_name, phys_vendor, phys_data; 616 efi_status_t status; 617 unsigned long flags; 618 619 spin_lock_irqsave(&efi_runtime_lock, flags); 620 621 *vnd = *vendor; 622 623 phys_name = virt_to_phys_or_null_size(name, efi_name_size(name)); 624 phys_vendor = virt_to_phys_or_null(vnd); 625 phys_data = virt_to_phys_or_null_size(data, data_size); 626 627 if (!phys_name || (data && !phys_data)) 628 status = EFI_INVALID_PARAMETER; 629 else 630 status = efi_thunk(set_variable, phys_name, phys_vendor, 631 attr, data_size, phys_data); 632 633 spin_unlock_irqrestore(&efi_runtime_lock, flags); 634 635 return status; 636 } 637 638 static efi_status_t 639 efi_thunk_set_variable_nonblocking(efi_char16_t *name, efi_guid_t *vendor, 640 u32 attr, unsigned long data_size, 641 void *data) 642 { 643 u8 buf[24] __aligned(8); 644 efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd)); 645 u32 phys_name, phys_vendor, phys_data; 646 efi_status_t status; 647 unsigned long flags; 648 649 if (!spin_trylock_irqsave(&efi_runtime_lock, flags)) 650 return EFI_NOT_READY; 651 652 *vnd = *vendor; 653 654 phys_name = virt_to_phys_or_null_size(name, efi_name_size(name)); 655 phys_vendor = virt_to_phys_or_null(vnd); 656 phys_data = virt_to_phys_or_null_size(data, data_size); 657 658 if (!phys_name || (data && !phys_data)) 659 status = EFI_INVALID_PARAMETER; 660 else 661 status = efi_thunk(set_variable, phys_name, phys_vendor, 662 attr, data_size, phys_data); 663 664 spin_unlock_irqrestore(&efi_runtime_lock, flags); 665 666 return status; 667 } 668 669 static efi_status_t 670 efi_thunk_get_next_variable(unsigned long *name_size, 671 efi_char16_t *name, 672 efi_guid_t *vendor) 673 { 674 u8 buf[24] __aligned(8); 675 efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd)); 676 efi_status_t status; 677 u32 phys_name_size, phys_name, phys_vendor; 678 unsigned long flags; 679 680 spin_lock_irqsave(&efi_runtime_lock, flags); 681 682 *vnd = *vendor; 683 684 phys_name_size = virt_to_phys_or_null(name_size); 685 phys_vendor = virt_to_phys_or_null(vnd); 686 phys_name = virt_to_phys_or_null_size(name, *name_size); 687 688 if (!phys_name) 689 status = EFI_INVALID_PARAMETER; 690 else 691 status = efi_thunk(get_next_variable, phys_name_size, 692 phys_name, phys_vendor); 693 694 spin_unlock_irqrestore(&efi_runtime_lock, flags); 695 696 *vendor = *vnd; 697 return status; 698 } 699 700 static efi_status_t 701 efi_thunk_get_next_high_mono_count(u32 *count) 702 { 703 return EFI_UNSUPPORTED; 704 } 705 706 static void 707 efi_thunk_reset_system(int reset_type, efi_status_t status, 708 unsigned long data_size, efi_char16_t *data) 709 { 710 u32 phys_data; 711 unsigned long flags; 712 713 spin_lock_irqsave(&efi_runtime_lock, flags); 714 715 phys_data = virt_to_phys_or_null_size(data, data_size); 716 717 efi_thunk(reset_system, reset_type, status, data_size, phys_data); 718 719 spin_unlock_irqrestore(&efi_runtime_lock, flags); 720 } 721 722 static efi_status_t 723 efi_thunk_update_capsule(efi_capsule_header_t **capsules, 724 unsigned long count, unsigned long sg_list) 725 { 726 /* 727 * To properly support this function we would need to repackage 728 * 'capsules' because the firmware doesn't understand 64-bit 729 * pointers. 730 */ 731 return EFI_UNSUPPORTED; 732 } 733 734 static efi_status_t 735 efi_thunk_query_variable_info(u32 attr, u64 *storage_space, 736 u64 *remaining_space, 737 u64 *max_variable_size) 738 { 739 efi_status_t status; 740 u32 phys_storage, phys_remaining, phys_max; 741 unsigned long flags; 742 743 if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION) 744 return EFI_UNSUPPORTED; 745 746 spin_lock_irqsave(&efi_runtime_lock, flags); 747 748 phys_storage = virt_to_phys_or_null(storage_space); 749 phys_remaining = virt_to_phys_or_null(remaining_space); 750 phys_max = virt_to_phys_or_null(max_variable_size); 751 752 status = efi_thunk(query_variable_info, attr, phys_storage, 753 phys_remaining, phys_max); 754 755 spin_unlock_irqrestore(&efi_runtime_lock, flags); 756 757 return status; 758 } 759 760 static efi_status_t 761 efi_thunk_query_variable_info_nonblocking(u32 attr, u64 *storage_space, 762 u64 *remaining_space, 763 u64 *max_variable_size) 764 { 765 efi_status_t status; 766 u32 phys_storage, phys_remaining, phys_max; 767 unsigned long flags; 768 769 if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION) 770 return EFI_UNSUPPORTED; 771 772 if (!spin_trylock_irqsave(&efi_runtime_lock, flags)) 773 return EFI_NOT_READY; 774 775 phys_storage = virt_to_phys_or_null(storage_space); 776 phys_remaining = virt_to_phys_or_null(remaining_space); 777 phys_max = virt_to_phys_or_null(max_variable_size); 778 779 status = efi_thunk(query_variable_info, attr, phys_storage, 780 phys_remaining, phys_max); 781 782 spin_unlock_irqrestore(&efi_runtime_lock, flags); 783 784 return status; 785 } 786 787 static efi_status_t 788 efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules, 789 unsigned long count, u64 *max_size, 790 int *reset_type) 791 { 792 /* 793 * To properly support this function we would need to repackage 794 * 'capsules' because the firmware doesn't understand 64-bit 795 * pointers. 796 */ 797 return EFI_UNSUPPORTED; 798 } 799 800 void __init efi_thunk_runtime_setup(void) 801 { 802 if (!IS_ENABLED(CONFIG_EFI_MIXED)) 803 return; 804 805 efi.get_time = efi_thunk_get_time; 806 efi.set_time = efi_thunk_set_time; 807 efi.get_wakeup_time = efi_thunk_get_wakeup_time; 808 efi.set_wakeup_time = efi_thunk_set_wakeup_time; 809 efi.get_variable = efi_thunk_get_variable; 810 efi.get_next_variable = efi_thunk_get_next_variable; 811 efi.set_variable = efi_thunk_set_variable; 812 efi.set_variable_nonblocking = efi_thunk_set_variable_nonblocking; 813 efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count; 814 efi.reset_system = efi_thunk_reset_system; 815 efi.query_variable_info = efi_thunk_query_variable_info; 816 efi.query_variable_info_nonblocking = efi_thunk_query_variable_info_nonblocking; 817 efi.update_capsule = efi_thunk_update_capsule; 818 efi.query_capsule_caps = efi_thunk_query_capsule_caps; 819 } 820 821 efi_status_t __init __no_sanitize_address 822 efi_set_virtual_address_map(unsigned long memory_map_size, 823 unsigned long descriptor_size, 824 u32 descriptor_version, 825 efi_memory_desc_t *virtual_map, 826 unsigned long systab_phys) 827 { 828 const efi_system_table_t *systab = (efi_system_table_t *)systab_phys; 829 efi_status_t status; 830 unsigned long flags; 831 832 if (efi_is_mixed()) 833 return efi_thunk_set_virtual_address_map(memory_map_size, 834 descriptor_size, 835 descriptor_version, 836 virtual_map); 837 efi_switch_mm(&efi_mm); 838 839 kernel_fpu_begin(); 840 841 /* Disable interrupts around EFI calls: */ 842 local_irq_save(flags); 843 status = efi_call(efi.runtime->set_virtual_address_map, 844 memory_map_size, descriptor_size, 845 descriptor_version, virtual_map); 846 local_irq_restore(flags); 847 848 kernel_fpu_end(); 849 850 /* grab the virtually remapped EFI runtime services table pointer */ 851 efi.runtime = READ_ONCE(systab->runtime); 852 853 efi_switch_mm(efi_scratch.prev_mm); 854 855 return status; 856 } 857