1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * x86_64 specific EFI support functions 4 * Based on Extensible Firmware Interface Specification version 1.0 5 * 6 * Copyright (C) 2005-2008 Intel Co. 7 * Fenghua Yu <fenghua.yu@intel.com> 8 * Bibo Mao <bibo.mao@intel.com> 9 * Chandramouli Narayanan <mouli@linux.intel.com> 10 * Huang Ying <ying.huang@intel.com> 11 * 12 * Code to convert EFI to E820 map has been implemented in elilo bootloader 13 * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table 14 * is setup appropriately for EFI runtime code. 15 * - mouli 06/14/2007. 16 * 17 */ 18 19 #define pr_fmt(fmt) "efi: " fmt 20 21 #include <linux/kernel.h> 22 #include <linux/init.h> 23 #include <linux/mm.h> 24 #include <linux/types.h> 25 #include <linux/spinlock.h> 26 #include <linux/bootmem.h> 27 #include <linux/ioport.h> 28 #include <linux/init.h> 29 #include <linux/mc146818rtc.h> 30 #include <linux/efi.h> 31 #include <linux/uaccess.h> 32 #include <linux/io.h> 33 #include <linux/reboot.h> 34 #include <linux/slab.h> 35 #include <linux/ucs2_string.h> 36 #include <linux/mem_encrypt.h> 37 38 #include <asm/setup.h> 39 #include <asm/page.h> 40 #include <asm/e820/api.h> 41 #include <asm/pgtable.h> 42 #include <asm/tlbflush.h> 43 #include <asm/proto.h> 44 #include <asm/efi.h> 45 #include <asm/cacheflush.h> 46 #include <asm/fixmap.h> 47 #include <asm/realmode.h> 48 #include <asm/time.h> 49 #include <asm/pgalloc.h> 50 51 /* 52 * We allocate runtime services regions top-down, starting from -4G, i.e. 53 * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G. 54 */ 55 static u64 efi_va = EFI_VA_START; 56 57 struct efi_scratch efi_scratch; 58 59 static void __init early_code_mapping_set_exec(int executable) 60 { 61 efi_memory_desc_t *md; 62 63 if (!(__supported_pte_mask & _PAGE_NX)) 64 return; 65 66 /* Make EFI service code area executable */ 67 for_each_efi_memory_desc(md) { 68 if (md->type == EFI_RUNTIME_SERVICES_CODE || 69 md->type == EFI_BOOT_SERVICES_CODE) 70 efi_set_executable(md, executable); 71 } 72 } 73 74 pgd_t * __init efi_call_phys_prolog(void) 75 { 76 unsigned long vaddr, addr_pgd, addr_p4d, addr_pud; 77 pgd_t *save_pgd, *pgd_k, *pgd_efi; 78 p4d_t *p4d, *p4d_k, *p4d_efi; 79 pud_t *pud; 80 81 int pgd; 82 int n_pgds, i, j; 83 84 if (!efi_enabled(EFI_OLD_MEMMAP)) { 85 save_pgd = (pgd_t *)__read_cr3(); 86 write_cr3((unsigned long)efi_scratch.efi_pgt); 87 goto out; 88 } 89 90 early_code_mapping_set_exec(1); 91 92 n_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT), PGDIR_SIZE); 93 save_pgd = kmalloc_array(n_pgds, sizeof(*save_pgd), GFP_KERNEL); 94 95 /* 96 * Build 1:1 identity mapping for efi=old_map usage. Note that 97 * PAGE_OFFSET is PGDIR_SIZE aligned when KASLR is disabled, while 98 * it is PUD_SIZE ALIGNED with KASLR enabled. So for a given physical 99 * address X, the pud_index(X) != pud_index(__va(X)), we can only copy 100 * PUD entry of __va(X) to fill in pud entry of X to build 1:1 mapping. 101 * This means here we can only reuse the PMD tables of the direct mapping. 102 */ 103 for (pgd = 0; pgd < n_pgds; pgd++) { 104 addr_pgd = (unsigned long)(pgd * PGDIR_SIZE); 105 vaddr = (unsigned long)__va(pgd * PGDIR_SIZE); 106 pgd_efi = pgd_offset_k(addr_pgd); 107 save_pgd[pgd] = *pgd_efi; 108 109 p4d = p4d_alloc(&init_mm, pgd_efi, addr_pgd); 110 if (!p4d) { 111 pr_err("Failed to allocate p4d table!\n"); 112 goto out; 113 } 114 115 for (i = 0; i < PTRS_PER_P4D; i++) { 116 addr_p4d = addr_pgd + i * P4D_SIZE; 117 p4d_efi = p4d + p4d_index(addr_p4d); 118 119 pud = pud_alloc(&init_mm, p4d_efi, addr_p4d); 120 if (!pud) { 121 pr_err("Failed to allocate pud table!\n"); 122 goto out; 123 } 124 125 for (j = 0; j < PTRS_PER_PUD; j++) { 126 addr_pud = addr_p4d + j * PUD_SIZE; 127 128 if (addr_pud > (max_pfn << PAGE_SHIFT)) 129 break; 130 131 vaddr = (unsigned long)__va(addr_pud); 132 133 pgd_k = pgd_offset_k(vaddr); 134 p4d_k = p4d_offset(pgd_k, vaddr); 135 pud[j] = *pud_offset(p4d_k, vaddr); 136 } 137 } 138 } 139 out: 140 __flush_tlb_all(); 141 142 return save_pgd; 143 } 144 145 void __init efi_call_phys_epilog(pgd_t *save_pgd) 146 { 147 /* 148 * After the lock is released, the original page table is restored. 149 */ 150 int pgd_idx, i; 151 int nr_pgds; 152 pgd_t *pgd; 153 p4d_t *p4d; 154 pud_t *pud; 155 156 if (!efi_enabled(EFI_OLD_MEMMAP)) { 157 write_cr3((unsigned long)save_pgd); 158 __flush_tlb_all(); 159 return; 160 } 161 162 nr_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT) , PGDIR_SIZE); 163 164 for (pgd_idx = 0; pgd_idx < nr_pgds; pgd_idx++) { 165 pgd = pgd_offset_k(pgd_idx * PGDIR_SIZE); 166 set_pgd(pgd_offset_k(pgd_idx * PGDIR_SIZE), save_pgd[pgd_idx]); 167 168 if (!(pgd_val(*pgd) & _PAGE_PRESENT)) 169 continue; 170 171 for (i = 0; i < PTRS_PER_P4D; i++) { 172 p4d = p4d_offset(pgd, 173 pgd_idx * PGDIR_SIZE + i * P4D_SIZE); 174 175 if (!(p4d_val(*p4d) & _PAGE_PRESENT)) 176 continue; 177 178 pud = (pud_t *)p4d_page_vaddr(*p4d); 179 pud_free(&init_mm, pud); 180 } 181 182 p4d = (p4d_t *)pgd_page_vaddr(*pgd); 183 p4d_free(&init_mm, p4d); 184 } 185 186 kfree(save_pgd); 187 188 __flush_tlb_all(); 189 early_code_mapping_set_exec(0); 190 } 191 192 static pgd_t *efi_pgd; 193 194 /* 195 * We need our own copy of the higher levels of the page tables 196 * because we want to avoid inserting EFI region mappings (EFI_VA_END 197 * to EFI_VA_START) into the standard kernel page tables. Everything 198 * else can be shared, see efi_sync_low_kernel_mappings(). 199 */ 200 int __init efi_alloc_page_tables(void) 201 { 202 pgd_t *pgd; 203 p4d_t *p4d; 204 pud_t *pud; 205 gfp_t gfp_mask; 206 207 if (efi_enabled(EFI_OLD_MEMMAP)) 208 return 0; 209 210 gfp_mask = GFP_KERNEL | __GFP_ZERO; 211 efi_pgd = (pgd_t *)__get_free_page(gfp_mask); 212 if (!efi_pgd) 213 return -ENOMEM; 214 215 pgd = efi_pgd + pgd_index(EFI_VA_END); 216 p4d = p4d_alloc(&init_mm, pgd, EFI_VA_END); 217 if (!p4d) { 218 free_page((unsigned long)efi_pgd); 219 return -ENOMEM; 220 } 221 222 pud = pud_alloc(&init_mm, p4d, EFI_VA_END); 223 if (!pud) { 224 if (CONFIG_PGTABLE_LEVELS > 4) 225 free_page((unsigned long) pgd_page_vaddr(*pgd)); 226 free_page((unsigned long)efi_pgd); 227 return -ENOMEM; 228 } 229 230 return 0; 231 } 232 233 /* 234 * Add low kernel mappings for passing arguments to EFI functions. 235 */ 236 void efi_sync_low_kernel_mappings(void) 237 { 238 unsigned num_entries; 239 pgd_t *pgd_k, *pgd_efi; 240 p4d_t *p4d_k, *p4d_efi; 241 pud_t *pud_k, *pud_efi; 242 243 if (efi_enabled(EFI_OLD_MEMMAP)) 244 return; 245 246 /* 247 * We can share all PGD entries apart from the one entry that 248 * covers the EFI runtime mapping space. 249 * 250 * Make sure the EFI runtime region mappings are guaranteed to 251 * only span a single PGD entry and that the entry also maps 252 * other important kernel regions. 253 */ 254 BUILD_BUG_ON(pgd_index(EFI_VA_END) != pgd_index(MODULES_END)); 255 BUILD_BUG_ON((EFI_VA_START & PGDIR_MASK) != 256 (EFI_VA_END & PGDIR_MASK)); 257 258 pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET); 259 pgd_k = pgd_offset_k(PAGE_OFFSET); 260 261 num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET); 262 memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries); 263 264 /* 265 * As with PGDs, we share all P4D entries apart from the one entry 266 * that covers the EFI runtime mapping space. 267 */ 268 BUILD_BUG_ON(p4d_index(EFI_VA_END) != p4d_index(MODULES_END)); 269 BUILD_BUG_ON((EFI_VA_START & P4D_MASK) != (EFI_VA_END & P4D_MASK)); 270 271 pgd_efi = efi_pgd + pgd_index(EFI_VA_END); 272 pgd_k = pgd_offset_k(EFI_VA_END); 273 p4d_efi = p4d_offset(pgd_efi, 0); 274 p4d_k = p4d_offset(pgd_k, 0); 275 276 num_entries = p4d_index(EFI_VA_END); 277 memcpy(p4d_efi, p4d_k, sizeof(p4d_t) * num_entries); 278 279 /* 280 * We share all the PUD entries apart from those that map the 281 * EFI regions. Copy around them. 282 */ 283 BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0); 284 BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0); 285 286 p4d_efi = p4d_offset(pgd_efi, EFI_VA_END); 287 p4d_k = p4d_offset(pgd_k, EFI_VA_END); 288 pud_efi = pud_offset(p4d_efi, 0); 289 pud_k = pud_offset(p4d_k, 0); 290 291 num_entries = pud_index(EFI_VA_END); 292 memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries); 293 294 pud_efi = pud_offset(p4d_efi, EFI_VA_START); 295 pud_k = pud_offset(p4d_k, EFI_VA_START); 296 297 num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START); 298 memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries); 299 } 300 301 /* 302 * Wrapper for slow_virt_to_phys() that handles NULL addresses. 303 */ 304 static inline phys_addr_t 305 virt_to_phys_or_null_size(void *va, unsigned long size) 306 { 307 bool bad_size; 308 309 if (!va) 310 return 0; 311 312 if (virt_addr_valid(va)) 313 return virt_to_phys(va); 314 315 /* 316 * A fully aligned variable on the stack is guaranteed not to 317 * cross a page bounary. Try to catch strings on the stack by 318 * checking that 'size' is a power of two. 319 */ 320 bad_size = size > PAGE_SIZE || !is_power_of_2(size); 321 322 WARN_ON(!IS_ALIGNED((unsigned long)va, size) || bad_size); 323 324 return slow_virt_to_phys(va); 325 } 326 327 #define virt_to_phys_or_null(addr) \ 328 virt_to_phys_or_null_size((addr), sizeof(*(addr))) 329 330 int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages) 331 { 332 unsigned long pfn, text, pf; 333 struct page *page; 334 unsigned npages; 335 pgd_t *pgd; 336 337 if (efi_enabled(EFI_OLD_MEMMAP)) 338 return 0; 339 340 /* 341 * Since the PGD is encrypted, set the encryption mask so that when 342 * this value is loaded into cr3 the PGD will be decrypted during 343 * the pagetable walk. 344 */ 345 efi_scratch.efi_pgt = (pgd_t *)__sme_pa(efi_pgd); 346 pgd = efi_pgd; 347 348 /* 349 * It can happen that the physical address of new_memmap lands in memory 350 * which is not mapped in the EFI page table. Therefore we need to go 351 * and ident-map those pages containing the map before calling 352 * phys_efi_set_virtual_address_map(). 353 */ 354 pfn = pa_memmap >> PAGE_SHIFT; 355 pf = _PAGE_NX | _PAGE_RW | _PAGE_ENC; 356 if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, pf)) { 357 pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap); 358 return 1; 359 } 360 361 efi_scratch.use_pgd = true; 362 363 /* 364 * Certain firmware versions are way too sentimential and still believe 365 * they are exclusive and unquestionable owners of the first physical page, 366 * even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY 367 * (but then write-access it later during SetVirtualAddressMap()). 368 * 369 * Create a 1:1 mapping for this page, to avoid triple faults during early 370 * boot with such firmware. We are free to hand this page to the BIOS, 371 * as trim_bios_range() will reserve the first page and isolate it away 372 * from memory allocators anyway. 373 */ 374 pf = _PAGE_RW; 375 if (sev_active()) 376 pf |= _PAGE_ENC; 377 378 if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, pf)) { 379 pr_err("Failed to create 1:1 mapping for the first page!\n"); 380 return 1; 381 } 382 383 /* 384 * When making calls to the firmware everything needs to be 1:1 385 * mapped and addressable with 32-bit pointers. Map the kernel 386 * text and allocate a new stack because we can't rely on the 387 * stack pointer being < 4GB. 388 */ 389 if (!IS_ENABLED(CONFIG_EFI_MIXED) || efi_is_native()) 390 return 0; 391 392 page = alloc_page(GFP_KERNEL|__GFP_DMA32); 393 if (!page) 394 panic("Unable to allocate EFI runtime stack < 4GB\n"); 395 396 efi_scratch.phys_stack = virt_to_phys(page_address(page)); 397 efi_scratch.phys_stack += PAGE_SIZE; /* stack grows down */ 398 399 npages = (_etext - _text) >> PAGE_SHIFT; 400 text = __pa(_text); 401 pfn = text >> PAGE_SHIFT; 402 403 pf = _PAGE_RW | _PAGE_ENC; 404 if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, pf)) { 405 pr_err("Failed to map kernel text 1:1\n"); 406 return 1; 407 } 408 409 return 0; 410 } 411 412 static void __init __map_region(efi_memory_desc_t *md, u64 va) 413 { 414 unsigned long flags = _PAGE_RW; 415 unsigned long pfn; 416 pgd_t *pgd = efi_pgd; 417 418 if (!(md->attribute & EFI_MEMORY_WB)) 419 flags |= _PAGE_PCD; 420 421 if (sev_active()) 422 flags |= _PAGE_ENC; 423 424 pfn = md->phys_addr >> PAGE_SHIFT; 425 if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags)) 426 pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n", 427 md->phys_addr, va); 428 } 429 430 void __init efi_map_region(efi_memory_desc_t *md) 431 { 432 unsigned long size = md->num_pages << PAGE_SHIFT; 433 u64 pa = md->phys_addr; 434 435 if (efi_enabled(EFI_OLD_MEMMAP)) 436 return old_map_region(md); 437 438 /* 439 * Make sure the 1:1 mappings are present as a catch-all for b0rked 440 * firmware which doesn't update all internal pointers after switching 441 * to virtual mode and would otherwise crap on us. 442 */ 443 __map_region(md, md->phys_addr); 444 445 /* 446 * Enforce the 1:1 mapping as the default virtual address when 447 * booting in EFI mixed mode, because even though we may be 448 * running a 64-bit kernel, the firmware may only be 32-bit. 449 */ 450 if (!efi_is_native () && IS_ENABLED(CONFIG_EFI_MIXED)) { 451 md->virt_addr = md->phys_addr; 452 return; 453 } 454 455 efi_va -= size; 456 457 /* Is PA 2M-aligned? */ 458 if (!(pa & (PMD_SIZE - 1))) { 459 efi_va &= PMD_MASK; 460 } else { 461 u64 pa_offset = pa & (PMD_SIZE - 1); 462 u64 prev_va = efi_va; 463 464 /* get us the same offset within this 2M page */ 465 efi_va = (efi_va & PMD_MASK) + pa_offset; 466 467 if (efi_va > prev_va) 468 efi_va -= PMD_SIZE; 469 } 470 471 if (efi_va < EFI_VA_END) { 472 pr_warn(FW_WARN "VA address range overflow!\n"); 473 return; 474 } 475 476 /* Do the VA map */ 477 __map_region(md, efi_va); 478 md->virt_addr = efi_va; 479 } 480 481 /* 482 * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges. 483 * md->virt_addr is the original virtual address which had been mapped in kexec 484 * 1st kernel. 485 */ 486 void __init efi_map_region_fixed(efi_memory_desc_t *md) 487 { 488 __map_region(md, md->phys_addr); 489 __map_region(md, md->virt_addr); 490 } 491 492 void __iomem *__init efi_ioremap(unsigned long phys_addr, unsigned long size, 493 u32 type, u64 attribute) 494 { 495 unsigned long last_map_pfn; 496 497 if (type == EFI_MEMORY_MAPPED_IO) 498 return ioremap(phys_addr, size); 499 500 last_map_pfn = init_memory_mapping(phys_addr, phys_addr + size); 501 if ((last_map_pfn << PAGE_SHIFT) < phys_addr + size) { 502 unsigned long top = last_map_pfn << PAGE_SHIFT; 503 efi_ioremap(top, size - (top - phys_addr), type, attribute); 504 } 505 506 if (!(attribute & EFI_MEMORY_WB)) 507 efi_memory_uc((u64)(unsigned long)__va(phys_addr), size); 508 509 return (void __iomem *)__va(phys_addr); 510 } 511 512 void __init parse_efi_setup(u64 phys_addr, u32 data_len) 513 { 514 efi_setup = phys_addr + sizeof(struct setup_data); 515 } 516 517 static int __init efi_update_mappings(efi_memory_desc_t *md, unsigned long pf) 518 { 519 unsigned long pfn; 520 pgd_t *pgd = efi_pgd; 521 int err1, err2; 522 523 /* Update the 1:1 mapping */ 524 pfn = md->phys_addr >> PAGE_SHIFT; 525 err1 = kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf); 526 if (err1) { 527 pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n", 528 md->phys_addr, md->virt_addr); 529 } 530 531 err2 = kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf); 532 if (err2) { 533 pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n", 534 md->phys_addr, md->virt_addr); 535 } 536 537 return err1 || err2; 538 } 539 540 static int __init efi_update_mem_attr(struct mm_struct *mm, efi_memory_desc_t *md) 541 { 542 unsigned long pf = 0; 543 544 if (md->attribute & EFI_MEMORY_XP) 545 pf |= _PAGE_NX; 546 547 if (!(md->attribute & EFI_MEMORY_RO)) 548 pf |= _PAGE_RW; 549 550 if (sev_active()) 551 pf |= _PAGE_ENC; 552 553 return efi_update_mappings(md, pf); 554 } 555 556 void __init efi_runtime_update_mappings(void) 557 { 558 efi_memory_desc_t *md; 559 560 if (efi_enabled(EFI_OLD_MEMMAP)) { 561 if (__supported_pte_mask & _PAGE_NX) 562 runtime_code_page_mkexec(); 563 return; 564 } 565 566 /* 567 * Use the EFI Memory Attribute Table for mapping permissions if it 568 * exists, since it is intended to supersede EFI_PROPERTIES_TABLE. 569 */ 570 if (efi_enabled(EFI_MEM_ATTR)) { 571 efi_memattr_apply_permissions(NULL, efi_update_mem_attr); 572 return; 573 } 574 575 /* 576 * EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace 577 * EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update 578 * permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not 579 * published by the firmware. Even if we find a buggy implementation of 580 * EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to 581 * EFI_PROPERTIES_TABLE, because of the same reason. 582 */ 583 584 if (!efi_enabled(EFI_NX_PE_DATA)) 585 return; 586 587 for_each_efi_memory_desc(md) { 588 unsigned long pf = 0; 589 590 if (!(md->attribute & EFI_MEMORY_RUNTIME)) 591 continue; 592 593 if (!(md->attribute & EFI_MEMORY_WB)) 594 pf |= _PAGE_PCD; 595 596 if ((md->attribute & EFI_MEMORY_XP) || 597 (md->type == EFI_RUNTIME_SERVICES_DATA)) 598 pf |= _PAGE_NX; 599 600 if (!(md->attribute & EFI_MEMORY_RO) && 601 (md->type != EFI_RUNTIME_SERVICES_CODE)) 602 pf |= _PAGE_RW; 603 604 if (sev_active()) 605 pf |= _PAGE_ENC; 606 607 efi_update_mappings(md, pf); 608 } 609 } 610 611 void __init efi_dump_pagetable(void) 612 { 613 #ifdef CONFIG_EFI_PGT_DUMP 614 if (efi_enabled(EFI_OLD_MEMMAP)) 615 ptdump_walk_pgd_level(NULL, swapper_pg_dir); 616 else 617 ptdump_walk_pgd_level(NULL, efi_pgd); 618 #endif 619 } 620 621 #ifdef CONFIG_EFI_MIXED 622 extern efi_status_t efi64_thunk(u32, ...); 623 624 #define runtime_service32(func) \ 625 ({ \ 626 u32 table = (u32)(unsigned long)efi.systab; \ 627 u32 *rt, *___f; \ 628 \ 629 rt = (u32 *)(table + offsetof(efi_system_table_32_t, runtime)); \ 630 ___f = (u32 *)(*rt + offsetof(efi_runtime_services_32_t, func)); \ 631 *___f; \ 632 }) 633 634 /* 635 * Switch to the EFI page tables early so that we can access the 1:1 636 * runtime services mappings which are not mapped in any other page 637 * tables. This function must be called before runtime_service32(). 638 * 639 * Also, disable interrupts because the IDT points to 64-bit handlers, 640 * which aren't going to function correctly when we switch to 32-bit. 641 */ 642 #define efi_thunk(f, ...) \ 643 ({ \ 644 efi_status_t __s; \ 645 unsigned long __flags; \ 646 u32 __func; \ 647 \ 648 local_irq_save(__flags); \ 649 arch_efi_call_virt_setup(); \ 650 \ 651 __func = runtime_service32(f); \ 652 __s = efi64_thunk(__func, __VA_ARGS__); \ 653 \ 654 arch_efi_call_virt_teardown(); \ 655 local_irq_restore(__flags); \ 656 \ 657 __s; \ 658 }) 659 660 efi_status_t efi_thunk_set_virtual_address_map( 661 void *phys_set_virtual_address_map, 662 unsigned long memory_map_size, 663 unsigned long descriptor_size, 664 u32 descriptor_version, 665 efi_memory_desc_t *virtual_map) 666 { 667 efi_status_t status; 668 unsigned long flags; 669 u32 func; 670 671 efi_sync_low_kernel_mappings(); 672 local_irq_save(flags); 673 674 efi_scratch.prev_cr3 = __read_cr3(); 675 write_cr3((unsigned long)efi_scratch.efi_pgt); 676 __flush_tlb_all(); 677 678 func = (u32)(unsigned long)phys_set_virtual_address_map; 679 status = efi64_thunk(func, memory_map_size, descriptor_size, 680 descriptor_version, virtual_map); 681 682 write_cr3(efi_scratch.prev_cr3); 683 __flush_tlb_all(); 684 local_irq_restore(flags); 685 686 return status; 687 } 688 689 static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc) 690 { 691 efi_status_t status; 692 u32 phys_tm, phys_tc; 693 694 spin_lock(&rtc_lock); 695 696 phys_tm = virt_to_phys_or_null(tm); 697 phys_tc = virt_to_phys_or_null(tc); 698 699 status = efi_thunk(get_time, phys_tm, phys_tc); 700 701 spin_unlock(&rtc_lock); 702 703 return status; 704 } 705 706 static efi_status_t efi_thunk_set_time(efi_time_t *tm) 707 { 708 efi_status_t status; 709 u32 phys_tm; 710 711 spin_lock(&rtc_lock); 712 713 phys_tm = virt_to_phys_or_null(tm); 714 715 status = efi_thunk(set_time, phys_tm); 716 717 spin_unlock(&rtc_lock); 718 719 return status; 720 } 721 722 static efi_status_t 723 efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending, 724 efi_time_t *tm) 725 { 726 efi_status_t status; 727 u32 phys_enabled, phys_pending, phys_tm; 728 729 spin_lock(&rtc_lock); 730 731 phys_enabled = virt_to_phys_or_null(enabled); 732 phys_pending = virt_to_phys_or_null(pending); 733 phys_tm = virt_to_phys_or_null(tm); 734 735 status = efi_thunk(get_wakeup_time, phys_enabled, 736 phys_pending, phys_tm); 737 738 spin_unlock(&rtc_lock); 739 740 return status; 741 } 742 743 static efi_status_t 744 efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm) 745 { 746 efi_status_t status; 747 u32 phys_tm; 748 749 spin_lock(&rtc_lock); 750 751 phys_tm = virt_to_phys_or_null(tm); 752 753 status = efi_thunk(set_wakeup_time, enabled, phys_tm); 754 755 spin_unlock(&rtc_lock); 756 757 return status; 758 } 759 760 static unsigned long efi_name_size(efi_char16_t *name) 761 { 762 return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1; 763 } 764 765 static efi_status_t 766 efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor, 767 u32 *attr, unsigned long *data_size, void *data) 768 { 769 efi_status_t status; 770 u32 phys_name, phys_vendor, phys_attr; 771 u32 phys_data_size, phys_data; 772 773 phys_data_size = virt_to_phys_or_null(data_size); 774 phys_vendor = virt_to_phys_or_null(vendor); 775 phys_name = virt_to_phys_or_null_size(name, efi_name_size(name)); 776 phys_attr = virt_to_phys_or_null(attr); 777 phys_data = virt_to_phys_or_null_size(data, *data_size); 778 779 status = efi_thunk(get_variable, phys_name, phys_vendor, 780 phys_attr, phys_data_size, phys_data); 781 782 return status; 783 } 784 785 static efi_status_t 786 efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor, 787 u32 attr, unsigned long data_size, void *data) 788 { 789 u32 phys_name, phys_vendor, phys_data; 790 efi_status_t status; 791 792 phys_name = virt_to_phys_or_null_size(name, efi_name_size(name)); 793 phys_vendor = virt_to_phys_or_null(vendor); 794 phys_data = virt_to_phys_or_null_size(data, data_size); 795 796 /* If data_size is > sizeof(u32) we've got problems */ 797 status = efi_thunk(set_variable, phys_name, phys_vendor, 798 attr, data_size, phys_data); 799 800 return status; 801 } 802 803 static efi_status_t 804 efi_thunk_get_next_variable(unsigned long *name_size, 805 efi_char16_t *name, 806 efi_guid_t *vendor) 807 { 808 efi_status_t status; 809 u32 phys_name_size, phys_name, phys_vendor; 810 811 phys_name_size = virt_to_phys_or_null(name_size); 812 phys_vendor = virt_to_phys_or_null(vendor); 813 phys_name = virt_to_phys_or_null_size(name, *name_size); 814 815 status = efi_thunk(get_next_variable, phys_name_size, 816 phys_name, phys_vendor); 817 818 return status; 819 } 820 821 static efi_status_t 822 efi_thunk_get_next_high_mono_count(u32 *count) 823 { 824 efi_status_t status; 825 u32 phys_count; 826 827 phys_count = virt_to_phys_or_null(count); 828 status = efi_thunk(get_next_high_mono_count, phys_count); 829 830 return status; 831 } 832 833 static void 834 efi_thunk_reset_system(int reset_type, efi_status_t status, 835 unsigned long data_size, efi_char16_t *data) 836 { 837 u32 phys_data; 838 839 phys_data = virt_to_phys_or_null_size(data, data_size); 840 841 efi_thunk(reset_system, reset_type, status, data_size, phys_data); 842 } 843 844 static efi_status_t 845 efi_thunk_update_capsule(efi_capsule_header_t **capsules, 846 unsigned long count, unsigned long sg_list) 847 { 848 /* 849 * To properly support this function we would need to repackage 850 * 'capsules' because the firmware doesn't understand 64-bit 851 * pointers. 852 */ 853 return EFI_UNSUPPORTED; 854 } 855 856 static efi_status_t 857 efi_thunk_query_variable_info(u32 attr, u64 *storage_space, 858 u64 *remaining_space, 859 u64 *max_variable_size) 860 { 861 efi_status_t status; 862 u32 phys_storage, phys_remaining, phys_max; 863 864 if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION) 865 return EFI_UNSUPPORTED; 866 867 phys_storage = virt_to_phys_or_null(storage_space); 868 phys_remaining = virt_to_phys_or_null(remaining_space); 869 phys_max = virt_to_phys_or_null(max_variable_size); 870 871 status = efi_thunk(query_variable_info, attr, phys_storage, 872 phys_remaining, phys_max); 873 874 return status; 875 } 876 877 static efi_status_t 878 efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules, 879 unsigned long count, u64 *max_size, 880 int *reset_type) 881 { 882 /* 883 * To properly support this function we would need to repackage 884 * 'capsules' because the firmware doesn't understand 64-bit 885 * pointers. 886 */ 887 return EFI_UNSUPPORTED; 888 } 889 890 void efi_thunk_runtime_setup(void) 891 { 892 efi.get_time = efi_thunk_get_time; 893 efi.set_time = efi_thunk_set_time; 894 efi.get_wakeup_time = efi_thunk_get_wakeup_time; 895 efi.set_wakeup_time = efi_thunk_set_wakeup_time; 896 efi.get_variable = efi_thunk_get_variable; 897 efi.get_next_variable = efi_thunk_get_next_variable; 898 efi.set_variable = efi_thunk_set_variable; 899 efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count; 900 efi.reset_system = efi_thunk_reset_system; 901 efi.query_variable_info = efi_thunk_query_variable_info; 902 efi.update_capsule = efi_thunk_update_capsule; 903 efi.query_capsule_caps = efi_thunk_query_capsule_caps; 904 } 905 #endif /* CONFIG_EFI_MIXED */ 906