xref: /openbmc/linux/arch/x86/platform/efi/efi_64.c (revision 2f828fb2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * x86_64 specific EFI support functions
4  * Based on Extensible Firmware Interface Specification version 1.0
5  *
6  * Copyright (C) 2005-2008 Intel Co.
7  *	Fenghua Yu <fenghua.yu@intel.com>
8  *	Bibo Mao <bibo.mao@intel.com>
9  *	Chandramouli Narayanan <mouli@linux.intel.com>
10  *	Huang Ying <ying.huang@intel.com>
11  *
12  * Code to convert EFI to E820 map has been implemented in elilo bootloader
13  * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table
14  * is setup appropriately for EFI runtime code.
15  * - mouli 06/14/2007.
16  *
17  */
18 
19 #define pr_fmt(fmt) "efi: " fmt
20 
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/mm.h>
24 #include <linux/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/bootmem.h>
27 #include <linux/ioport.h>
28 #include <linux/init.h>
29 #include <linux/mc146818rtc.h>
30 #include <linux/efi.h>
31 #include <linux/uaccess.h>
32 #include <linux/io.h>
33 #include <linux/reboot.h>
34 #include <linux/slab.h>
35 #include <linux/ucs2_string.h>
36 #include <linux/mem_encrypt.h>
37 
38 #include <asm/setup.h>
39 #include <asm/page.h>
40 #include <asm/e820/api.h>
41 #include <asm/pgtable.h>
42 #include <asm/tlbflush.h>
43 #include <asm/proto.h>
44 #include <asm/efi.h>
45 #include <asm/cacheflush.h>
46 #include <asm/fixmap.h>
47 #include <asm/realmode.h>
48 #include <asm/time.h>
49 #include <asm/pgalloc.h>
50 
51 /*
52  * We allocate runtime services regions top-down, starting from -4G, i.e.
53  * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G.
54  */
55 static u64 efi_va = EFI_VA_START;
56 
57 struct efi_scratch efi_scratch;
58 
59 static void __init early_code_mapping_set_exec(int executable)
60 {
61 	efi_memory_desc_t *md;
62 
63 	if (!(__supported_pte_mask & _PAGE_NX))
64 		return;
65 
66 	/* Make EFI service code area executable */
67 	for_each_efi_memory_desc(md) {
68 		if (md->type == EFI_RUNTIME_SERVICES_CODE ||
69 		    md->type == EFI_BOOT_SERVICES_CODE)
70 			efi_set_executable(md, executable);
71 	}
72 }
73 
74 pgd_t * __init efi_call_phys_prolog(void)
75 {
76 	unsigned long vaddr, addr_pgd, addr_p4d, addr_pud;
77 	pgd_t *save_pgd, *pgd_k, *pgd_efi;
78 	p4d_t *p4d, *p4d_k, *p4d_efi;
79 	pud_t *pud;
80 
81 	int pgd;
82 	int n_pgds, i, j;
83 
84 	if (!efi_enabled(EFI_OLD_MEMMAP)) {
85 		save_pgd = (pgd_t *)__read_cr3();
86 		write_cr3((unsigned long)efi_scratch.efi_pgt);
87 		goto out;
88 	}
89 
90 	early_code_mapping_set_exec(1);
91 
92 	n_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT), PGDIR_SIZE);
93 	save_pgd = kmalloc_array(n_pgds, sizeof(*save_pgd), GFP_KERNEL);
94 
95 	/*
96 	 * Build 1:1 identity mapping for efi=old_map usage. Note that
97 	 * PAGE_OFFSET is PGDIR_SIZE aligned when KASLR is disabled, while
98 	 * it is PUD_SIZE ALIGNED with KASLR enabled. So for a given physical
99 	 * address X, the pud_index(X) != pud_index(__va(X)), we can only copy
100 	 * PUD entry of __va(X) to fill in pud entry of X to build 1:1 mapping.
101 	 * This means here we can only reuse the PMD tables of the direct mapping.
102 	 */
103 	for (pgd = 0; pgd < n_pgds; pgd++) {
104 		addr_pgd = (unsigned long)(pgd * PGDIR_SIZE);
105 		vaddr = (unsigned long)__va(pgd * PGDIR_SIZE);
106 		pgd_efi = pgd_offset_k(addr_pgd);
107 		save_pgd[pgd] = *pgd_efi;
108 
109 		p4d = p4d_alloc(&init_mm, pgd_efi, addr_pgd);
110 		if (!p4d) {
111 			pr_err("Failed to allocate p4d table!\n");
112 			goto out;
113 		}
114 
115 		for (i = 0; i < PTRS_PER_P4D; i++) {
116 			addr_p4d = addr_pgd + i * P4D_SIZE;
117 			p4d_efi = p4d + p4d_index(addr_p4d);
118 
119 			pud = pud_alloc(&init_mm, p4d_efi, addr_p4d);
120 			if (!pud) {
121 				pr_err("Failed to allocate pud table!\n");
122 				goto out;
123 			}
124 
125 			for (j = 0; j < PTRS_PER_PUD; j++) {
126 				addr_pud = addr_p4d + j * PUD_SIZE;
127 
128 				if (addr_pud > (max_pfn << PAGE_SHIFT))
129 					break;
130 
131 				vaddr = (unsigned long)__va(addr_pud);
132 
133 				pgd_k = pgd_offset_k(vaddr);
134 				p4d_k = p4d_offset(pgd_k, vaddr);
135 				pud[j] = *pud_offset(p4d_k, vaddr);
136 			}
137 		}
138 	}
139 out:
140 	__flush_tlb_all();
141 
142 	return save_pgd;
143 }
144 
145 void __init efi_call_phys_epilog(pgd_t *save_pgd)
146 {
147 	/*
148 	 * After the lock is released, the original page table is restored.
149 	 */
150 	int pgd_idx, i;
151 	int nr_pgds;
152 	pgd_t *pgd;
153 	p4d_t *p4d;
154 	pud_t *pud;
155 
156 	if (!efi_enabled(EFI_OLD_MEMMAP)) {
157 		write_cr3((unsigned long)save_pgd);
158 		__flush_tlb_all();
159 		return;
160 	}
161 
162 	nr_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT) , PGDIR_SIZE);
163 
164 	for (pgd_idx = 0; pgd_idx < nr_pgds; pgd_idx++) {
165 		pgd = pgd_offset_k(pgd_idx * PGDIR_SIZE);
166 		set_pgd(pgd_offset_k(pgd_idx * PGDIR_SIZE), save_pgd[pgd_idx]);
167 
168 		if (!(pgd_val(*pgd) & _PAGE_PRESENT))
169 			continue;
170 
171 		for (i = 0; i < PTRS_PER_P4D; i++) {
172 			p4d = p4d_offset(pgd,
173 					 pgd_idx * PGDIR_SIZE + i * P4D_SIZE);
174 
175 			if (!(p4d_val(*p4d) & _PAGE_PRESENT))
176 				continue;
177 
178 			pud = (pud_t *)p4d_page_vaddr(*p4d);
179 			pud_free(&init_mm, pud);
180 		}
181 
182 		p4d = (p4d_t *)pgd_page_vaddr(*pgd);
183 		p4d_free(&init_mm, p4d);
184 	}
185 
186 	kfree(save_pgd);
187 
188 	__flush_tlb_all();
189 	early_code_mapping_set_exec(0);
190 }
191 
192 static pgd_t *efi_pgd;
193 
194 /*
195  * We need our own copy of the higher levels of the page tables
196  * because we want to avoid inserting EFI region mappings (EFI_VA_END
197  * to EFI_VA_START) into the standard kernel page tables. Everything
198  * else can be shared, see efi_sync_low_kernel_mappings().
199  */
200 int __init efi_alloc_page_tables(void)
201 {
202 	pgd_t *pgd;
203 	p4d_t *p4d;
204 	pud_t *pud;
205 	gfp_t gfp_mask;
206 
207 	if (efi_enabled(EFI_OLD_MEMMAP))
208 		return 0;
209 
210 	gfp_mask = GFP_KERNEL | __GFP_ZERO;
211 	efi_pgd = (pgd_t *)__get_free_page(gfp_mask);
212 	if (!efi_pgd)
213 		return -ENOMEM;
214 
215 	pgd = efi_pgd + pgd_index(EFI_VA_END);
216 	p4d = p4d_alloc(&init_mm, pgd, EFI_VA_END);
217 	if (!p4d) {
218 		free_page((unsigned long)efi_pgd);
219 		return -ENOMEM;
220 	}
221 
222 	pud = pud_alloc(&init_mm, p4d, EFI_VA_END);
223 	if (!pud) {
224 		if (CONFIG_PGTABLE_LEVELS > 4)
225 			free_page((unsigned long) pgd_page_vaddr(*pgd));
226 		free_page((unsigned long)efi_pgd);
227 		return -ENOMEM;
228 	}
229 
230 	return 0;
231 }
232 
233 /*
234  * Add low kernel mappings for passing arguments to EFI functions.
235  */
236 void efi_sync_low_kernel_mappings(void)
237 {
238 	unsigned num_entries;
239 	pgd_t *pgd_k, *pgd_efi;
240 	p4d_t *p4d_k, *p4d_efi;
241 	pud_t *pud_k, *pud_efi;
242 
243 	if (efi_enabled(EFI_OLD_MEMMAP))
244 		return;
245 
246 	/*
247 	 * We can share all PGD entries apart from the one entry that
248 	 * covers the EFI runtime mapping space.
249 	 *
250 	 * Make sure the EFI runtime region mappings are guaranteed to
251 	 * only span a single PGD entry and that the entry also maps
252 	 * other important kernel regions.
253 	 */
254 	BUILD_BUG_ON(pgd_index(EFI_VA_END) != pgd_index(MODULES_END));
255 	BUILD_BUG_ON((EFI_VA_START & PGDIR_MASK) !=
256 			(EFI_VA_END & PGDIR_MASK));
257 
258 	pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET);
259 	pgd_k = pgd_offset_k(PAGE_OFFSET);
260 
261 	num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET);
262 	memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries);
263 
264 	/*
265 	 * As with PGDs, we share all P4D entries apart from the one entry
266 	 * that covers the EFI runtime mapping space.
267 	 */
268 	BUILD_BUG_ON(p4d_index(EFI_VA_END) != p4d_index(MODULES_END));
269 	BUILD_BUG_ON((EFI_VA_START & P4D_MASK) != (EFI_VA_END & P4D_MASK));
270 
271 	pgd_efi = efi_pgd + pgd_index(EFI_VA_END);
272 	pgd_k = pgd_offset_k(EFI_VA_END);
273 	p4d_efi = p4d_offset(pgd_efi, 0);
274 	p4d_k = p4d_offset(pgd_k, 0);
275 
276 	num_entries = p4d_index(EFI_VA_END);
277 	memcpy(p4d_efi, p4d_k, sizeof(p4d_t) * num_entries);
278 
279 	/*
280 	 * We share all the PUD entries apart from those that map the
281 	 * EFI regions. Copy around them.
282 	 */
283 	BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0);
284 	BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0);
285 
286 	p4d_efi = p4d_offset(pgd_efi, EFI_VA_END);
287 	p4d_k = p4d_offset(pgd_k, EFI_VA_END);
288 	pud_efi = pud_offset(p4d_efi, 0);
289 	pud_k = pud_offset(p4d_k, 0);
290 
291 	num_entries = pud_index(EFI_VA_END);
292 	memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
293 
294 	pud_efi = pud_offset(p4d_efi, EFI_VA_START);
295 	pud_k = pud_offset(p4d_k, EFI_VA_START);
296 
297 	num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START);
298 	memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
299 }
300 
301 /*
302  * Wrapper for slow_virt_to_phys() that handles NULL addresses.
303  */
304 static inline phys_addr_t
305 virt_to_phys_or_null_size(void *va, unsigned long size)
306 {
307 	bool bad_size;
308 
309 	if (!va)
310 		return 0;
311 
312 	if (virt_addr_valid(va))
313 		return virt_to_phys(va);
314 
315 	/*
316 	 * A fully aligned variable on the stack is guaranteed not to
317 	 * cross a page bounary. Try to catch strings on the stack by
318 	 * checking that 'size' is a power of two.
319 	 */
320 	bad_size = size > PAGE_SIZE || !is_power_of_2(size);
321 
322 	WARN_ON(!IS_ALIGNED((unsigned long)va, size) || bad_size);
323 
324 	return slow_virt_to_phys(va);
325 }
326 
327 #define virt_to_phys_or_null(addr)				\
328 	virt_to_phys_or_null_size((addr), sizeof(*(addr)))
329 
330 int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
331 {
332 	unsigned long pfn, text, pf;
333 	struct page *page;
334 	unsigned npages;
335 	pgd_t *pgd;
336 
337 	if (efi_enabled(EFI_OLD_MEMMAP))
338 		return 0;
339 
340 	/*
341 	 * Since the PGD is encrypted, set the encryption mask so that when
342 	 * this value is loaded into cr3 the PGD will be decrypted during
343 	 * the pagetable walk.
344 	 */
345 	efi_scratch.efi_pgt = (pgd_t *)__sme_pa(efi_pgd);
346 	pgd = efi_pgd;
347 
348 	/*
349 	 * It can happen that the physical address of new_memmap lands in memory
350 	 * which is not mapped in the EFI page table. Therefore we need to go
351 	 * and ident-map those pages containing the map before calling
352 	 * phys_efi_set_virtual_address_map().
353 	 */
354 	pfn = pa_memmap >> PAGE_SHIFT;
355 	pf = _PAGE_NX | _PAGE_RW | _PAGE_ENC;
356 	if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, pf)) {
357 		pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap);
358 		return 1;
359 	}
360 
361 	efi_scratch.use_pgd = true;
362 
363 	/*
364 	 * Certain firmware versions are way too sentimential and still believe
365 	 * they are exclusive and unquestionable owners of the first physical page,
366 	 * even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY
367 	 * (but then write-access it later during SetVirtualAddressMap()).
368 	 *
369 	 * Create a 1:1 mapping for this page, to avoid triple faults during early
370 	 * boot with such firmware. We are free to hand this page to the BIOS,
371 	 * as trim_bios_range() will reserve the first page and isolate it away
372 	 * from memory allocators anyway.
373 	 */
374 	pf = _PAGE_RW;
375 	if (sev_active())
376 		pf |= _PAGE_ENC;
377 
378 	if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, pf)) {
379 		pr_err("Failed to create 1:1 mapping for the first page!\n");
380 		return 1;
381 	}
382 
383 	/*
384 	 * When making calls to the firmware everything needs to be 1:1
385 	 * mapped and addressable with 32-bit pointers. Map the kernel
386 	 * text and allocate a new stack because we can't rely on the
387 	 * stack pointer being < 4GB.
388 	 */
389 	if (!IS_ENABLED(CONFIG_EFI_MIXED) || efi_is_native())
390 		return 0;
391 
392 	page = alloc_page(GFP_KERNEL|__GFP_DMA32);
393 	if (!page)
394 		panic("Unable to allocate EFI runtime stack < 4GB\n");
395 
396 	efi_scratch.phys_stack = virt_to_phys(page_address(page));
397 	efi_scratch.phys_stack += PAGE_SIZE; /* stack grows down */
398 
399 	npages = (_etext - _text) >> PAGE_SHIFT;
400 	text = __pa(_text);
401 	pfn = text >> PAGE_SHIFT;
402 
403 	pf = _PAGE_RW | _PAGE_ENC;
404 	if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, pf)) {
405 		pr_err("Failed to map kernel text 1:1\n");
406 		return 1;
407 	}
408 
409 	return 0;
410 }
411 
412 static void __init __map_region(efi_memory_desc_t *md, u64 va)
413 {
414 	unsigned long flags = _PAGE_RW;
415 	unsigned long pfn;
416 	pgd_t *pgd = efi_pgd;
417 
418 	if (!(md->attribute & EFI_MEMORY_WB))
419 		flags |= _PAGE_PCD;
420 
421 	if (sev_active())
422 		flags |= _PAGE_ENC;
423 
424 	pfn = md->phys_addr >> PAGE_SHIFT;
425 	if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags))
426 		pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
427 			   md->phys_addr, va);
428 }
429 
430 void __init efi_map_region(efi_memory_desc_t *md)
431 {
432 	unsigned long size = md->num_pages << PAGE_SHIFT;
433 	u64 pa = md->phys_addr;
434 
435 	if (efi_enabled(EFI_OLD_MEMMAP))
436 		return old_map_region(md);
437 
438 	/*
439 	 * Make sure the 1:1 mappings are present as a catch-all for b0rked
440 	 * firmware which doesn't update all internal pointers after switching
441 	 * to virtual mode and would otherwise crap on us.
442 	 */
443 	__map_region(md, md->phys_addr);
444 
445 	/*
446 	 * Enforce the 1:1 mapping as the default virtual address when
447 	 * booting in EFI mixed mode, because even though we may be
448 	 * running a 64-bit kernel, the firmware may only be 32-bit.
449 	 */
450 	if (!efi_is_native () && IS_ENABLED(CONFIG_EFI_MIXED)) {
451 		md->virt_addr = md->phys_addr;
452 		return;
453 	}
454 
455 	efi_va -= size;
456 
457 	/* Is PA 2M-aligned? */
458 	if (!(pa & (PMD_SIZE - 1))) {
459 		efi_va &= PMD_MASK;
460 	} else {
461 		u64 pa_offset = pa & (PMD_SIZE - 1);
462 		u64 prev_va = efi_va;
463 
464 		/* get us the same offset within this 2M page */
465 		efi_va = (efi_va & PMD_MASK) + pa_offset;
466 
467 		if (efi_va > prev_va)
468 			efi_va -= PMD_SIZE;
469 	}
470 
471 	if (efi_va < EFI_VA_END) {
472 		pr_warn(FW_WARN "VA address range overflow!\n");
473 		return;
474 	}
475 
476 	/* Do the VA map */
477 	__map_region(md, efi_va);
478 	md->virt_addr = efi_va;
479 }
480 
481 /*
482  * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges.
483  * md->virt_addr is the original virtual address which had been mapped in kexec
484  * 1st kernel.
485  */
486 void __init efi_map_region_fixed(efi_memory_desc_t *md)
487 {
488 	__map_region(md, md->phys_addr);
489 	__map_region(md, md->virt_addr);
490 }
491 
492 void __iomem *__init efi_ioremap(unsigned long phys_addr, unsigned long size,
493 				 u32 type, u64 attribute)
494 {
495 	unsigned long last_map_pfn;
496 
497 	if (type == EFI_MEMORY_MAPPED_IO)
498 		return ioremap(phys_addr, size);
499 
500 	last_map_pfn = init_memory_mapping(phys_addr, phys_addr + size);
501 	if ((last_map_pfn << PAGE_SHIFT) < phys_addr + size) {
502 		unsigned long top = last_map_pfn << PAGE_SHIFT;
503 		efi_ioremap(top, size - (top - phys_addr), type, attribute);
504 	}
505 
506 	if (!(attribute & EFI_MEMORY_WB))
507 		efi_memory_uc((u64)(unsigned long)__va(phys_addr), size);
508 
509 	return (void __iomem *)__va(phys_addr);
510 }
511 
512 void __init parse_efi_setup(u64 phys_addr, u32 data_len)
513 {
514 	efi_setup = phys_addr + sizeof(struct setup_data);
515 }
516 
517 static int __init efi_update_mappings(efi_memory_desc_t *md, unsigned long pf)
518 {
519 	unsigned long pfn;
520 	pgd_t *pgd = efi_pgd;
521 	int err1, err2;
522 
523 	/* Update the 1:1 mapping */
524 	pfn = md->phys_addr >> PAGE_SHIFT;
525 	err1 = kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf);
526 	if (err1) {
527 		pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n",
528 			   md->phys_addr, md->virt_addr);
529 	}
530 
531 	err2 = kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf);
532 	if (err2) {
533 		pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n",
534 			   md->phys_addr, md->virt_addr);
535 	}
536 
537 	return err1 || err2;
538 }
539 
540 static int __init efi_update_mem_attr(struct mm_struct *mm, efi_memory_desc_t *md)
541 {
542 	unsigned long pf = 0;
543 
544 	if (md->attribute & EFI_MEMORY_XP)
545 		pf |= _PAGE_NX;
546 
547 	if (!(md->attribute & EFI_MEMORY_RO))
548 		pf |= _PAGE_RW;
549 
550 	if (sev_active())
551 		pf |= _PAGE_ENC;
552 
553 	return efi_update_mappings(md, pf);
554 }
555 
556 void __init efi_runtime_update_mappings(void)
557 {
558 	efi_memory_desc_t *md;
559 
560 	if (efi_enabled(EFI_OLD_MEMMAP)) {
561 		if (__supported_pte_mask & _PAGE_NX)
562 			runtime_code_page_mkexec();
563 		return;
564 	}
565 
566 	/*
567 	 * Use the EFI Memory Attribute Table for mapping permissions if it
568 	 * exists, since it is intended to supersede EFI_PROPERTIES_TABLE.
569 	 */
570 	if (efi_enabled(EFI_MEM_ATTR)) {
571 		efi_memattr_apply_permissions(NULL, efi_update_mem_attr);
572 		return;
573 	}
574 
575 	/*
576 	 * EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace
577 	 * EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update
578 	 * permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not
579 	 * published by the firmware. Even if we find a buggy implementation of
580 	 * EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to
581 	 * EFI_PROPERTIES_TABLE, because of the same reason.
582 	 */
583 
584 	if (!efi_enabled(EFI_NX_PE_DATA))
585 		return;
586 
587 	for_each_efi_memory_desc(md) {
588 		unsigned long pf = 0;
589 
590 		if (!(md->attribute & EFI_MEMORY_RUNTIME))
591 			continue;
592 
593 		if (!(md->attribute & EFI_MEMORY_WB))
594 			pf |= _PAGE_PCD;
595 
596 		if ((md->attribute & EFI_MEMORY_XP) ||
597 			(md->type == EFI_RUNTIME_SERVICES_DATA))
598 			pf |= _PAGE_NX;
599 
600 		if (!(md->attribute & EFI_MEMORY_RO) &&
601 			(md->type != EFI_RUNTIME_SERVICES_CODE))
602 			pf |= _PAGE_RW;
603 
604 		if (sev_active())
605 			pf |= _PAGE_ENC;
606 
607 		efi_update_mappings(md, pf);
608 	}
609 }
610 
611 void __init efi_dump_pagetable(void)
612 {
613 #ifdef CONFIG_EFI_PGT_DUMP
614 	if (efi_enabled(EFI_OLD_MEMMAP))
615 		ptdump_walk_pgd_level(NULL, swapper_pg_dir);
616 	else
617 		ptdump_walk_pgd_level(NULL, efi_pgd);
618 #endif
619 }
620 
621 #ifdef CONFIG_EFI_MIXED
622 extern efi_status_t efi64_thunk(u32, ...);
623 
624 #define runtime_service32(func)						 \
625 ({									 \
626 	u32 table = (u32)(unsigned long)efi.systab;			 \
627 	u32 *rt, *___f;							 \
628 									 \
629 	rt = (u32 *)(table + offsetof(efi_system_table_32_t, runtime));	 \
630 	___f = (u32 *)(*rt + offsetof(efi_runtime_services_32_t, func)); \
631 	*___f;								 \
632 })
633 
634 /*
635  * Switch to the EFI page tables early so that we can access the 1:1
636  * runtime services mappings which are not mapped in any other page
637  * tables. This function must be called before runtime_service32().
638  *
639  * Also, disable interrupts because the IDT points to 64-bit handlers,
640  * which aren't going to function correctly when we switch to 32-bit.
641  */
642 #define efi_thunk(f, ...)						\
643 ({									\
644 	efi_status_t __s;						\
645 	unsigned long __flags;						\
646 	u32 __func;							\
647 									\
648 	local_irq_save(__flags);					\
649 	arch_efi_call_virt_setup();					\
650 									\
651 	__func = runtime_service32(f);					\
652 	__s = efi64_thunk(__func, __VA_ARGS__);				\
653 									\
654 	arch_efi_call_virt_teardown();					\
655 	local_irq_restore(__flags);					\
656 									\
657 	__s;								\
658 })
659 
660 efi_status_t efi_thunk_set_virtual_address_map(
661 	void *phys_set_virtual_address_map,
662 	unsigned long memory_map_size,
663 	unsigned long descriptor_size,
664 	u32 descriptor_version,
665 	efi_memory_desc_t *virtual_map)
666 {
667 	efi_status_t status;
668 	unsigned long flags;
669 	u32 func;
670 
671 	efi_sync_low_kernel_mappings();
672 	local_irq_save(flags);
673 
674 	efi_scratch.prev_cr3 = __read_cr3();
675 	write_cr3((unsigned long)efi_scratch.efi_pgt);
676 	__flush_tlb_all();
677 
678 	func = (u32)(unsigned long)phys_set_virtual_address_map;
679 	status = efi64_thunk(func, memory_map_size, descriptor_size,
680 			     descriptor_version, virtual_map);
681 
682 	write_cr3(efi_scratch.prev_cr3);
683 	__flush_tlb_all();
684 	local_irq_restore(flags);
685 
686 	return status;
687 }
688 
689 static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc)
690 {
691 	efi_status_t status;
692 	u32 phys_tm, phys_tc;
693 
694 	spin_lock(&rtc_lock);
695 
696 	phys_tm = virt_to_phys_or_null(tm);
697 	phys_tc = virt_to_phys_or_null(tc);
698 
699 	status = efi_thunk(get_time, phys_tm, phys_tc);
700 
701 	spin_unlock(&rtc_lock);
702 
703 	return status;
704 }
705 
706 static efi_status_t efi_thunk_set_time(efi_time_t *tm)
707 {
708 	efi_status_t status;
709 	u32 phys_tm;
710 
711 	spin_lock(&rtc_lock);
712 
713 	phys_tm = virt_to_phys_or_null(tm);
714 
715 	status = efi_thunk(set_time, phys_tm);
716 
717 	spin_unlock(&rtc_lock);
718 
719 	return status;
720 }
721 
722 static efi_status_t
723 efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending,
724 			  efi_time_t *tm)
725 {
726 	efi_status_t status;
727 	u32 phys_enabled, phys_pending, phys_tm;
728 
729 	spin_lock(&rtc_lock);
730 
731 	phys_enabled = virt_to_phys_or_null(enabled);
732 	phys_pending = virt_to_phys_or_null(pending);
733 	phys_tm = virt_to_phys_or_null(tm);
734 
735 	status = efi_thunk(get_wakeup_time, phys_enabled,
736 			     phys_pending, phys_tm);
737 
738 	spin_unlock(&rtc_lock);
739 
740 	return status;
741 }
742 
743 static efi_status_t
744 efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
745 {
746 	efi_status_t status;
747 	u32 phys_tm;
748 
749 	spin_lock(&rtc_lock);
750 
751 	phys_tm = virt_to_phys_or_null(tm);
752 
753 	status = efi_thunk(set_wakeup_time, enabled, phys_tm);
754 
755 	spin_unlock(&rtc_lock);
756 
757 	return status;
758 }
759 
760 static unsigned long efi_name_size(efi_char16_t *name)
761 {
762 	return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1;
763 }
764 
765 static efi_status_t
766 efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor,
767 		       u32 *attr, unsigned long *data_size, void *data)
768 {
769 	efi_status_t status;
770 	u32 phys_name, phys_vendor, phys_attr;
771 	u32 phys_data_size, phys_data;
772 
773 	phys_data_size = virt_to_phys_or_null(data_size);
774 	phys_vendor = virt_to_phys_or_null(vendor);
775 	phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
776 	phys_attr = virt_to_phys_or_null(attr);
777 	phys_data = virt_to_phys_or_null_size(data, *data_size);
778 
779 	status = efi_thunk(get_variable, phys_name, phys_vendor,
780 			   phys_attr, phys_data_size, phys_data);
781 
782 	return status;
783 }
784 
785 static efi_status_t
786 efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor,
787 		       u32 attr, unsigned long data_size, void *data)
788 {
789 	u32 phys_name, phys_vendor, phys_data;
790 	efi_status_t status;
791 
792 	phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
793 	phys_vendor = virt_to_phys_or_null(vendor);
794 	phys_data = virt_to_phys_or_null_size(data, data_size);
795 
796 	/* If data_size is > sizeof(u32) we've got problems */
797 	status = efi_thunk(set_variable, phys_name, phys_vendor,
798 			   attr, data_size, phys_data);
799 
800 	return status;
801 }
802 
803 static efi_status_t
804 efi_thunk_get_next_variable(unsigned long *name_size,
805 			    efi_char16_t *name,
806 			    efi_guid_t *vendor)
807 {
808 	efi_status_t status;
809 	u32 phys_name_size, phys_name, phys_vendor;
810 
811 	phys_name_size = virt_to_phys_or_null(name_size);
812 	phys_vendor = virt_to_phys_or_null(vendor);
813 	phys_name = virt_to_phys_or_null_size(name, *name_size);
814 
815 	status = efi_thunk(get_next_variable, phys_name_size,
816 			   phys_name, phys_vendor);
817 
818 	return status;
819 }
820 
821 static efi_status_t
822 efi_thunk_get_next_high_mono_count(u32 *count)
823 {
824 	efi_status_t status;
825 	u32 phys_count;
826 
827 	phys_count = virt_to_phys_or_null(count);
828 	status = efi_thunk(get_next_high_mono_count, phys_count);
829 
830 	return status;
831 }
832 
833 static void
834 efi_thunk_reset_system(int reset_type, efi_status_t status,
835 		       unsigned long data_size, efi_char16_t *data)
836 {
837 	u32 phys_data;
838 
839 	phys_data = virt_to_phys_or_null_size(data, data_size);
840 
841 	efi_thunk(reset_system, reset_type, status, data_size, phys_data);
842 }
843 
844 static efi_status_t
845 efi_thunk_update_capsule(efi_capsule_header_t **capsules,
846 			 unsigned long count, unsigned long sg_list)
847 {
848 	/*
849 	 * To properly support this function we would need to repackage
850 	 * 'capsules' because the firmware doesn't understand 64-bit
851 	 * pointers.
852 	 */
853 	return EFI_UNSUPPORTED;
854 }
855 
856 static efi_status_t
857 efi_thunk_query_variable_info(u32 attr, u64 *storage_space,
858 			      u64 *remaining_space,
859 			      u64 *max_variable_size)
860 {
861 	efi_status_t status;
862 	u32 phys_storage, phys_remaining, phys_max;
863 
864 	if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
865 		return EFI_UNSUPPORTED;
866 
867 	phys_storage = virt_to_phys_or_null(storage_space);
868 	phys_remaining = virt_to_phys_or_null(remaining_space);
869 	phys_max = virt_to_phys_or_null(max_variable_size);
870 
871 	status = efi_thunk(query_variable_info, attr, phys_storage,
872 			   phys_remaining, phys_max);
873 
874 	return status;
875 }
876 
877 static efi_status_t
878 efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules,
879 			     unsigned long count, u64 *max_size,
880 			     int *reset_type)
881 {
882 	/*
883 	 * To properly support this function we would need to repackage
884 	 * 'capsules' because the firmware doesn't understand 64-bit
885 	 * pointers.
886 	 */
887 	return EFI_UNSUPPORTED;
888 }
889 
890 void efi_thunk_runtime_setup(void)
891 {
892 	efi.get_time = efi_thunk_get_time;
893 	efi.set_time = efi_thunk_set_time;
894 	efi.get_wakeup_time = efi_thunk_get_wakeup_time;
895 	efi.set_wakeup_time = efi_thunk_set_wakeup_time;
896 	efi.get_variable = efi_thunk_get_variable;
897 	efi.get_next_variable = efi_thunk_get_next_variable;
898 	efi.set_variable = efi_thunk_set_variable;
899 	efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count;
900 	efi.reset_system = efi_thunk_reset_system;
901 	efi.query_variable_info = efi_thunk_query_variable_info;
902 	efi.update_capsule = efi_thunk_update_capsule;
903 	efi.query_capsule_caps = efi_thunk_query_capsule_caps;
904 }
905 #endif /* CONFIG_EFI_MIXED */
906