xref: /openbmc/linux/arch/x86/platform/efi/efi_64.c (revision 110e6f26)
1 /*
2  * x86_64 specific EFI support functions
3  * Based on Extensible Firmware Interface Specification version 1.0
4  *
5  * Copyright (C) 2005-2008 Intel Co.
6  *	Fenghua Yu <fenghua.yu@intel.com>
7  *	Bibo Mao <bibo.mao@intel.com>
8  *	Chandramouli Narayanan <mouli@linux.intel.com>
9  *	Huang Ying <ying.huang@intel.com>
10  *
11  * Code to convert EFI to E820 map has been implemented in elilo bootloader
12  * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table
13  * is setup appropriately for EFI runtime code.
14  * - mouli 06/14/2007.
15  *
16  */
17 
18 #define pr_fmt(fmt) "efi: " fmt
19 
20 #include <linux/kernel.h>
21 #include <linux/init.h>
22 #include <linux/mm.h>
23 #include <linux/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/bootmem.h>
26 #include <linux/ioport.h>
27 #include <linux/module.h>
28 #include <linux/efi.h>
29 #include <linux/uaccess.h>
30 #include <linux/io.h>
31 #include <linux/reboot.h>
32 #include <linux/slab.h>
33 
34 #include <asm/setup.h>
35 #include <asm/page.h>
36 #include <asm/e820.h>
37 #include <asm/pgtable.h>
38 #include <asm/tlbflush.h>
39 #include <asm/proto.h>
40 #include <asm/efi.h>
41 #include <asm/cacheflush.h>
42 #include <asm/fixmap.h>
43 #include <asm/realmode.h>
44 #include <asm/time.h>
45 #include <asm/pgalloc.h>
46 
47 /*
48  * We allocate runtime services regions bottom-up, starting from -4G, i.e.
49  * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G.
50  */
51 static u64 efi_va = EFI_VA_START;
52 
53 struct efi_scratch efi_scratch;
54 
55 static void __init early_code_mapping_set_exec(int executable)
56 {
57 	efi_memory_desc_t *md;
58 	void *p;
59 
60 	if (!(__supported_pte_mask & _PAGE_NX))
61 		return;
62 
63 	/* Make EFI service code area executable */
64 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
65 		md = p;
66 		if (md->type == EFI_RUNTIME_SERVICES_CODE ||
67 		    md->type == EFI_BOOT_SERVICES_CODE)
68 			efi_set_executable(md, executable);
69 	}
70 }
71 
72 pgd_t * __init efi_call_phys_prolog(void)
73 {
74 	unsigned long vaddress;
75 	pgd_t *save_pgd;
76 
77 	int pgd;
78 	int n_pgds;
79 
80 	if (!efi_enabled(EFI_OLD_MEMMAP)) {
81 		save_pgd = (pgd_t *)read_cr3();
82 		write_cr3((unsigned long)efi_scratch.efi_pgt);
83 		goto out;
84 	}
85 
86 	early_code_mapping_set_exec(1);
87 
88 	n_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT), PGDIR_SIZE);
89 	save_pgd = kmalloc(n_pgds * sizeof(pgd_t), GFP_KERNEL);
90 
91 	for (pgd = 0; pgd < n_pgds; pgd++) {
92 		save_pgd[pgd] = *pgd_offset_k(pgd * PGDIR_SIZE);
93 		vaddress = (unsigned long)__va(pgd * PGDIR_SIZE);
94 		set_pgd(pgd_offset_k(pgd * PGDIR_SIZE), *pgd_offset_k(vaddress));
95 	}
96 out:
97 	__flush_tlb_all();
98 
99 	return save_pgd;
100 }
101 
102 void __init efi_call_phys_epilog(pgd_t *save_pgd)
103 {
104 	/*
105 	 * After the lock is released, the original page table is restored.
106 	 */
107 	int pgd_idx;
108 	int nr_pgds;
109 
110 	if (!efi_enabled(EFI_OLD_MEMMAP)) {
111 		write_cr3((unsigned long)save_pgd);
112 		__flush_tlb_all();
113 		return;
114 	}
115 
116 	nr_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT) , PGDIR_SIZE);
117 
118 	for (pgd_idx = 0; pgd_idx < nr_pgds; pgd_idx++)
119 		set_pgd(pgd_offset_k(pgd_idx * PGDIR_SIZE), save_pgd[pgd_idx]);
120 
121 	kfree(save_pgd);
122 
123 	__flush_tlb_all();
124 	early_code_mapping_set_exec(0);
125 }
126 
127 static pgd_t *efi_pgd;
128 
129 /*
130  * We need our own copy of the higher levels of the page tables
131  * because we want to avoid inserting EFI region mappings (EFI_VA_END
132  * to EFI_VA_START) into the standard kernel page tables. Everything
133  * else can be shared, see efi_sync_low_kernel_mappings().
134  */
135 int __init efi_alloc_page_tables(void)
136 {
137 	pgd_t *pgd;
138 	pud_t *pud;
139 	gfp_t gfp_mask;
140 
141 	if (efi_enabled(EFI_OLD_MEMMAP))
142 		return 0;
143 
144 	gfp_mask = GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO;
145 	efi_pgd = (pgd_t *)__get_free_page(gfp_mask);
146 	if (!efi_pgd)
147 		return -ENOMEM;
148 
149 	pgd = efi_pgd + pgd_index(EFI_VA_END);
150 
151 	pud = pud_alloc_one(NULL, 0);
152 	if (!pud) {
153 		free_page((unsigned long)efi_pgd);
154 		return -ENOMEM;
155 	}
156 
157 	pgd_populate(NULL, pgd, pud);
158 
159 	return 0;
160 }
161 
162 /*
163  * Add low kernel mappings for passing arguments to EFI functions.
164  */
165 void efi_sync_low_kernel_mappings(void)
166 {
167 	unsigned num_entries;
168 	pgd_t *pgd_k, *pgd_efi;
169 	pud_t *pud_k, *pud_efi;
170 
171 	if (efi_enabled(EFI_OLD_MEMMAP))
172 		return;
173 
174 	/*
175 	 * We can share all PGD entries apart from the one entry that
176 	 * covers the EFI runtime mapping space.
177 	 *
178 	 * Make sure the EFI runtime region mappings are guaranteed to
179 	 * only span a single PGD entry and that the entry also maps
180 	 * other important kernel regions.
181 	 */
182 	BUILD_BUG_ON(pgd_index(EFI_VA_END) != pgd_index(MODULES_END));
183 	BUILD_BUG_ON((EFI_VA_START & PGDIR_MASK) !=
184 			(EFI_VA_END & PGDIR_MASK));
185 
186 	pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET);
187 	pgd_k = pgd_offset_k(PAGE_OFFSET);
188 
189 	num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET);
190 	memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries);
191 
192 	/*
193 	 * We share all the PUD entries apart from those that map the
194 	 * EFI regions. Copy around them.
195 	 */
196 	BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0);
197 	BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0);
198 
199 	pgd_efi = efi_pgd + pgd_index(EFI_VA_END);
200 	pud_efi = pud_offset(pgd_efi, 0);
201 
202 	pgd_k = pgd_offset_k(EFI_VA_END);
203 	pud_k = pud_offset(pgd_k, 0);
204 
205 	num_entries = pud_index(EFI_VA_END);
206 	memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
207 
208 	pud_efi = pud_offset(pgd_efi, EFI_VA_START);
209 	pud_k = pud_offset(pgd_k, EFI_VA_START);
210 
211 	num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START);
212 	memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
213 }
214 
215 int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
216 {
217 	unsigned long pfn, text;
218 	efi_memory_desc_t *md;
219 	struct page *page;
220 	unsigned npages;
221 	pgd_t *pgd;
222 
223 	if (efi_enabled(EFI_OLD_MEMMAP))
224 		return 0;
225 
226 	efi_scratch.efi_pgt = (pgd_t *)__pa(efi_pgd);
227 	pgd = efi_pgd;
228 
229 	/*
230 	 * It can happen that the physical address of new_memmap lands in memory
231 	 * which is not mapped in the EFI page table. Therefore we need to go
232 	 * and ident-map those pages containing the map before calling
233 	 * phys_efi_set_virtual_address_map().
234 	 */
235 	pfn = pa_memmap >> PAGE_SHIFT;
236 	if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, _PAGE_NX | _PAGE_RW)) {
237 		pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap);
238 		return 1;
239 	}
240 
241 	efi_scratch.use_pgd = true;
242 
243 	/*
244 	 * When making calls to the firmware everything needs to be 1:1
245 	 * mapped and addressable with 32-bit pointers. Map the kernel
246 	 * text and allocate a new stack because we can't rely on the
247 	 * stack pointer being < 4GB.
248 	 */
249 	if (!IS_ENABLED(CONFIG_EFI_MIXED))
250 		return 0;
251 
252 	/*
253 	 * Map all of RAM so that we can access arguments in the 1:1
254 	 * mapping when making EFI runtime calls.
255 	 */
256 	for_each_efi_memory_desc(&memmap, md) {
257 		if (md->type != EFI_CONVENTIONAL_MEMORY &&
258 		    md->type != EFI_LOADER_DATA &&
259 		    md->type != EFI_LOADER_CODE)
260 			continue;
261 
262 		pfn = md->phys_addr >> PAGE_SHIFT;
263 		npages = md->num_pages;
264 
265 		if (kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, npages, _PAGE_RW)) {
266 			pr_err("Failed to map 1:1 memory\n");
267 			return 1;
268 		}
269 	}
270 
271 	page = alloc_page(GFP_KERNEL|__GFP_DMA32);
272 	if (!page)
273 		panic("Unable to allocate EFI runtime stack < 4GB\n");
274 
275 	efi_scratch.phys_stack = virt_to_phys(page_address(page));
276 	efi_scratch.phys_stack += PAGE_SIZE; /* stack grows down */
277 
278 	npages = (_etext - _text) >> PAGE_SHIFT;
279 	text = __pa(_text);
280 	pfn = text >> PAGE_SHIFT;
281 
282 	if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, _PAGE_RW)) {
283 		pr_err("Failed to map kernel text 1:1\n");
284 		return 1;
285 	}
286 
287 	return 0;
288 }
289 
290 void __init efi_cleanup_page_tables(unsigned long pa_memmap, unsigned num_pages)
291 {
292 	kernel_unmap_pages_in_pgd(efi_pgd, pa_memmap, num_pages);
293 }
294 
295 static void __init __map_region(efi_memory_desc_t *md, u64 va)
296 {
297 	unsigned long flags = _PAGE_RW;
298 	unsigned long pfn;
299 	pgd_t *pgd = efi_pgd;
300 
301 	if (!(md->attribute & EFI_MEMORY_WB))
302 		flags |= _PAGE_PCD;
303 
304 	pfn = md->phys_addr >> PAGE_SHIFT;
305 	if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags))
306 		pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
307 			   md->phys_addr, va);
308 }
309 
310 void __init efi_map_region(efi_memory_desc_t *md)
311 {
312 	unsigned long size = md->num_pages << PAGE_SHIFT;
313 	u64 pa = md->phys_addr;
314 
315 	if (efi_enabled(EFI_OLD_MEMMAP))
316 		return old_map_region(md);
317 
318 	/*
319 	 * Make sure the 1:1 mappings are present as a catch-all for b0rked
320 	 * firmware which doesn't update all internal pointers after switching
321 	 * to virtual mode and would otherwise crap on us.
322 	 */
323 	__map_region(md, md->phys_addr);
324 
325 	/*
326 	 * Enforce the 1:1 mapping as the default virtual address when
327 	 * booting in EFI mixed mode, because even though we may be
328 	 * running a 64-bit kernel, the firmware may only be 32-bit.
329 	 */
330 	if (!efi_is_native () && IS_ENABLED(CONFIG_EFI_MIXED)) {
331 		md->virt_addr = md->phys_addr;
332 		return;
333 	}
334 
335 	efi_va -= size;
336 
337 	/* Is PA 2M-aligned? */
338 	if (!(pa & (PMD_SIZE - 1))) {
339 		efi_va &= PMD_MASK;
340 	} else {
341 		u64 pa_offset = pa & (PMD_SIZE - 1);
342 		u64 prev_va = efi_va;
343 
344 		/* get us the same offset within this 2M page */
345 		efi_va = (efi_va & PMD_MASK) + pa_offset;
346 
347 		if (efi_va > prev_va)
348 			efi_va -= PMD_SIZE;
349 	}
350 
351 	if (efi_va < EFI_VA_END) {
352 		pr_warn(FW_WARN "VA address range overflow!\n");
353 		return;
354 	}
355 
356 	/* Do the VA map */
357 	__map_region(md, efi_va);
358 	md->virt_addr = efi_va;
359 }
360 
361 /*
362  * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges.
363  * md->virt_addr is the original virtual address which had been mapped in kexec
364  * 1st kernel.
365  */
366 void __init efi_map_region_fixed(efi_memory_desc_t *md)
367 {
368 	__map_region(md, md->virt_addr);
369 }
370 
371 void __iomem *__init efi_ioremap(unsigned long phys_addr, unsigned long size,
372 				 u32 type, u64 attribute)
373 {
374 	unsigned long last_map_pfn;
375 
376 	if (type == EFI_MEMORY_MAPPED_IO)
377 		return ioremap(phys_addr, size);
378 
379 	last_map_pfn = init_memory_mapping(phys_addr, phys_addr + size);
380 	if ((last_map_pfn << PAGE_SHIFT) < phys_addr + size) {
381 		unsigned long top = last_map_pfn << PAGE_SHIFT;
382 		efi_ioremap(top, size - (top - phys_addr), type, attribute);
383 	}
384 
385 	if (!(attribute & EFI_MEMORY_WB))
386 		efi_memory_uc((u64)(unsigned long)__va(phys_addr), size);
387 
388 	return (void __iomem *)__va(phys_addr);
389 }
390 
391 void __init parse_efi_setup(u64 phys_addr, u32 data_len)
392 {
393 	efi_setup = phys_addr + sizeof(struct setup_data);
394 }
395 
396 void __init efi_runtime_update_mappings(void)
397 {
398 	unsigned long pfn;
399 	pgd_t *pgd = efi_pgd;
400 	efi_memory_desc_t *md;
401 	void *p;
402 
403 	if (efi_enabled(EFI_OLD_MEMMAP)) {
404 		if (__supported_pte_mask & _PAGE_NX)
405 			runtime_code_page_mkexec();
406 		return;
407 	}
408 
409 	if (!efi_enabled(EFI_NX_PE_DATA))
410 		return;
411 
412 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
413 		unsigned long pf = 0;
414 		md = p;
415 
416 		if (!(md->attribute & EFI_MEMORY_RUNTIME))
417 			continue;
418 
419 		if (!(md->attribute & EFI_MEMORY_WB))
420 			pf |= _PAGE_PCD;
421 
422 		if ((md->attribute & EFI_MEMORY_XP) ||
423 			(md->type == EFI_RUNTIME_SERVICES_DATA))
424 			pf |= _PAGE_NX;
425 
426 		if (!(md->attribute & EFI_MEMORY_RO) &&
427 			(md->type != EFI_RUNTIME_SERVICES_CODE))
428 			pf |= _PAGE_RW;
429 
430 		/* Update the 1:1 mapping */
431 		pfn = md->phys_addr >> PAGE_SHIFT;
432 		if (kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf))
433 			pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
434 				   md->phys_addr, md->virt_addr);
435 
436 		if (kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf))
437 			pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
438 				   md->phys_addr, md->virt_addr);
439 	}
440 }
441 
442 void __init efi_dump_pagetable(void)
443 {
444 #ifdef CONFIG_EFI_PGT_DUMP
445 	ptdump_walk_pgd_level(NULL, efi_pgd);
446 #endif
447 }
448 
449 #ifdef CONFIG_EFI_MIXED
450 extern efi_status_t efi64_thunk(u32, ...);
451 
452 #define runtime_service32(func)						 \
453 ({									 \
454 	u32 table = (u32)(unsigned long)efi.systab;			 \
455 	u32 *rt, *___f;							 \
456 									 \
457 	rt = (u32 *)(table + offsetof(efi_system_table_32_t, runtime));	 \
458 	___f = (u32 *)(*rt + offsetof(efi_runtime_services_32_t, func)); \
459 	*___f;								 \
460 })
461 
462 /*
463  * Switch to the EFI page tables early so that we can access the 1:1
464  * runtime services mappings which are not mapped in any other page
465  * tables. This function must be called before runtime_service32().
466  *
467  * Also, disable interrupts because the IDT points to 64-bit handlers,
468  * which aren't going to function correctly when we switch to 32-bit.
469  */
470 #define efi_thunk(f, ...)						\
471 ({									\
472 	efi_status_t __s;						\
473 	unsigned long flags;						\
474 	u32 func;							\
475 									\
476 	efi_sync_low_kernel_mappings();					\
477 	local_irq_save(flags);						\
478 									\
479 	efi_scratch.prev_cr3 = read_cr3();				\
480 	write_cr3((unsigned long)efi_scratch.efi_pgt);			\
481 	__flush_tlb_all();						\
482 									\
483 	func = runtime_service32(f);					\
484 	__s = efi64_thunk(func, __VA_ARGS__);			\
485 									\
486 	write_cr3(efi_scratch.prev_cr3);				\
487 	__flush_tlb_all();						\
488 	local_irq_restore(flags);					\
489 									\
490 	__s;								\
491 })
492 
493 efi_status_t efi_thunk_set_virtual_address_map(
494 	void *phys_set_virtual_address_map,
495 	unsigned long memory_map_size,
496 	unsigned long descriptor_size,
497 	u32 descriptor_version,
498 	efi_memory_desc_t *virtual_map)
499 {
500 	efi_status_t status;
501 	unsigned long flags;
502 	u32 func;
503 
504 	efi_sync_low_kernel_mappings();
505 	local_irq_save(flags);
506 
507 	efi_scratch.prev_cr3 = read_cr3();
508 	write_cr3((unsigned long)efi_scratch.efi_pgt);
509 	__flush_tlb_all();
510 
511 	func = (u32)(unsigned long)phys_set_virtual_address_map;
512 	status = efi64_thunk(func, memory_map_size, descriptor_size,
513 			     descriptor_version, virtual_map);
514 
515 	write_cr3(efi_scratch.prev_cr3);
516 	__flush_tlb_all();
517 	local_irq_restore(flags);
518 
519 	return status;
520 }
521 
522 static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc)
523 {
524 	efi_status_t status;
525 	u32 phys_tm, phys_tc;
526 
527 	spin_lock(&rtc_lock);
528 
529 	phys_tm = virt_to_phys(tm);
530 	phys_tc = virt_to_phys(tc);
531 
532 	status = efi_thunk(get_time, phys_tm, phys_tc);
533 
534 	spin_unlock(&rtc_lock);
535 
536 	return status;
537 }
538 
539 static efi_status_t efi_thunk_set_time(efi_time_t *tm)
540 {
541 	efi_status_t status;
542 	u32 phys_tm;
543 
544 	spin_lock(&rtc_lock);
545 
546 	phys_tm = virt_to_phys(tm);
547 
548 	status = efi_thunk(set_time, phys_tm);
549 
550 	spin_unlock(&rtc_lock);
551 
552 	return status;
553 }
554 
555 static efi_status_t
556 efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending,
557 			  efi_time_t *tm)
558 {
559 	efi_status_t status;
560 	u32 phys_enabled, phys_pending, phys_tm;
561 
562 	spin_lock(&rtc_lock);
563 
564 	phys_enabled = virt_to_phys(enabled);
565 	phys_pending = virt_to_phys(pending);
566 	phys_tm = virt_to_phys(tm);
567 
568 	status = efi_thunk(get_wakeup_time, phys_enabled,
569 			     phys_pending, phys_tm);
570 
571 	spin_unlock(&rtc_lock);
572 
573 	return status;
574 }
575 
576 static efi_status_t
577 efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
578 {
579 	efi_status_t status;
580 	u32 phys_tm;
581 
582 	spin_lock(&rtc_lock);
583 
584 	phys_tm = virt_to_phys(tm);
585 
586 	status = efi_thunk(set_wakeup_time, enabled, phys_tm);
587 
588 	spin_unlock(&rtc_lock);
589 
590 	return status;
591 }
592 
593 
594 static efi_status_t
595 efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor,
596 		       u32 *attr, unsigned long *data_size, void *data)
597 {
598 	efi_status_t status;
599 	u32 phys_name, phys_vendor, phys_attr;
600 	u32 phys_data_size, phys_data;
601 
602 	phys_data_size = virt_to_phys(data_size);
603 	phys_vendor = virt_to_phys(vendor);
604 	phys_name = virt_to_phys(name);
605 	phys_attr = virt_to_phys(attr);
606 	phys_data = virt_to_phys(data);
607 
608 	status = efi_thunk(get_variable, phys_name, phys_vendor,
609 			   phys_attr, phys_data_size, phys_data);
610 
611 	return status;
612 }
613 
614 static efi_status_t
615 efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor,
616 		       u32 attr, unsigned long data_size, void *data)
617 {
618 	u32 phys_name, phys_vendor, phys_data;
619 	efi_status_t status;
620 
621 	phys_name = virt_to_phys(name);
622 	phys_vendor = virt_to_phys(vendor);
623 	phys_data = virt_to_phys(data);
624 
625 	/* If data_size is > sizeof(u32) we've got problems */
626 	status = efi_thunk(set_variable, phys_name, phys_vendor,
627 			   attr, data_size, phys_data);
628 
629 	return status;
630 }
631 
632 static efi_status_t
633 efi_thunk_get_next_variable(unsigned long *name_size,
634 			    efi_char16_t *name,
635 			    efi_guid_t *vendor)
636 {
637 	efi_status_t status;
638 	u32 phys_name_size, phys_name, phys_vendor;
639 
640 	phys_name_size = virt_to_phys(name_size);
641 	phys_vendor = virt_to_phys(vendor);
642 	phys_name = virt_to_phys(name);
643 
644 	status = efi_thunk(get_next_variable, phys_name_size,
645 			   phys_name, phys_vendor);
646 
647 	return status;
648 }
649 
650 static efi_status_t
651 efi_thunk_get_next_high_mono_count(u32 *count)
652 {
653 	efi_status_t status;
654 	u32 phys_count;
655 
656 	phys_count = virt_to_phys(count);
657 	status = efi_thunk(get_next_high_mono_count, phys_count);
658 
659 	return status;
660 }
661 
662 static void
663 efi_thunk_reset_system(int reset_type, efi_status_t status,
664 		       unsigned long data_size, efi_char16_t *data)
665 {
666 	u32 phys_data;
667 
668 	phys_data = virt_to_phys(data);
669 
670 	efi_thunk(reset_system, reset_type, status, data_size, phys_data);
671 }
672 
673 static efi_status_t
674 efi_thunk_update_capsule(efi_capsule_header_t **capsules,
675 			 unsigned long count, unsigned long sg_list)
676 {
677 	/*
678 	 * To properly support this function we would need to repackage
679 	 * 'capsules' because the firmware doesn't understand 64-bit
680 	 * pointers.
681 	 */
682 	return EFI_UNSUPPORTED;
683 }
684 
685 static efi_status_t
686 efi_thunk_query_variable_info(u32 attr, u64 *storage_space,
687 			      u64 *remaining_space,
688 			      u64 *max_variable_size)
689 {
690 	efi_status_t status;
691 	u32 phys_storage, phys_remaining, phys_max;
692 
693 	if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
694 		return EFI_UNSUPPORTED;
695 
696 	phys_storage = virt_to_phys(storage_space);
697 	phys_remaining = virt_to_phys(remaining_space);
698 	phys_max = virt_to_phys(max_variable_size);
699 
700 	status = efi_thunk(query_variable_info, attr, phys_storage,
701 			   phys_remaining, phys_max);
702 
703 	return status;
704 }
705 
706 static efi_status_t
707 efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules,
708 			     unsigned long count, u64 *max_size,
709 			     int *reset_type)
710 {
711 	/*
712 	 * To properly support this function we would need to repackage
713 	 * 'capsules' because the firmware doesn't understand 64-bit
714 	 * pointers.
715 	 */
716 	return EFI_UNSUPPORTED;
717 }
718 
719 void efi_thunk_runtime_setup(void)
720 {
721 	efi.get_time = efi_thunk_get_time;
722 	efi.set_time = efi_thunk_set_time;
723 	efi.get_wakeup_time = efi_thunk_get_wakeup_time;
724 	efi.set_wakeup_time = efi_thunk_set_wakeup_time;
725 	efi.get_variable = efi_thunk_get_variable;
726 	efi.get_next_variable = efi_thunk_get_next_variable;
727 	efi.set_variable = efi_thunk_set_variable;
728 	efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count;
729 	efi.reset_system = efi_thunk_reset_system;
730 	efi.query_variable_info = efi_thunk_query_variable_info;
731 	efi.update_capsule = efi_thunk_update_capsule;
732 	efi.query_capsule_caps = efi_thunk_query_capsule_caps;
733 }
734 #endif /* CONFIG_EFI_MIXED */
735