1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * x86_64 specific EFI support functions 4 * Based on Extensible Firmware Interface Specification version 1.0 5 * 6 * Copyright (C) 2005-2008 Intel Co. 7 * Fenghua Yu <fenghua.yu@intel.com> 8 * Bibo Mao <bibo.mao@intel.com> 9 * Chandramouli Narayanan <mouli@linux.intel.com> 10 * Huang Ying <ying.huang@intel.com> 11 * 12 * Code to convert EFI to E820 map has been implemented in elilo bootloader 13 * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table 14 * is setup appropriately for EFI runtime code. 15 * - mouli 06/14/2007. 16 * 17 */ 18 19 #define pr_fmt(fmt) "efi: " fmt 20 21 #include <linux/kernel.h> 22 #include <linux/init.h> 23 #include <linux/mm.h> 24 #include <linux/types.h> 25 #include <linux/spinlock.h> 26 #include <linux/memblock.h> 27 #include <linux/ioport.h> 28 #include <linux/mc146818rtc.h> 29 #include <linux/efi.h> 30 #include <linux/export.h> 31 #include <linux/uaccess.h> 32 #include <linux/io.h> 33 #include <linux/reboot.h> 34 #include <linux/slab.h> 35 #include <linux/ucs2_string.h> 36 #include <linux/mem_encrypt.h> 37 #include <linux/sched/task.h> 38 39 #include <asm/setup.h> 40 #include <asm/page.h> 41 #include <asm/e820/api.h> 42 #include <asm/tlbflush.h> 43 #include <asm/proto.h> 44 #include <asm/efi.h> 45 #include <asm/cacheflush.h> 46 #include <asm/fixmap.h> 47 #include <asm/realmode.h> 48 #include <asm/time.h> 49 #include <asm/pgalloc.h> 50 #include <asm/sev-es.h> 51 52 /* 53 * We allocate runtime services regions top-down, starting from -4G, i.e. 54 * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G. 55 */ 56 static u64 efi_va = EFI_VA_START; 57 static struct mm_struct *efi_prev_mm; 58 59 /* 60 * We need our own copy of the higher levels of the page tables 61 * because we want to avoid inserting EFI region mappings (EFI_VA_END 62 * to EFI_VA_START) into the standard kernel page tables. Everything 63 * else can be shared, see efi_sync_low_kernel_mappings(). 64 * 65 * We don't want the pgd on the pgd_list and cannot use pgd_alloc() for the 66 * allocation. 67 */ 68 int __init efi_alloc_page_tables(void) 69 { 70 pgd_t *pgd, *efi_pgd; 71 p4d_t *p4d; 72 pud_t *pud; 73 gfp_t gfp_mask; 74 75 gfp_mask = GFP_KERNEL | __GFP_ZERO; 76 efi_pgd = (pgd_t *)__get_free_pages(gfp_mask, PGD_ALLOCATION_ORDER); 77 if (!efi_pgd) 78 goto fail; 79 80 pgd = efi_pgd + pgd_index(EFI_VA_END); 81 p4d = p4d_alloc(&init_mm, pgd, EFI_VA_END); 82 if (!p4d) 83 goto free_pgd; 84 85 pud = pud_alloc(&init_mm, p4d, EFI_VA_END); 86 if (!pud) 87 goto free_p4d; 88 89 efi_mm.pgd = efi_pgd; 90 mm_init_cpumask(&efi_mm); 91 init_new_context(NULL, &efi_mm); 92 93 return 0; 94 95 free_p4d: 96 if (pgtable_l5_enabled()) 97 free_page((unsigned long)pgd_page_vaddr(*pgd)); 98 free_pgd: 99 free_pages((unsigned long)efi_pgd, PGD_ALLOCATION_ORDER); 100 fail: 101 return -ENOMEM; 102 } 103 104 /* 105 * Add low kernel mappings for passing arguments to EFI functions. 106 */ 107 void efi_sync_low_kernel_mappings(void) 108 { 109 unsigned num_entries; 110 pgd_t *pgd_k, *pgd_efi; 111 p4d_t *p4d_k, *p4d_efi; 112 pud_t *pud_k, *pud_efi; 113 pgd_t *efi_pgd = efi_mm.pgd; 114 115 pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET); 116 pgd_k = pgd_offset_k(PAGE_OFFSET); 117 118 num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET); 119 memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries); 120 121 pgd_efi = efi_pgd + pgd_index(EFI_VA_END); 122 pgd_k = pgd_offset_k(EFI_VA_END); 123 p4d_efi = p4d_offset(pgd_efi, 0); 124 p4d_k = p4d_offset(pgd_k, 0); 125 126 num_entries = p4d_index(EFI_VA_END); 127 memcpy(p4d_efi, p4d_k, sizeof(p4d_t) * num_entries); 128 129 /* 130 * We share all the PUD entries apart from those that map the 131 * EFI regions. Copy around them. 132 */ 133 BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0); 134 BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0); 135 136 p4d_efi = p4d_offset(pgd_efi, EFI_VA_END); 137 p4d_k = p4d_offset(pgd_k, EFI_VA_END); 138 pud_efi = pud_offset(p4d_efi, 0); 139 pud_k = pud_offset(p4d_k, 0); 140 141 num_entries = pud_index(EFI_VA_END); 142 memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries); 143 144 pud_efi = pud_offset(p4d_efi, EFI_VA_START); 145 pud_k = pud_offset(p4d_k, EFI_VA_START); 146 147 num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START); 148 memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries); 149 } 150 151 /* 152 * Wrapper for slow_virt_to_phys() that handles NULL addresses. 153 */ 154 static inline phys_addr_t 155 virt_to_phys_or_null_size(void *va, unsigned long size) 156 { 157 phys_addr_t pa; 158 159 if (!va) 160 return 0; 161 162 if (virt_addr_valid(va)) 163 return virt_to_phys(va); 164 165 pa = slow_virt_to_phys(va); 166 167 /* check if the object crosses a page boundary */ 168 if (WARN_ON((pa ^ (pa + size - 1)) & PAGE_MASK)) 169 return 0; 170 171 return pa; 172 } 173 174 #define virt_to_phys_or_null(addr) \ 175 virt_to_phys_or_null_size((addr), sizeof(*(addr))) 176 177 int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages) 178 { 179 unsigned long pfn, text, pf, rodata; 180 struct page *page; 181 unsigned npages; 182 pgd_t *pgd = efi_mm.pgd; 183 184 /* 185 * It can happen that the physical address of new_memmap lands in memory 186 * which is not mapped in the EFI page table. Therefore we need to go 187 * and ident-map those pages containing the map before calling 188 * phys_efi_set_virtual_address_map(). 189 */ 190 pfn = pa_memmap >> PAGE_SHIFT; 191 pf = _PAGE_NX | _PAGE_RW | _PAGE_ENC; 192 if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, pf)) { 193 pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap); 194 return 1; 195 } 196 197 /* 198 * Certain firmware versions are way too sentimential and still believe 199 * they are exclusive and unquestionable owners of the first physical page, 200 * even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY 201 * (but then write-access it later during SetVirtualAddressMap()). 202 * 203 * Create a 1:1 mapping for this page, to avoid triple faults during early 204 * boot with such firmware. We are free to hand this page to the BIOS, 205 * as trim_bios_range() will reserve the first page and isolate it away 206 * from memory allocators anyway. 207 */ 208 if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, pf)) { 209 pr_err("Failed to create 1:1 mapping for the first page!\n"); 210 return 1; 211 } 212 213 /* 214 * When SEV-ES is active, the GHCB as set by the kernel will be used 215 * by firmware. Create a 1:1 unencrypted mapping for each GHCB. 216 */ 217 if (sev_es_efi_map_ghcbs(pgd)) { 218 pr_err("Failed to create 1:1 mapping for the GHCBs!\n"); 219 return 1; 220 } 221 222 /* 223 * When making calls to the firmware everything needs to be 1:1 224 * mapped and addressable with 32-bit pointers. Map the kernel 225 * text and allocate a new stack because we can't rely on the 226 * stack pointer being < 4GB. 227 */ 228 if (!efi_is_mixed()) 229 return 0; 230 231 page = alloc_page(GFP_KERNEL|__GFP_DMA32); 232 if (!page) { 233 pr_err("Unable to allocate EFI runtime stack < 4GB\n"); 234 return 1; 235 } 236 237 efi_mixed_mode_stack_pa = page_to_phys(page + 1); /* stack grows down */ 238 239 npages = (_etext - _text) >> PAGE_SHIFT; 240 text = __pa(_text); 241 pfn = text >> PAGE_SHIFT; 242 243 pf = _PAGE_ENC; 244 if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, pf)) { 245 pr_err("Failed to map kernel text 1:1\n"); 246 return 1; 247 } 248 249 npages = (__end_rodata - __start_rodata) >> PAGE_SHIFT; 250 rodata = __pa(__start_rodata); 251 pfn = rodata >> PAGE_SHIFT; 252 253 pf = _PAGE_NX | _PAGE_ENC; 254 if (kernel_map_pages_in_pgd(pgd, pfn, rodata, npages, pf)) { 255 pr_err("Failed to map kernel rodata 1:1\n"); 256 return 1; 257 } 258 259 return 0; 260 } 261 262 static void __init __map_region(efi_memory_desc_t *md, u64 va) 263 { 264 unsigned long flags = _PAGE_RW; 265 unsigned long pfn; 266 pgd_t *pgd = efi_mm.pgd; 267 268 /* 269 * EFI_RUNTIME_SERVICES_CODE regions typically cover PE/COFF 270 * executable images in memory that consist of both R-X and 271 * RW- sections, so we cannot apply read-only or non-exec 272 * permissions just yet. However, modern EFI systems provide 273 * a memory attributes table that describes those sections 274 * with the appropriate restricted permissions, which are 275 * applied in efi_runtime_update_mappings() below. All other 276 * regions can be mapped non-executable at this point, with 277 * the exception of boot services code regions, but those will 278 * be unmapped again entirely in efi_free_boot_services(). 279 */ 280 if (md->type != EFI_BOOT_SERVICES_CODE && 281 md->type != EFI_RUNTIME_SERVICES_CODE) 282 flags |= _PAGE_NX; 283 284 if (!(md->attribute & EFI_MEMORY_WB)) 285 flags |= _PAGE_PCD; 286 287 if (sev_active() && md->type != EFI_MEMORY_MAPPED_IO) 288 flags |= _PAGE_ENC; 289 290 pfn = md->phys_addr >> PAGE_SHIFT; 291 if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags)) 292 pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n", 293 md->phys_addr, va); 294 } 295 296 void __init efi_map_region(efi_memory_desc_t *md) 297 { 298 unsigned long size = md->num_pages << PAGE_SHIFT; 299 u64 pa = md->phys_addr; 300 301 /* 302 * Make sure the 1:1 mappings are present as a catch-all for b0rked 303 * firmware which doesn't update all internal pointers after switching 304 * to virtual mode and would otherwise crap on us. 305 */ 306 __map_region(md, md->phys_addr); 307 308 /* 309 * Enforce the 1:1 mapping as the default virtual address when 310 * booting in EFI mixed mode, because even though we may be 311 * running a 64-bit kernel, the firmware may only be 32-bit. 312 */ 313 if (efi_is_mixed()) { 314 md->virt_addr = md->phys_addr; 315 return; 316 } 317 318 efi_va -= size; 319 320 /* Is PA 2M-aligned? */ 321 if (!(pa & (PMD_SIZE - 1))) { 322 efi_va &= PMD_MASK; 323 } else { 324 u64 pa_offset = pa & (PMD_SIZE - 1); 325 u64 prev_va = efi_va; 326 327 /* get us the same offset within this 2M page */ 328 efi_va = (efi_va & PMD_MASK) + pa_offset; 329 330 if (efi_va > prev_va) 331 efi_va -= PMD_SIZE; 332 } 333 334 if (efi_va < EFI_VA_END) { 335 pr_warn(FW_WARN "VA address range overflow!\n"); 336 return; 337 } 338 339 /* Do the VA map */ 340 __map_region(md, efi_va); 341 md->virt_addr = efi_va; 342 } 343 344 /* 345 * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges. 346 * md->virt_addr is the original virtual address which had been mapped in kexec 347 * 1st kernel. 348 */ 349 void __init efi_map_region_fixed(efi_memory_desc_t *md) 350 { 351 __map_region(md, md->phys_addr); 352 __map_region(md, md->virt_addr); 353 } 354 355 void __init parse_efi_setup(u64 phys_addr, u32 data_len) 356 { 357 efi_setup = phys_addr + sizeof(struct setup_data); 358 } 359 360 static int __init efi_update_mappings(efi_memory_desc_t *md, unsigned long pf) 361 { 362 unsigned long pfn; 363 pgd_t *pgd = efi_mm.pgd; 364 int err1, err2; 365 366 /* Update the 1:1 mapping */ 367 pfn = md->phys_addr >> PAGE_SHIFT; 368 err1 = kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf); 369 if (err1) { 370 pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n", 371 md->phys_addr, md->virt_addr); 372 } 373 374 err2 = kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf); 375 if (err2) { 376 pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n", 377 md->phys_addr, md->virt_addr); 378 } 379 380 return err1 || err2; 381 } 382 383 static int __init efi_update_mem_attr(struct mm_struct *mm, efi_memory_desc_t *md) 384 { 385 unsigned long pf = 0; 386 387 if (md->attribute & EFI_MEMORY_XP) 388 pf |= _PAGE_NX; 389 390 if (!(md->attribute & EFI_MEMORY_RO)) 391 pf |= _PAGE_RW; 392 393 if (sev_active()) 394 pf |= _PAGE_ENC; 395 396 return efi_update_mappings(md, pf); 397 } 398 399 void __init efi_runtime_update_mappings(void) 400 { 401 efi_memory_desc_t *md; 402 403 /* 404 * Use the EFI Memory Attribute Table for mapping permissions if it 405 * exists, since it is intended to supersede EFI_PROPERTIES_TABLE. 406 */ 407 if (efi_enabled(EFI_MEM_ATTR)) { 408 efi_memattr_apply_permissions(NULL, efi_update_mem_attr); 409 return; 410 } 411 412 /* 413 * EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace 414 * EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update 415 * permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not 416 * published by the firmware. Even if we find a buggy implementation of 417 * EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to 418 * EFI_PROPERTIES_TABLE, because of the same reason. 419 */ 420 421 if (!efi_enabled(EFI_NX_PE_DATA)) 422 return; 423 424 for_each_efi_memory_desc(md) { 425 unsigned long pf = 0; 426 427 if (!(md->attribute & EFI_MEMORY_RUNTIME)) 428 continue; 429 430 if (!(md->attribute & EFI_MEMORY_WB)) 431 pf |= _PAGE_PCD; 432 433 if ((md->attribute & EFI_MEMORY_XP) || 434 (md->type == EFI_RUNTIME_SERVICES_DATA)) 435 pf |= _PAGE_NX; 436 437 if (!(md->attribute & EFI_MEMORY_RO) && 438 (md->type != EFI_RUNTIME_SERVICES_CODE)) 439 pf |= _PAGE_RW; 440 441 if (sev_active()) 442 pf |= _PAGE_ENC; 443 444 efi_update_mappings(md, pf); 445 } 446 } 447 448 void __init efi_dump_pagetable(void) 449 { 450 #ifdef CONFIG_EFI_PGT_DUMP 451 ptdump_walk_pgd_level(NULL, &efi_mm); 452 #endif 453 } 454 455 /* 456 * Makes the calling thread switch to/from efi_mm context. Can be used 457 * in a kernel thread and user context. Preemption needs to remain disabled 458 * while the EFI-mm is borrowed. mmgrab()/mmdrop() is not used because the mm 459 * can not change under us. 460 * It should be ensured that there are no concurent calls to this function. 461 */ 462 void efi_enter_mm(void) 463 { 464 efi_prev_mm = current->active_mm; 465 current->active_mm = &efi_mm; 466 switch_mm(efi_prev_mm, &efi_mm, NULL); 467 } 468 469 void efi_leave_mm(void) 470 { 471 current->active_mm = efi_prev_mm; 472 switch_mm(&efi_mm, efi_prev_mm, NULL); 473 } 474 475 static DEFINE_SPINLOCK(efi_runtime_lock); 476 477 /* 478 * DS and ES contain user values. We need to save them. 479 * The 32-bit EFI code needs a valid DS, ES, and SS. There's no 480 * need to save the old SS: __KERNEL_DS is always acceptable. 481 */ 482 #define __efi_thunk(func, ...) \ 483 ({ \ 484 unsigned short __ds, __es; \ 485 efi_status_t ____s; \ 486 \ 487 savesegment(ds, __ds); \ 488 savesegment(es, __es); \ 489 \ 490 loadsegment(ss, __KERNEL_DS); \ 491 loadsegment(ds, __KERNEL_DS); \ 492 loadsegment(es, __KERNEL_DS); \ 493 \ 494 ____s = efi64_thunk(efi.runtime->mixed_mode.func, __VA_ARGS__); \ 495 \ 496 loadsegment(ds, __ds); \ 497 loadsegment(es, __es); \ 498 \ 499 ____s ^= (____s & BIT(31)) | (____s & BIT_ULL(31)) << 32; \ 500 ____s; \ 501 }) 502 503 /* 504 * Switch to the EFI page tables early so that we can access the 1:1 505 * runtime services mappings which are not mapped in any other page 506 * tables. 507 * 508 * Also, disable interrupts because the IDT points to 64-bit handlers, 509 * which aren't going to function correctly when we switch to 32-bit. 510 */ 511 #define efi_thunk(func...) \ 512 ({ \ 513 efi_status_t __s; \ 514 \ 515 arch_efi_call_virt_setup(); \ 516 \ 517 __s = __efi_thunk(func); \ 518 \ 519 arch_efi_call_virt_teardown(); \ 520 \ 521 __s; \ 522 }) 523 524 static efi_status_t __init __no_sanitize_address 525 efi_thunk_set_virtual_address_map(unsigned long memory_map_size, 526 unsigned long descriptor_size, 527 u32 descriptor_version, 528 efi_memory_desc_t *virtual_map) 529 { 530 efi_status_t status; 531 unsigned long flags; 532 533 efi_sync_low_kernel_mappings(); 534 local_irq_save(flags); 535 536 efi_enter_mm(); 537 538 status = __efi_thunk(set_virtual_address_map, memory_map_size, 539 descriptor_size, descriptor_version, virtual_map); 540 541 efi_leave_mm(); 542 local_irq_restore(flags); 543 544 return status; 545 } 546 547 static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc) 548 { 549 return EFI_UNSUPPORTED; 550 } 551 552 static efi_status_t efi_thunk_set_time(efi_time_t *tm) 553 { 554 return EFI_UNSUPPORTED; 555 } 556 557 static efi_status_t 558 efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending, 559 efi_time_t *tm) 560 { 561 return EFI_UNSUPPORTED; 562 } 563 564 static efi_status_t 565 efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm) 566 { 567 return EFI_UNSUPPORTED; 568 } 569 570 static unsigned long efi_name_size(efi_char16_t *name) 571 { 572 return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1; 573 } 574 575 static efi_status_t 576 efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor, 577 u32 *attr, unsigned long *data_size, void *data) 578 { 579 u8 buf[24] __aligned(8); 580 efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd)); 581 efi_status_t status; 582 u32 phys_name, phys_vendor, phys_attr; 583 u32 phys_data_size, phys_data; 584 unsigned long flags; 585 586 spin_lock_irqsave(&efi_runtime_lock, flags); 587 588 *vnd = *vendor; 589 590 phys_data_size = virt_to_phys_or_null(data_size); 591 phys_vendor = virt_to_phys_or_null(vnd); 592 phys_name = virt_to_phys_or_null_size(name, efi_name_size(name)); 593 phys_attr = virt_to_phys_or_null(attr); 594 phys_data = virt_to_phys_or_null_size(data, *data_size); 595 596 if (!phys_name || (data && !phys_data)) 597 status = EFI_INVALID_PARAMETER; 598 else 599 status = efi_thunk(get_variable, phys_name, phys_vendor, 600 phys_attr, phys_data_size, phys_data); 601 602 spin_unlock_irqrestore(&efi_runtime_lock, flags); 603 604 return status; 605 } 606 607 static efi_status_t 608 efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor, 609 u32 attr, unsigned long data_size, void *data) 610 { 611 u8 buf[24] __aligned(8); 612 efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd)); 613 u32 phys_name, phys_vendor, phys_data; 614 efi_status_t status; 615 unsigned long flags; 616 617 spin_lock_irqsave(&efi_runtime_lock, flags); 618 619 *vnd = *vendor; 620 621 phys_name = virt_to_phys_or_null_size(name, efi_name_size(name)); 622 phys_vendor = virt_to_phys_or_null(vnd); 623 phys_data = virt_to_phys_or_null_size(data, data_size); 624 625 if (!phys_name || (data && !phys_data)) 626 status = EFI_INVALID_PARAMETER; 627 else 628 status = efi_thunk(set_variable, phys_name, phys_vendor, 629 attr, data_size, phys_data); 630 631 spin_unlock_irqrestore(&efi_runtime_lock, flags); 632 633 return status; 634 } 635 636 static efi_status_t 637 efi_thunk_set_variable_nonblocking(efi_char16_t *name, efi_guid_t *vendor, 638 u32 attr, unsigned long data_size, 639 void *data) 640 { 641 u8 buf[24] __aligned(8); 642 efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd)); 643 u32 phys_name, phys_vendor, phys_data; 644 efi_status_t status; 645 unsigned long flags; 646 647 if (!spin_trylock_irqsave(&efi_runtime_lock, flags)) 648 return EFI_NOT_READY; 649 650 *vnd = *vendor; 651 652 phys_name = virt_to_phys_or_null_size(name, efi_name_size(name)); 653 phys_vendor = virt_to_phys_or_null(vnd); 654 phys_data = virt_to_phys_or_null_size(data, data_size); 655 656 if (!phys_name || (data && !phys_data)) 657 status = EFI_INVALID_PARAMETER; 658 else 659 status = efi_thunk(set_variable, phys_name, phys_vendor, 660 attr, data_size, phys_data); 661 662 spin_unlock_irqrestore(&efi_runtime_lock, flags); 663 664 return status; 665 } 666 667 static efi_status_t 668 efi_thunk_get_next_variable(unsigned long *name_size, 669 efi_char16_t *name, 670 efi_guid_t *vendor) 671 { 672 u8 buf[24] __aligned(8); 673 efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd)); 674 efi_status_t status; 675 u32 phys_name_size, phys_name, phys_vendor; 676 unsigned long flags; 677 678 spin_lock_irqsave(&efi_runtime_lock, flags); 679 680 *vnd = *vendor; 681 682 phys_name_size = virt_to_phys_or_null(name_size); 683 phys_vendor = virt_to_phys_or_null(vnd); 684 phys_name = virt_to_phys_or_null_size(name, *name_size); 685 686 if (!phys_name) 687 status = EFI_INVALID_PARAMETER; 688 else 689 status = efi_thunk(get_next_variable, phys_name_size, 690 phys_name, phys_vendor); 691 692 spin_unlock_irqrestore(&efi_runtime_lock, flags); 693 694 *vendor = *vnd; 695 return status; 696 } 697 698 static efi_status_t 699 efi_thunk_get_next_high_mono_count(u32 *count) 700 { 701 return EFI_UNSUPPORTED; 702 } 703 704 static void 705 efi_thunk_reset_system(int reset_type, efi_status_t status, 706 unsigned long data_size, efi_char16_t *data) 707 { 708 u32 phys_data; 709 unsigned long flags; 710 711 spin_lock_irqsave(&efi_runtime_lock, flags); 712 713 phys_data = virt_to_phys_or_null_size(data, data_size); 714 715 efi_thunk(reset_system, reset_type, status, data_size, phys_data); 716 717 spin_unlock_irqrestore(&efi_runtime_lock, flags); 718 } 719 720 static efi_status_t 721 efi_thunk_update_capsule(efi_capsule_header_t **capsules, 722 unsigned long count, unsigned long sg_list) 723 { 724 /* 725 * To properly support this function we would need to repackage 726 * 'capsules' because the firmware doesn't understand 64-bit 727 * pointers. 728 */ 729 return EFI_UNSUPPORTED; 730 } 731 732 static efi_status_t 733 efi_thunk_query_variable_info(u32 attr, u64 *storage_space, 734 u64 *remaining_space, 735 u64 *max_variable_size) 736 { 737 efi_status_t status; 738 u32 phys_storage, phys_remaining, phys_max; 739 unsigned long flags; 740 741 if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION) 742 return EFI_UNSUPPORTED; 743 744 spin_lock_irqsave(&efi_runtime_lock, flags); 745 746 phys_storage = virt_to_phys_or_null(storage_space); 747 phys_remaining = virt_to_phys_or_null(remaining_space); 748 phys_max = virt_to_phys_or_null(max_variable_size); 749 750 status = efi_thunk(query_variable_info, attr, phys_storage, 751 phys_remaining, phys_max); 752 753 spin_unlock_irqrestore(&efi_runtime_lock, flags); 754 755 return status; 756 } 757 758 static efi_status_t 759 efi_thunk_query_variable_info_nonblocking(u32 attr, u64 *storage_space, 760 u64 *remaining_space, 761 u64 *max_variable_size) 762 { 763 efi_status_t status; 764 u32 phys_storage, phys_remaining, phys_max; 765 unsigned long flags; 766 767 if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION) 768 return EFI_UNSUPPORTED; 769 770 if (!spin_trylock_irqsave(&efi_runtime_lock, flags)) 771 return EFI_NOT_READY; 772 773 phys_storage = virt_to_phys_or_null(storage_space); 774 phys_remaining = virt_to_phys_or_null(remaining_space); 775 phys_max = virt_to_phys_or_null(max_variable_size); 776 777 status = efi_thunk(query_variable_info, attr, phys_storage, 778 phys_remaining, phys_max); 779 780 spin_unlock_irqrestore(&efi_runtime_lock, flags); 781 782 return status; 783 } 784 785 static efi_status_t 786 efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules, 787 unsigned long count, u64 *max_size, 788 int *reset_type) 789 { 790 /* 791 * To properly support this function we would need to repackage 792 * 'capsules' because the firmware doesn't understand 64-bit 793 * pointers. 794 */ 795 return EFI_UNSUPPORTED; 796 } 797 798 void __init efi_thunk_runtime_setup(void) 799 { 800 if (!IS_ENABLED(CONFIG_EFI_MIXED)) 801 return; 802 803 efi.get_time = efi_thunk_get_time; 804 efi.set_time = efi_thunk_set_time; 805 efi.get_wakeup_time = efi_thunk_get_wakeup_time; 806 efi.set_wakeup_time = efi_thunk_set_wakeup_time; 807 efi.get_variable = efi_thunk_get_variable; 808 efi.get_next_variable = efi_thunk_get_next_variable; 809 efi.set_variable = efi_thunk_set_variable; 810 efi.set_variable_nonblocking = efi_thunk_set_variable_nonblocking; 811 efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count; 812 efi.reset_system = efi_thunk_reset_system; 813 efi.query_variable_info = efi_thunk_query_variable_info; 814 efi.query_variable_info_nonblocking = efi_thunk_query_variable_info_nonblocking; 815 efi.update_capsule = efi_thunk_update_capsule; 816 efi.query_capsule_caps = efi_thunk_query_capsule_caps; 817 } 818 819 efi_status_t __init __no_sanitize_address 820 efi_set_virtual_address_map(unsigned long memory_map_size, 821 unsigned long descriptor_size, 822 u32 descriptor_version, 823 efi_memory_desc_t *virtual_map, 824 unsigned long systab_phys) 825 { 826 const efi_system_table_t *systab = (efi_system_table_t *)systab_phys; 827 efi_status_t status; 828 unsigned long flags; 829 830 if (efi_is_mixed()) 831 return efi_thunk_set_virtual_address_map(memory_map_size, 832 descriptor_size, 833 descriptor_version, 834 virtual_map); 835 efi_enter_mm(); 836 837 efi_fpu_begin(); 838 839 /* Disable interrupts around EFI calls: */ 840 local_irq_save(flags); 841 status = efi_call(efi.runtime->set_virtual_address_map, 842 memory_map_size, descriptor_size, 843 descriptor_version, virtual_map); 844 local_irq_restore(flags); 845 846 efi_fpu_end(); 847 848 /* grab the virtually remapped EFI runtime services table pointer */ 849 efi.runtime = READ_ONCE(systab->runtime); 850 851 efi_leave_mm(); 852 853 return status; 854 } 855