1 /* 2 * Common EFI (Extensible Firmware Interface) support functions 3 * Based on Extensible Firmware Interface Specification version 1.0 4 * 5 * Copyright (C) 1999 VA Linux Systems 6 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> 7 * Copyright (C) 1999-2002 Hewlett-Packard Co. 8 * David Mosberger-Tang <davidm@hpl.hp.com> 9 * Stephane Eranian <eranian@hpl.hp.com> 10 * Copyright (C) 2005-2008 Intel Co. 11 * Fenghua Yu <fenghua.yu@intel.com> 12 * Bibo Mao <bibo.mao@intel.com> 13 * Chandramouli Narayanan <mouli@linux.intel.com> 14 * Huang Ying <ying.huang@intel.com> 15 * Copyright (C) 2013 SuSE Labs 16 * Borislav Petkov <bp@suse.de> - runtime services VA mapping 17 * 18 * Copied from efi_32.c to eliminate the duplicated code between EFI 19 * 32/64 support code. --ying 2007-10-26 20 * 21 * All EFI Runtime Services are not implemented yet as EFI only 22 * supports physical mode addressing on SoftSDV. This is to be fixed 23 * in a future version. --drummond 1999-07-20 24 * 25 * Implemented EFI runtime services and virtual mode calls. --davidm 26 * 27 * Goutham Rao: <goutham.rao@intel.com> 28 * Skip non-WB memory and ignore empty memory ranges. 29 */ 30 31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 32 33 #include <linux/kernel.h> 34 #include <linux/init.h> 35 #include <linux/efi.h> 36 #include <linux/efi-bgrt.h> 37 #include <linux/export.h> 38 #include <linux/bootmem.h> 39 #include <linux/slab.h> 40 #include <linux/memblock.h> 41 #include <linux/spinlock.h> 42 #include <linux/uaccess.h> 43 #include <linux/time.h> 44 #include <linux/io.h> 45 #include <linux/reboot.h> 46 #include <linux/bcd.h> 47 48 #include <asm/setup.h> 49 #include <asm/efi.h> 50 #include <asm/time.h> 51 #include <asm/cacheflush.h> 52 #include <asm/tlbflush.h> 53 #include <asm/x86_init.h> 54 #include <asm/uv/uv.h> 55 56 static struct efi efi_phys __initdata; 57 static efi_system_table_t efi_systab __initdata; 58 59 static efi_config_table_type_t arch_tables[] __initdata = { 60 #ifdef CONFIG_X86_UV 61 {UV_SYSTEM_TABLE_GUID, "UVsystab", &efi.uv_systab}, 62 #endif 63 {NULL_GUID, NULL, NULL}, 64 }; 65 66 u64 efi_setup; /* efi setup_data physical address */ 67 68 static int add_efi_memmap __initdata; 69 static int __init setup_add_efi_memmap(char *arg) 70 { 71 add_efi_memmap = 1; 72 return 0; 73 } 74 early_param("add_efi_memmap", setup_add_efi_memmap); 75 76 static efi_status_t __init phys_efi_set_virtual_address_map( 77 unsigned long memory_map_size, 78 unsigned long descriptor_size, 79 u32 descriptor_version, 80 efi_memory_desc_t *virtual_map) 81 { 82 efi_status_t status; 83 unsigned long flags; 84 pgd_t *save_pgd; 85 86 save_pgd = efi_call_phys_prolog(); 87 88 /* Disable interrupts around EFI calls: */ 89 local_irq_save(flags); 90 status = efi_call_phys(efi_phys.set_virtual_address_map, 91 memory_map_size, descriptor_size, 92 descriptor_version, virtual_map); 93 local_irq_restore(flags); 94 95 efi_call_phys_epilog(save_pgd); 96 97 return status; 98 } 99 100 void __init efi_find_mirror(void) 101 { 102 efi_memory_desc_t *md; 103 u64 mirror_size = 0, total_size = 0; 104 105 for_each_efi_memory_desc(md) { 106 unsigned long long start = md->phys_addr; 107 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT; 108 109 total_size += size; 110 if (md->attribute & EFI_MEMORY_MORE_RELIABLE) { 111 memblock_mark_mirror(start, size); 112 mirror_size += size; 113 } 114 } 115 if (mirror_size) 116 pr_info("Memory: %lldM/%lldM mirrored memory\n", 117 mirror_size>>20, total_size>>20); 118 } 119 120 /* 121 * Tell the kernel about the EFI memory map. This might include 122 * more than the max 128 entries that can fit in the e820 legacy 123 * (zeropage) memory map. 124 */ 125 126 static void __init do_add_efi_memmap(void) 127 { 128 efi_memory_desc_t *md; 129 130 for_each_efi_memory_desc(md) { 131 unsigned long long start = md->phys_addr; 132 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT; 133 int e820_type; 134 135 switch (md->type) { 136 case EFI_LOADER_CODE: 137 case EFI_LOADER_DATA: 138 case EFI_BOOT_SERVICES_CODE: 139 case EFI_BOOT_SERVICES_DATA: 140 case EFI_CONVENTIONAL_MEMORY: 141 if (md->attribute & EFI_MEMORY_WB) 142 e820_type = E820_RAM; 143 else 144 e820_type = E820_RESERVED; 145 break; 146 case EFI_ACPI_RECLAIM_MEMORY: 147 e820_type = E820_ACPI; 148 break; 149 case EFI_ACPI_MEMORY_NVS: 150 e820_type = E820_NVS; 151 break; 152 case EFI_UNUSABLE_MEMORY: 153 e820_type = E820_UNUSABLE; 154 break; 155 case EFI_PERSISTENT_MEMORY: 156 e820_type = E820_PMEM; 157 break; 158 default: 159 /* 160 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE 161 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO 162 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE 163 */ 164 e820_type = E820_RESERVED; 165 break; 166 } 167 e820_add_region(start, size, e820_type); 168 } 169 sanitize_e820_map(e820->map, ARRAY_SIZE(e820->map), &e820->nr_map); 170 } 171 172 int __init efi_memblock_x86_reserve_range(void) 173 { 174 struct efi_info *e = &boot_params.efi_info; 175 struct efi_memory_map_data data; 176 phys_addr_t pmap; 177 int rv; 178 179 if (efi_enabled(EFI_PARAVIRT)) 180 return 0; 181 182 #ifdef CONFIG_X86_32 183 /* Can't handle data above 4GB at this time */ 184 if (e->efi_memmap_hi) { 185 pr_err("Memory map is above 4GB, disabling EFI.\n"); 186 return -EINVAL; 187 } 188 pmap = e->efi_memmap; 189 #else 190 pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32)); 191 #endif 192 data.phys_map = pmap; 193 data.size = e->efi_memmap_size; 194 data.desc_size = e->efi_memdesc_size; 195 data.desc_version = e->efi_memdesc_version; 196 197 rv = efi_memmap_init_early(&data); 198 if (rv) 199 return rv; 200 201 if (add_efi_memmap) 202 do_add_efi_memmap(); 203 204 WARN(efi.memmap.desc_version != 1, 205 "Unexpected EFI_MEMORY_DESCRIPTOR version %ld", 206 efi.memmap.desc_version); 207 208 memblock_reserve(pmap, efi.memmap.nr_map * efi.memmap.desc_size); 209 210 return 0; 211 } 212 213 #define OVERFLOW_ADDR_SHIFT (64 - EFI_PAGE_SHIFT) 214 #define OVERFLOW_ADDR_MASK (U64_MAX << OVERFLOW_ADDR_SHIFT) 215 #define U64_HIGH_BIT (~(U64_MAX >> 1)) 216 217 static bool __init efi_memmap_entry_valid(const efi_memory_desc_t *md, int i) 218 { 219 u64 end = (md->num_pages << EFI_PAGE_SHIFT) + md->phys_addr - 1; 220 u64 end_hi = 0; 221 char buf[64]; 222 223 if (md->num_pages == 0) { 224 end = 0; 225 } else if (md->num_pages > EFI_PAGES_MAX || 226 EFI_PAGES_MAX - md->num_pages < 227 (md->phys_addr >> EFI_PAGE_SHIFT)) { 228 end_hi = (md->num_pages & OVERFLOW_ADDR_MASK) 229 >> OVERFLOW_ADDR_SHIFT; 230 231 if ((md->phys_addr & U64_HIGH_BIT) && !(end & U64_HIGH_BIT)) 232 end_hi += 1; 233 } else { 234 return true; 235 } 236 237 pr_warn_once(FW_BUG "Invalid EFI memory map entries:\n"); 238 239 if (end_hi) { 240 pr_warn("mem%02u: %s range=[0x%016llx-0x%llx%016llx] (invalid)\n", 241 i, efi_md_typeattr_format(buf, sizeof(buf), md), 242 md->phys_addr, end_hi, end); 243 } else { 244 pr_warn("mem%02u: %s range=[0x%016llx-0x%016llx] (invalid)\n", 245 i, efi_md_typeattr_format(buf, sizeof(buf), md), 246 md->phys_addr, end); 247 } 248 return false; 249 } 250 251 static void __init efi_clean_memmap(void) 252 { 253 efi_memory_desc_t *out = efi.memmap.map; 254 const efi_memory_desc_t *in = out; 255 const efi_memory_desc_t *end = efi.memmap.map_end; 256 int i, n_removal; 257 258 for (i = n_removal = 0; in < end; i++) { 259 if (efi_memmap_entry_valid(in, i)) { 260 if (out != in) 261 memcpy(out, in, efi.memmap.desc_size); 262 out = (void *)out + efi.memmap.desc_size; 263 } else { 264 n_removal++; 265 } 266 in = (void *)in + efi.memmap.desc_size; 267 } 268 269 if (n_removal > 0) { 270 u64 size = efi.memmap.nr_map - n_removal; 271 272 pr_warn("Removing %d invalid memory map entries.\n", n_removal); 273 efi_memmap_install(efi.memmap.phys_map, size); 274 } 275 } 276 277 void __init efi_print_memmap(void) 278 { 279 efi_memory_desc_t *md; 280 int i = 0; 281 282 for_each_efi_memory_desc(md) { 283 char buf[64]; 284 285 pr_info("mem%02u: %s range=[0x%016llx-0x%016llx] (%lluMB)\n", 286 i++, efi_md_typeattr_format(buf, sizeof(buf), md), 287 md->phys_addr, 288 md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1, 289 (md->num_pages >> (20 - EFI_PAGE_SHIFT))); 290 } 291 } 292 293 static int __init efi_systab_init(void *phys) 294 { 295 if (efi_enabled(EFI_64BIT)) { 296 efi_system_table_64_t *systab64; 297 struct efi_setup_data *data = NULL; 298 u64 tmp = 0; 299 300 if (efi_setup) { 301 data = early_memremap(efi_setup, sizeof(*data)); 302 if (!data) 303 return -ENOMEM; 304 } 305 systab64 = early_memremap((unsigned long)phys, 306 sizeof(*systab64)); 307 if (systab64 == NULL) { 308 pr_err("Couldn't map the system table!\n"); 309 if (data) 310 early_memunmap(data, sizeof(*data)); 311 return -ENOMEM; 312 } 313 314 efi_systab.hdr = systab64->hdr; 315 efi_systab.fw_vendor = data ? (unsigned long)data->fw_vendor : 316 systab64->fw_vendor; 317 tmp |= data ? data->fw_vendor : systab64->fw_vendor; 318 efi_systab.fw_revision = systab64->fw_revision; 319 efi_systab.con_in_handle = systab64->con_in_handle; 320 tmp |= systab64->con_in_handle; 321 efi_systab.con_in = systab64->con_in; 322 tmp |= systab64->con_in; 323 efi_systab.con_out_handle = systab64->con_out_handle; 324 tmp |= systab64->con_out_handle; 325 efi_systab.con_out = systab64->con_out; 326 tmp |= systab64->con_out; 327 efi_systab.stderr_handle = systab64->stderr_handle; 328 tmp |= systab64->stderr_handle; 329 efi_systab.stderr = systab64->stderr; 330 tmp |= systab64->stderr; 331 efi_systab.runtime = data ? 332 (void *)(unsigned long)data->runtime : 333 (void *)(unsigned long)systab64->runtime; 334 tmp |= data ? data->runtime : systab64->runtime; 335 efi_systab.boottime = (void *)(unsigned long)systab64->boottime; 336 tmp |= systab64->boottime; 337 efi_systab.nr_tables = systab64->nr_tables; 338 efi_systab.tables = data ? (unsigned long)data->tables : 339 systab64->tables; 340 tmp |= data ? data->tables : systab64->tables; 341 342 early_memunmap(systab64, sizeof(*systab64)); 343 if (data) 344 early_memunmap(data, sizeof(*data)); 345 #ifdef CONFIG_X86_32 346 if (tmp >> 32) { 347 pr_err("EFI data located above 4GB, disabling EFI.\n"); 348 return -EINVAL; 349 } 350 #endif 351 } else { 352 efi_system_table_32_t *systab32; 353 354 systab32 = early_memremap((unsigned long)phys, 355 sizeof(*systab32)); 356 if (systab32 == NULL) { 357 pr_err("Couldn't map the system table!\n"); 358 return -ENOMEM; 359 } 360 361 efi_systab.hdr = systab32->hdr; 362 efi_systab.fw_vendor = systab32->fw_vendor; 363 efi_systab.fw_revision = systab32->fw_revision; 364 efi_systab.con_in_handle = systab32->con_in_handle; 365 efi_systab.con_in = systab32->con_in; 366 efi_systab.con_out_handle = systab32->con_out_handle; 367 efi_systab.con_out = systab32->con_out; 368 efi_systab.stderr_handle = systab32->stderr_handle; 369 efi_systab.stderr = systab32->stderr; 370 efi_systab.runtime = (void *)(unsigned long)systab32->runtime; 371 efi_systab.boottime = (void *)(unsigned long)systab32->boottime; 372 efi_systab.nr_tables = systab32->nr_tables; 373 efi_systab.tables = systab32->tables; 374 375 early_memunmap(systab32, sizeof(*systab32)); 376 } 377 378 efi.systab = &efi_systab; 379 380 /* 381 * Verify the EFI Table 382 */ 383 if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) { 384 pr_err("System table signature incorrect!\n"); 385 return -EINVAL; 386 } 387 if ((efi.systab->hdr.revision >> 16) == 0) 388 pr_err("Warning: System table version %d.%02d, expected 1.00 or greater!\n", 389 efi.systab->hdr.revision >> 16, 390 efi.systab->hdr.revision & 0xffff); 391 392 return 0; 393 } 394 395 static int __init efi_runtime_init32(void) 396 { 397 efi_runtime_services_32_t *runtime; 398 399 runtime = early_memremap((unsigned long)efi.systab->runtime, 400 sizeof(efi_runtime_services_32_t)); 401 if (!runtime) { 402 pr_err("Could not map the runtime service table!\n"); 403 return -ENOMEM; 404 } 405 406 /* 407 * We will only need *early* access to the SetVirtualAddressMap 408 * EFI runtime service. All other runtime services will be called 409 * via the virtual mapping. 410 */ 411 efi_phys.set_virtual_address_map = 412 (efi_set_virtual_address_map_t *) 413 (unsigned long)runtime->set_virtual_address_map; 414 early_memunmap(runtime, sizeof(efi_runtime_services_32_t)); 415 416 return 0; 417 } 418 419 static int __init efi_runtime_init64(void) 420 { 421 efi_runtime_services_64_t *runtime; 422 423 runtime = early_memremap((unsigned long)efi.systab->runtime, 424 sizeof(efi_runtime_services_64_t)); 425 if (!runtime) { 426 pr_err("Could not map the runtime service table!\n"); 427 return -ENOMEM; 428 } 429 430 /* 431 * We will only need *early* access to the SetVirtualAddressMap 432 * EFI runtime service. All other runtime services will be called 433 * via the virtual mapping. 434 */ 435 efi_phys.set_virtual_address_map = 436 (efi_set_virtual_address_map_t *) 437 (unsigned long)runtime->set_virtual_address_map; 438 early_memunmap(runtime, sizeof(efi_runtime_services_64_t)); 439 440 return 0; 441 } 442 443 static int __init efi_runtime_init(void) 444 { 445 int rv; 446 447 /* 448 * Check out the runtime services table. We need to map 449 * the runtime services table so that we can grab the physical 450 * address of several of the EFI runtime functions, needed to 451 * set the firmware into virtual mode. 452 * 453 * When EFI_PARAVIRT is in force then we could not map runtime 454 * service memory region because we do not have direct access to it. 455 * However, runtime services are available through proxy functions 456 * (e.g. in case of Xen dom0 EFI implementation they call special 457 * hypercall which executes relevant EFI functions) and that is why 458 * they are always enabled. 459 */ 460 461 if (!efi_enabled(EFI_PARAVIRT)) { 462 if (efi_enabled(EFI_64BIT)) 463 rv = efi_runtime_init64(); 464 else 465 rv = efi_runtime_init32(); 466 467 if (rv) 468 return rv; 469 } 470 471 set_bit(EFI_RUNTIME_SERVICES, &efi.flags); 472 473 return 0; 474 } 475 476 void __init efi_init(void) 477 { 478 efi_char16_t *c16; 479 char vendor[100] = "unknown"; 480 int i = 0; 481 void *tmp; 482 483 #ifdef CONFIG_X86_32 484 if (boot_params.efi_info.efi_systab_hi || 485 boot_params.efi_info.efi_memmap_hi) { 486 pr_info("Table located above 4GB, disabling EFI.\n"); 487 return; 488 } 489 efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab; 490 #else 491 efi_phys.systab = (efi_system_table_t *) 492 (boot_params.efi_info.efi_systab | 493 ((__u64)boot_params.efi_info.efi_systab_hi<<32)); 494 #endif 495 496 if (efi_systab_init(efi_phys.systab)) 497 return; 498 499 efi.config_table = (unsigned long)efi.systab->tables; 500 efi.fw_vendor = (unsigned long)efi.systab->fw_vendor; 501 efi.runtime = (unsigned long)efi.systab->runtime; 502 503 /* 504 * Show what we know for posterity 505 */ 506 c16 = tmp = early_memremap(efi.systab->fw_vendor, 2); 507 if (c16) { 508 for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i) 509 vendor[i] = *c16++; 510 vendor[i] = '\0'; 511 } else 512 pr_err("Could not map the firmware vendor!\n"); 513 early_memunmap(tmp, 2); 514 515 pr_info("EFI v%u.%.02u by %s\n", 516 efi.systab->hdr.revision >> 16, 517 efi.systab->hdr.revision & 0xffff, vendor); 518 519 if (efi_reuse_config(efi.systab->tables, efi.systab->nr_tables)) 520 return; 521 522 if (efi_config_init(arch_tables)) 523 return; 524 525 /* 526 * Note: We currently don't support runtime services on an EFI 527 * that doesn't match the kernel 32/64-bit mode. 528 */ 529 530 if (!efi_runtime_supported()) 531 pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n"); 532 else { 533 if (efi_runtime_disabled() || efi_runtime_init()) { 534 efi_memmap_unmap(); 535 return; 536 } 537 } 538 539 efi_clean_memmap(); 540 541 if (efi_enabled(EFI_DBG)) 542 efi_print_memmap(); 543 } 544 545 void __init efi_late_init(void) 546 { 547 efi_bgrt_init(); 548 } 549 550 void __init efi_set_executable(efi_memory_desc_t *md, bool executable) 551 { 552 u64 addr, npages; 553 554 addr = md->virt_addr; 555 npages = md->num_pages; 556 557 memrange_efi_to_native(&addr, &npages); 558 559 if (executable) 560 set_memory_x(addr, npages); 561 else 562 set_memory_nx(addr, npages); 563 } 564 565 void __init runtime_code_page_mkexec(void) 566 { 567 efi_memory_desc_t *md; 568 569 /* Make EFI runtime service code area executable */ 570 for_each_efi_memory_desc(md) { 571 if (md->type != EFI_RUNTIME_SERVICES_CODE) 572 continue; 573 574 efi_set_executable(md, true); 575 } 576 } 577 578 void __init efi_memory_uc(u64 addr, unsigned long size) 579 { 580 unsigned long page_shift = 1UL << EFI_PAGE_SHIFT; 581 u64 npages; 582 583 npages = round_up(size, page_shift) / page_shift; 584 memrange_efi_to_native(&addr, &npages); 585 set_memory_uc(addr, npages); 586 } 587 588 void __init old_map_region(efi_memory_desc_t *md) 589 { 590 u64 start_pfn, end_pfn, end; 591 unsigned long size; 592 void *va; 593 594 start_pfn = PFN_DOWN(md->phys_addr); 595 size = md->num_pages << PAGE_SHIFT; 596 end = md->phys_addr + size; 597 end_pfn = PFN_UP(end); 598 599 if (pfn_range_is_mapped(start_pfn, end_pfn)) { 600 va = __va(md->phys_addr); 601 602 if (!(md->attribute & EFI_MEMORY_WB)) 603 efi_memory_uc((u64)(unsigned long)va, size); 604 } else 605 va = efi_ioremap(md->phys_addr, size, 606 md->type, md->attribute); 607 608 md->virt_addr = (u64) (unsigned long) va; 609 if (!va) 610 pr_err("ioremap of 0x%llX failed!\n", 611 (unsigned long long)md->phys_addr); 612 } 613 614 /* Merge contiguous regions of the same type and attribute */ 615 static void __init efi_merge_regions(void) 616 { 617 efi_memory_desc_t *md, *prev_md = NULL; 618 619 for_each_efi_memory_desc(md) { 620 u64 prev_size; 621 622 if (!prev_md) { 623 prev_md = md; 624 continue; 625 } 626 627 if (prev_md->type != md->type || 628 prev_md->attribute != md->attribute) { 629 prev_md = md; 630 continue; 631 } 632 633 prev_size = prev_md->num_pages << EFI_PAGE_SHIFT; 634 635 if (md->phys_addr == (prev_md->phys_addr + prev_size)) { 636 prev_md->num_pages += md->num_pages; 637 md->type = EFI_RESERVED_TYPE; 638 md->attribute = 0; 639 continue; 640 } 641 prev_md = md; 642 } 643 } 644 645 static void __init get_systab_virt_addr(efi_memory_desc_t *md) 646 { 647 unsigned long size; 648 u64 end, systab; 649 650 size = md->num_pages << EFI_PAGE_SHIFT; 651 end = md->phys_addr + size; 652 systab = (u64)(unsigned long)efi_phys.systab; 653 if (md->phys_addr <= systab && systab < end) { 654 systab += md->virt_addr - md->phys_addr; 655 efi.systab = (efi_system_table_t *)(unsigned long)systab; 656 } 657 } 658 659 static void *realloc_pages(void *old_memmap, int old_shift) 660 { 661 void *ret; 662 663 ret = (void *)__get_free_pages(GFP_KERNEL, old_shift + 1); 664 if (!ret) 665 goto out; 666 667 /* 668 * A first-time allocation doesn't have anything to copy. 669 */ 670 if (!old_memmap) 671 return ret; 672 673 memcpy(ret, old_memmap, PAGE_SIZE << old_shift); 674 675 out: 676 free_pages((unsigned long)old_memmap, old_shift); 677 return ret; 678 } 679 680 /* 681 * Iterate the EFI memory map in reverse order because the regions 682 * will be mapped top-down. The end result is the same as if we had 683 * mapped things forward, but doesn't require us to change the 684 * existing implementation of efi_map_region(). 685 */ 686 static inline void *efi_map_next_entry_reverse(void *entry) 687 { 688 /* Initial call */ 689 if (!entry) 690 return efi.memmap.map_end - efi.memmap.desc_size; 691 692 entry -= efi.memmap.desc_size; 693 if (entry < efi.memmap.map) 694 return NULL; 695 696 return entry; 697 } 698 699 /* 700 * efi_map_next_entry - Return the next EFI memory map descriptor 701 * @entry: Previous EFI memory map descriptor 702 * 703 * This is a helper function to iterate over the EFI memory map, which 704 * we do in different orders depending on the current configuration. 705 * 706 * To begin traversing the memory map @entry must be %NULL. 707 * 708 * Returns %NULL when we reach the end of the memory map. 709 */ 710 static void *efi_map_next_entry(void *entry) 711 { 712 if (!efi_enabled(EFI_OLD_MEMMAP) && efi_enabled(EFI_64BIT)) { 713 /* 714 * Starting in UEFI v2.5 the EFI_PROPERTIES_TABLE 715 * config table feature requires us to map all entries 716 * in the same order as they appear in the EFI memory 717 * map. That is to say, entry N must have a lower 718 * virtual address than entry N+1. This is because the 719 * firmware toolchain leaves relative references in 720 * the code/data sections, which are split and become 721 * separate EFI memory regions. Mapping things 722 * out-of-order leads to the firmware accessing 723 * unmapped addresses. 724 * 725 * Since we need to map things this way whether or not 726 * the kernel actually makes use of 727 * EFI_PROPERTIES_TABLE, let's just switch to this 728 * scheme by default for 64-bit. 729 */ 730 return efi_map_next_entry_reverse(entry); 731 } 732 733 /* Initial call */ 734 if (!entry) 735 return efi.memmap.map; 736 737 entry += efi.memmap.desc_size; 738 if (entry >= efi.memmap.map_end) 739 return NULL; 740 741 return entry; 742 } 743 744 static bool should_map_region(efi_memory_desc_t *md) 745 { 746 /* 747 * Runtime regions always require runtime mappings (obviously). 748 */ 749 if (md->attribute & EFI_MEMORY_RUNTIME) 750 return true; 751 752 /* 753 * 32-bit EFI doesn't suffer from the bug that requires us to 754 * reserve boot services regions, and mixed mode support 755 * doesn't exist for 32-bit kernels. 756 */ 757 if (IS_ENABLED(CONFIG_X86_32)) 758 return false; 759 760 /* 761 * Map all of RAM so that we can access arguments in the 1:1 762 * mapping when making EFI runtime calls. 763 */ 764 if (IS_ENABLED(CONFIG_EFI_MIXED) && !efi_is_native()) { 765 if (md->type == EFI_CONVENTIONAL_MEMORY || 766 md->type == EFI_LOADER_DATA || 767 md->type == EFI_LOADER_CODE) 768 return true; 769 } 770 771 /* 772 * Map boot services regions as a workaround for buggy 773 * firmware that accesses them even when they shouldn't. 774 * 775 * See efi_{reserve,free}_boot_services(). 776 */ 777 if (md->type == EFI_BOOT_SERVICES_CODE || 778 md->type == EFI_BOOT_SERVICES_DATA) 779 return true; 780 781 return false; 782 } 783 784 /* 785 * Map the efi memory ranges of the runtime services and update new_mmap with 786 * virtual addresses. 787 */ 788 static void * __init efi_map_regions(int *count, int *pg_shift) 789 { 790 void *p, *new_memmap = NULL; 791 unsigned long left = 0; 792 unsigned long desc_size; 793 efi_memory_desc_t *md; 794 795 desc_size = efi.memmap.desc_size; 796 797 p = NULL; 798 while ((p = efi_map_next_entry(p))) { 799 md = p; 800 801 if (!should_map_region(md)) 802 continue; 803 804 efi_map_region(md); 805 get_systab_virt_addr(md); 806 807 if (left < desc_size) { 808 new_memmap = realloc_pages(new_memmap, *pg_shift); 809 if (!new_memmap) 810 return NULL; 811 812 left += PAGE_SIZE << *pg_shift; 813 (*pg_shift)++; 814 } 815 816 memcpy(new_memmap + (*count * desc_size), md, desc_size); 817 818 left -= desc_size; 819 (*count)++; 820 } 821 822 return new_memmap; 823 } 824 825 static void __init kexec_enter_virtual_mode(void) 826 { 827 #ifdef CONFIG_KEXEC_CORE 828 efi_memory_desc_t *md; 829 unsigned int num_pages; 830 831 efi.systab = NULL; 832 833 /* 834 * We don't do virtual mode, since we don't do runtime services, on 835 * non-native EFI 836 */ 837 if (!efi_is_native()) { 838 efi_memmap_unmap(); 839 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); 840 return; 841 } 842 843 if (efi_alloc_page_tables()) { 844 pr_err("Failed to allocate EFI page tables\n"); 845 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); 846 return; 847 } 848 849 /* 850 * Map efi regions which were passed via setup_data. The virt_addr is a 851 * fixed addr which was used in first kernel of a kexec boot. 852 */ 853 for_each_efi_memory_desc(md) { 854 efi_map_region_fixed(md); /* FIXME: add error handling */ 855 get_systab_virt_addr(md); 856 } 857 858 /* 859 * Unregister the early EFI memmap from efi_init() and install 860 * the new EFI memory map. 861 */ 862 efi_memmap_unmap(); 863 864 if (efi_memmap_init_late(efi.memmap.phys_map, 865 efi.memmap.desc_size * efi.memmap.nr_map)) { 866 pr_err("Failed to remap late EFI memory map\n"); 867 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); 868 return; 869 } 870 871 BUG_ON(!efi.systab); 872 873 num_pages = ALIGN(efi.memmap.nr_map * efi.memmap.desc_size, PAGE_SIZE); 874 num_pages >>= PAGE_SHIFT; 875 876 if (efi_setup_page_tables(efi.memmap.phys_map, num_pages)) { 877 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); 878 return; 879 } 880 881 efi_sync_low_kernel_mappings(); 882 883 /* 884 * Now that EFI is in virtual mode, update the function 885 * pointers in the runtime service table to the new virtual addresses. 886 * 887 * Call EFI services through wrapper functions. 888 */ 889 efi.runtime_version = efi_systab.hdr.revision; 890 891 efi_native_runtime_setup(); 892 893 efi.set_virtual_address_map = NULL; 894 895 if (efi_enabled(EFI_OLD_MEMMAP) && (__supported_pte_mask & _PAGE_NX)) 896 runtime_code_page_mkexec(); 897 898 /* clean DUMMY object */ 899 efi_delete_dummy_variable(); 900 #endif 901 } 902 903 /* 904 * This function will switch the EFI runtime services to virtual mode. 905 * Essentially, we look through the EFI memmap and map every region that 906 * has the runtime attribute bit set in its memory descriptor into the 907 * efi_pgd page table. 908 * 909 * The old method which used to update that memory descriptor with the 910 * virtual address obtained from ioremap() is still supported when the 911 * kernel is booted with efi=old_map on its command line. Same old 912 * method enabled the runtime services to be called without having to 913 * thunk back into physical mode for every invocation. 914 * 915 * The new method does a pagetable switch in a preemption-safe manner 916 * so that we're in a different address space when calling a runtime 917 * function. For function arguments passing we do copy the PUDs of the 918 * kernel page table into efi_pgd prior to each call. 919 * 920 * Specially for kexec boot, efi runtime maps in previous kernel should 921 * be passed in via setup_data. In that case runtime ranges will be mapped 922 * to the same virtual addresses as the first kernel, see 923 * kexec_enter_virtual_mode(). 924 */ 925 static void __init __efi_enter_virtual_mode(void) 926 { 927 int count = 0, pg_shift = 0; 928 void *new_memmap = NULL; 929 efi_status_t status; 930 unsigned long pa; 931 932 efi.systab = NULL; 933 934 if (efi_alloc_page_tables()) { 935 pr_err("Failed to allocate EFI page tables\n"); 936 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); 937 return; 938 } 939 940 efi_merge_regions(); 941 new_memmap = efi_map_regions(&count, &pg_shift); 942 if (!new_memmap) { 943 pr_err("Error reallocating memory, EFI runtime non-functional!\n"); 944 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); 945 return; 946 } 947 948 pa = __pa(new_memmap); 949 950 /* 951 * Unregister the early EFI memmap from efi_init() and install 952 * the new EFI memory map that we are about to pass to the 953 * firmware via SetVirtualAddressMap(). 954 */ 955 efi_memmap_unmap(); 956 957 if (efi_memmap_init_late(pa, efi.memmap.desc_size * count)) { 958 pr_err("Failed to remap late EFI memory map\n"); 959 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); 960 return; 961 } 962 963 BUG_ON(!efi.systab); 964 965 if (efi_setup_page_tables(pa, 1 << pg_shift)) { 966 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); 967 return; 968 } 969 970 efi_sync_low_kernel_mappings(); 971 972 if (efi_is_native()) { 973 status = phys_efi_set_virtual_address_map( 974 efi.memmap.desc_size * count, 975 efi.memmap.desc_size, 976 efi.memmap.desc_version, 977 (efi_memory_desc_t *)pa); 978 } else { 979 status = efi_thunk_set_virtual_address_map( 980 efi_phys.set_virtual_address_map, 981 efi.memmap.desc_size * count, 982 efi.memmap.desc_size, 983 efi.memmap.desc_version, 984 (efi_memory_desc_t *)pa); 985 } 986 987 if (status != EFI_SUCCESS) { 988 pr_alert("Unable to switch EFI into virtual mode (status=%lx)!\n", 989 status); 990 panic("EFI call to SetVirtualAddressMap() failed!"); 991 } 992 993 /* 994 * Now that EFI is in virtual mode, update the function 995 * pointers in the runtime service table to the new virtual addresses. 996 * 997 * Call EFI services through wrapper functions. 998 */ 999 efi.runtime_version = efi_systab.hdr.revision; 1000 1001 if (efi_is_native()) 1002 efi_native_runtime_setup(); 1003 else 1004 efi_thunk_runtime_setup(); 1005 1006 efi.set_virtual_address_map = NULL; 1007 1008 /* 1009 * Apply more restrictive page table mapping attributes now that 1010 * SVAM() has been called and the firmware has performed all 1011 * necessary relocation fixups for the new virtual addresses. 1012 */ 1013 efi_runtime_update_mappings(); 1014 efi_dump_pagetable(); 1015 1016 /* clean DUMMY object */ 1017 efi_delete_dummy_variable(); 1018 } 1019 1020 void __init efi_enter_virtual_mode(void) 1021 { 1022 if (efi_enabled(EFI_PARAVIRT)) 1023 return; 1024 1025 if (efi_setup) 1026 kexec_enter_virtual_mode(); 1027 else 1028 __efi_enter_virtual_mode(); 1029 } 1030 1031 /* 1032 * Convenience functions to obtain memory types and attributes 1033 */ 1034 u32 efi_mem_type(unsigned long phys_addr) 1035 { 1036 efi_memory_desc_t *md; 1037 1038 if (!efi_enabled(EFI_MEMMAP)) 1039 return 0; 1040 1041 for_each_efi_memory_desc(md) { 1042 if ((md->phys_addr <= phys_addr) && 1043 (phys_addr < (md->phys_addr + 1044 (md->num_pages << EFI_PAGE_SHIFT)))) 1045 return md->type; 1046 } 1047 return 0; 1048 } 1049 1050 static int __init arch_parse_efi_cmdline(char *str) 1051 { 1052 if (!str) { 1053 pr_warn("need at least one option\n"); 1054 return -EINVAL; 1055 } 1056 1057 if (parse_option_str(str, "old_map")) 1058 set_bit(EFI_OLD_MEMMAP, &efi.flags); 1059 1060 return 0; 1061 } 1062 early_param("efi", arch_parse_efi_cmdline); 1063