xref: /openbmc/linux/arch/x86/platform/efi/efi.c (revision fc28ab18)
1 /*
2  * Common EFI (Extensible Firmware Interface) support functions
3  * Based on Extensible Firmware Interface Specification version 1.0
4  *
5  * Copyright (C) 1999 VA Linux Systems
6  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
7  * Copyright (C) 1999-2002 Hewlett-Packard Co.
8  *	David Mosberger-Tang <davidm@hpl.hp.com>
9  *	Stephane Eranian <eranian@hpl.hp.com>
10  * Copyright (C) 2005-2008 Intel Co.
11  *	Fenghua Yu <fenghua.yu@intel.com>
12  *	Bibo Mao <bibo.mao@intel.com>
13  *	Chandramouli Narayanan <mouli@linux.intel.com>
14  *	Huang Ying <ying.huang@intel.com>
15  * Copyright (C) 2013 SuSE Labs
16  *	Borislav Petkov <bp@suse.de> - runtime services VA mapping
17  *
18  * Copied from efi_32.c to eliminate the duplicated code between EFI
19  * 32/64 support code. --ying 2007-10-26
20  *
21  * All EFI Runtime Services are not implemented yet as EFI only
22  * supports physical mode addressing on SoftSDV. This is to be fixed
23  * in a future version.  --drummond 1999-07-20
24  *
25  * Implemented EFI runtime services and virtual mode calls.  --davidm
26  *
27  * Goutham Rao: <goutham.rao@intel.com>
28  *	Skip non-WB memory and ignore empty memory ranges.
29  */
30 
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/efi.h>
36 #include <linux/efi-bgrt.h>
37 #include <linux/export.h>
38 #include <linux/bootmem.h>
39 #include <linux/slab.h>
40 #include <linux/memblock.h>
41 #include <linux/spinlock.h>
42 #include <linux/uaccess.h>
43 #include <linux/time.h>
44 #include <linux/io.h>
45 #include <linux/reboot.h>
46 #include <linux/bcd.h>
47 
48 #include <asm/setup.h>
49 #include <asm/efi.h>
50 #include <asm/time.h>
51 #include <asm/cacheflush.h>
52 #include <asm/tlbflush.h>
53 #include <asm/x86_init.h>
54 #include <asm/uv/uv.h>
55 
56 static struct efi efi_phys __initdata;
57 static efi_system_table_t efi_systab __initdata;
58 
59 static efi_config_table_type_t arch_tables[] __initdata = {
60 #ifdef CONFIG_X86_UV
61 	{UV_SYSTEM_TABLE_GUID, "UVsystab", &efi.uv_systab},
62 #endif
63 	{NULL_GUID, NULL, NULL},
64 };
65 
66 u64 efi_setup;		/* efi setup_data physical address */
67 
68 static int add_efi_memmap __initdata;
69 static int __init setup_add_efi_memmap(char *arg)
70 {
71 	add_efi_memmap = 1;
72 	return 0;
73 }
74 early_param("add_efi_memmap", setup_add_efi_memmap);
75 
76 static efi_status_t __init phys_efi_set_virtual_address_map(
77 	unsigned long memory_map_size,
78 	unsigned long descriptor_size,
79 	u32 descriptor_version,
80 	efi_memory_desc_t *virtual_map)
81 {
82 	efi_status_t status;
83 	unsigned long flags;
84 	pgd_t *save_pgd;
85 
86 	save_pgd = efi_call_phys_prolog();
87 
88 	/* Disable interrupts around EFI calls: */
89 	local_irq_save(flags);
90 	status = efi_call_phys(efi_phys.set_virtual_address_map,
91 			       memory_map_size, descriptor_size,
92 			       descriptor_version, virtual_map);
93 	local_irq_restore(flags);
94 
95 	efi_call_phys_epilog(save_pgd);
96 
97 	return status;
98 }
99 
100 void __init efi_find_mirror(void)
101 {
102 	efi_memory_desc_t *md;
103 	u64 mirror_size = 0, total_size = 0;
104 
105 	for_each_efi_memory_desc(md) {
106 		unsigned long long start = md->phys_addr;
107 		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
108 
109 		total_size += size;
110 		if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
111 			memblock_mark_mirror(start, size);
112 			mirror_size += size;
113 		}
114 	}
115 	if (mirror_size)
116 		pr_info("Memory: %lldM/%lldM mirrored memory\n",
117 			mirror_size>>20, total_size>>20);
118 }
119 
120 /*
121  * Tell the kernel about the EFI memory map.  This might include
122  * more than the max 128 entries that can fit in the e820 legacy
123  * (zeropage) memory map.
124  */
125 
126 static void __init do_add_efi_memmap(void)
127 {
128 	efi_memory_desc_t *md;
129 
130 	for_each_efi_memory_desc(md) {
131 		unsigned long long start = md->phys_addr;
132 		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
133 		int e820_type;
134 
135 		switch (md->type) {
136 		case EFI_LOADER_CODE:
137 		case EFI_LOADER_DATA:
138 		case EFI_BOOT_SERVICES_CODE:
139 		case EFI_BOOT_SERVICES_DATA:
140 		case EFI_CONVENTIONAL_MEMORY:
141 			if (md->attribute & EFI_MEMORY_WB)
142 				e820_type = E820_RAM;
143 			else
144 				e820_type = E820_RESERVED;
145 			break;
146 		case EFI_ACPI_RECLAIM_MEMORY:
147 			e820_type = E820_ACPI;
148 			break;
149 		case EFI_ACPI_MEMORY_NVS:
150 			e820_type = E820_NVS;
151 			break;
152 		case EFI_UNUSABLE_MEMORY:
153 			e820_type = E820_UNUSABLE;
154 			break;
155 		case EFI_PERSISTENT_MEMORY:
156 			e820_type = E820_PMEM;
157 			break;
158 		default:
159 			/*
160 			 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
161 			 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
162 			 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
163 			 */
164 			e820_type = E820_RESERVED;
165 			break;
166 		}
167 		e820_add_region(start, size, e820_type);
168 	}
169 	sanitize_e820_map(e820->map, ARRAY_SIZE(e820->map), &e820->nr_map);
170 }
171 
172 int __init efi_memblock_x86_reserve_range(void)
173 {
174 	struct efi_info *e = &boot_params.efi_info;
175 	struct efi_memory_map_data data;
176 	phys_addr_t pmap;
177 	int rv;
178 
179 	if (efi_enabled(EFI_PARAVIRT))
180 		return 0;
181 
182 #ifdef CONFIG_X86_32
183 	/* Can't handle data above 4GB at this time */
184 	if (e->efi_memmap_hi) {
185 		pr_err("Memory map is above 4GB, disabling EFI.\n");
186 		return -EINVAL;
187 	}
188 	pmap =  e->efi_memmap;
189 #else
190 	pmap = (e->efi_memmap |	((__u64)e->efi_memmap_hi << 32));
191 #endif
192 	data.phys_map		= pmap;
193 	data.size 		= e->efi_memmap_size;
194 	data.desc_size		= e->efi_memdesc_size;
195 	data.desc_version	= e->efi_memdesc_version;
196 
197 	rv = efi_memmap_init_early(&data);
198 	if (rv)
199 		return rv;
200 
201 	if (add_efi_memmap)
202 		do_add_efi_memmap();
203 
204 	WARN(efi.memmap.desc_version != 1,
205 	     "Unexpected EFI_MEMORY_DESCRIPTOR version %ld",
206 	     efi.memmap.desc_version);
207 
208 	memblock_reserve(pmap, efi.memmap.nr_map * efi.memmap.desc_size);
209 
210 	return 0;
211 }
212 
213 #define OVERFLOW_ADDR_SHIFT	(64 - EFI_PAGE_SHIFT)
214 #define OVERFLOW_ADDR_MASK	(U64_MAX << OVERFLOW_ADDR_SHIFT)
215 #define U64_HIGH_BIT		(~(U64_MAX >> 1))
216 
217 static bool __init efi_memmap_entry_valid(const efi_memory_desc_t *md, int i)
218 {
219 	u64 end = (md->num_pages << EFI_PAGE_SHIFT) + md->phys_addr - 1;
220 	u64 end_hi = 0;
221 	char buf[64];
222 
223 	if (md->num_pages == 0) {
224 		end = 0;
225 	} else if (md->num_pages > EFI_PAGES_MAX ||
226 		   EFI_PAGES_MAX - md->num_pages <
227 		   (md->phys_addr >> EFI_PAGE_SHIFT)) {
228 		end_hi = (md->num_pages & OVERFLOW_ADDR_MASK)
229 			>> OVERFLOW_ADDR_SHIFT;
230 
231 		if ((md->phys_addr & U64_HIGH_BIT) && !(end & U64_HIGH_BIT))
232 			end_hi += 1;
233 	} else {
234 		return true;
235 	}
236 
237 	pr_warn_once(FW_BUG "Invalid EFI memory map entries:\n");
238 
239 	if (end_hi) {
240 		pr_warn("mem%02u: %s range=[0x%016llx-0x%llx%016llx] (invalid)\n",
241 			i, efi_md_typeattr_format(buf, sizeof(buf), md),
242 			md->phys_addr, end_hi, end);
243 	} else {
244 		pr_warn("mem%02u: %s range=[0x%016llx-0x%016llx] (invalid)\n",
245 			i, efi_md_typeattr_format(buf, sizeof(buf), md),
246 			md->phys_addr, end);
247 	}
248 	return false;
249 }
250 
251 static void __init efi_clean_memmap(void)
252 {
253 	efi_memory_desc_t *out = efi.memmap.map;
254 	const efi_memory_desc_t *in = out;
255 	const efi_memory_desc_t *end = efi.memmap.map_end;
256 	int i, n_removal;
257 
258 	for (i = n_removal = 0; in < end; i++) {
259 		if (efi_memmap_entry_valid(in, i)) {
260 			if (out != in)
261 				memcpy(out, in, efi.memmap.desc_size);
262 			out = (void *)out + efi.memmap.desc_size;
263 		} else {
264 			n_removal++;
265 		}
266 		in = (void *)in + efi.memmap.desc_size;
267 	}
268 
269 	if (n_removal > 0) {
270 		u64 size = efi.memmap.nr_map - n_removal;
271 
272 		pr_warn("Removing %d invalid memory map entries.\n", n_removal);
273 		efi_memmap_install(efi.memmap.phys_map, size);
274 	}
275 }
276 
277 void __init efi_print_memmap(void)
278 {
279 	efi_memory_desc_t *md;
280 	int i = 0;
281 
282 	for_each_efi_memory_desc(md) {
283 		char buf[64];
284 
285 		pr_info("mem%02u: %s range=[0x%016llx-0x%016llx] (%lluMB)\n",
286 			i++, efi_md_typeattr_format(buf, sizeof(buf), md),
287 			md->phys_addr,
288 			md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1,
289 			(md->num_pages >> (20 - EFI_PAGE_SHIFT)));
290 	}
291 }
292 
293 static int __init efi_systab_init(void *phys)
294 {
295 	if (efi_enabled(EFI_64BIT)) {
296 		efi_system_table_64_t *systab64;
297 		struct efi_setup_data *data = NULL;
298 		u64 tmp = 0;
299 
300 		if (efi_setup) {
301 			data = early_memremap(efi_setup, sizeof(*data));
302 			if (!data)
303 				return -ENOMEM;
304 		}
305 		systab64 = early_memremap((unsigned long)phys,
306 					 sizeof(*systab64));
307 		if (systab64 == NULL) {
308 			pr_err("Couldn't map the system table!\n");
309 			if (data)
310 				early_memunmap(data, sizeof(*data));
311 			return -ENOMEM;
312 		}
313 
314 		efi_systab.hdr = systab64->hdr;
315 		efi_systab.fw_vendor = data ? (unsigned long)data->fw_vendor :
316 					      systab64->fw_vendor;
317 		tmp |= data ? data->fw_vendor : systab64->fw_vendor;
318 		efi_systab.fw_revision = systab64->fw_revision;
319 		efi_systab.con_in_handle = systab64->con_in_handle;
320 		tmp |= systab64->con_in_handle;
321 		efi_systab.con_in = systab64->con_in;
322 		tmp |= systab64->con_in;
323 		efi_systab.con_out_handle = systab64->con_out_handle;
324 		tmp |= systab64->con_out_handle;
325 		efi_systab.con_out = systab64->con_out;
326 		tmp |= systab64->con_out;
327 		efi_systab.stderr_handle = systab64->stderr_handle;
328 		tmp |= systab64->stderr_handle;
329 		efi_systab.stderr = systab64->stderr;
330 		tmp |= systab64->stderr;
331 		efi_systab.runtime = data ?
332 				     (void *)(unsigned long)data->runtime :
333 				     (void *)(unsigned long)systab64->runtime;
334 		tmp |= data ? data->runtime : systab64->runtime;
335 		efi_systab.boottime = (void *)(unsigned long)systab64->boottime;
336 		tmp |= systab64->boottime;
337 		efi_systab.nr_tables = systab64->nr_tables;
338 		efi_systab.tables = data ? (unsigned long)data->tables :
339 					   systab64->tables;
340 		tmp |= data ? data->tables : systab64->tables;
341 
342 		early_memunmap(systab64, sizeof(*systab64));
343 		if (data)
344 			early_memunmap(data, sizeof(*data));
345 #ifdef CONFIG_X86_32
346 		if (tmp >> 32) {
347 			pr_err("EFI data located above 4GB, disabling EFI.\n");
348 			return -EINVAL;
349 		}
350 #endif
351 	} else {
352 		efi_system_table_32_t *systab32;
353 
354 		systab32 = early_memremap((unsigned long)phys,
355 					 sizeof(*systab32));
356 		if (systab32 == NULL) {
357 			pr_err("Couldn't map the system table!\n");
358 			return -ENOMEM;
359 		}
360 
361 		efi_systab.hdr = systab32->hdr;
362 		efi_systab.fw_vendor = systab32->fw_vendor;
363 		efi_systab.fw_revision = systab32->fw_revision;
364 		efi_systab.con_in_handle = systab32->con_in_handle;
365 		efi_systab.con_in = systab32->con_in;
366 		efi_systab.con_out_handle = systab32->con_out_handle;
367 		efi_systab.con_out = systab32->con_out;
368 		efi_systab.stderr_handle = systab32->stderr_handle;
369 		efi_systab.stderr = systab32->stderr;
370 		efi_systab.runtime = (void *)(unsigned long)systab32->runtime;
371 		efi_systab.boottime = (void *)(unsigned long)systab32->boottime;
372 		efi_systab.nr_tables = systab32->nr_tables;
373 		efi_systab.tables = systab32->tables;
374 
375 		early_memunmap(systab32, sizeof(*systab32));
376 	}
377 
378 	efi.systab = &efi_systab;
379 
380 	/*
381 	 * Verify the EFI Table
382 	 */
383 	if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
384 		pr_err("System table signature incorrect!\n");
385 		return -EINVAL;
386 	}
387 	if ((efi.systab->hdr.revision >> 16) == 0)
388 		pr_err("Warning: System table version %d.%02d, expected 1.00 or greater!\n",
389 		       efi.systab->hdr.revision >> 16,
390 		       efi.systab->hdr.revision & 0xffff);
391 
392 	return 0;
393 }
394 
395 static int __init efi_runtime_init32(void)
396 {
397 	efi_runtime_services_32_t *runtime;
398 
399 	runtime = early_memremap((unsigned long)efi.systab->runtime,
400 			sizeof(efi_runtime_services_32_t));
401 	if (!runtime) {
402 		pr_err("Could not map the runtime service table!\n");
403 		return -ENOMEM;
404 	}
405 
406 	/*
407 	 * We will only need *early* access to the SetVirtualAddressMap
408 	 * EFI runtime service. All other runtime services will be called
409 	 * via the virtual mapping.
410 	 */
411 	efi_phys.set_virtual_address_map =
412 			(efi_set_virtual_address_map_t *)
413 			(unsigned long)runtime->set_virtual_address_map;
414 	early_memunmap(runtime, sizeof(efi_runtime_services_32_t));
415 
416 	return 0;
417 }
418 
419 static int __init efi_runtime_init64(void)
420 {
421 	efi_runtime_services_64_t *runtime;
422 
423 	runtime = early_memremap((unsigned long)efi.systab->runtime,
424 			sizeof(efi_runtime_services_64_t));
425 	if (!runtime) {
426 		pr_err("Could not map the runtime service table!\n");
427 		return -ENOMEM;
428 	}
429 
430 	/*
431 	 * We will only need *early* access to the SetVirtualAddressMap
432 	 * EFI runtime service. All other runtime services will be called
433 	 * via the virtual mapping.
434 	 */
435 	efi_phys.set_virtual_address_map =
436 			(efi_set_virtual_address_map_t *)
437 			(unsigned long)runtime->set_virtual_address_map;
438 	early_memunmap(runtime, sizeof(efi_runtime_services_64_t));
439 
440 	return 0;
441 }
442 
443 static int __init efi_runtime_init(void)
444 {
445 	int rv;
446 
447 	/*
448 	 * Check out the runtime services table. We need to map
449 	 * the runtime services table so that we can grab the physical
450 	 * address of several of the EFI runtime functions, needed to
451 	 * set the firmware into virtual mode.
452 	 *
453 	 * When EFI_PARAVIRT is in force then we could not map runtime
454 	 * service memory region because we do not have direct access to it.
455 	 * However, runtime services are available through proxy functions
456 	 * (e.g. in case of Xen dom0 EFI implementation they call special
457 	 * hypercall which executes relevant EFI functions) and that is why
458 	 * they are always enabled.
459 	 */
460 
461 	if (!efi_enabled(EFI_PARAVIRT)) {
462 		if (efi_enabled(EFI_64BIT))
463 			rv = efi_runtime_init64();
464 		else
465 			rv = efi_runtime_init32();
466 
467 		if (rv)
468 			return rv;
469 	}
470 
471 	set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
472 
473 	return 0;
474 }
475 
476 void __init efi_init(void)
477 {
478 	efi_char16_t *c16;
479 	char vendor[100] = "unknown";
480 	int i = 0;
481 	void *tmp;
482 
483 #ifdef CONFIG_X86_32
484 	if (boot_params.efi_info.efi_systab_hi ||
485 	    boot_params.efi_info.efi_memmap_hi) {
486 		pr_info("Table located above 4GB, disabling EFI.\n");
487 		return;
488 	}
489 	efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
490 #else
491 	efi_phys.systab = (efi_system_table_t *)
492 			  (boot_params.efi_info.efi_systab |
493 			  ((__u64)boot_params.efi_info.efi_systab_hi<<32));
494 #endif
495 
496 	if (efi_systab_init(efi_phys.systab))
497 		return;
498 
499 	efi.config_table = (unsigned long)efi.systab->tables;
500 	efi.fw_vendor	 = (unsigned long)efi.systab->fw_vendor;
501 	efi.runtime	 = (unsigned long)efi.systab->runtime;
502 
503 	/*
504 	 * Show what we know for posterity
505 	 */
506 	c16 = tmp = early_memremap(efi.systab->fw_vendor, 2);
507 	if (c16) {
508 		for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i)
509 			vendor[i] = *c16++;
510 		vendor[i] = '\0';
511 	} else
512 		pr_err("Could not map the firmware vendor!\n");
513 	early_memunmap(tmp, 2);
514 
515 	pr_info("EFI v%u.%.02u by %s\n",
516 		efi.systab->hdr.revision >> 16,
517 		efi.systab->hdr.revision & 0xffff, vendor);
518 
519 	if (efi_reuse_config(efi.systab->tables, efi.systab->nr_tables))
520 		return;
521 
522 	if (efi_config_init(arch_tables))
523 		return;
524 
525 	/*
526 	 * Note: We currently don't support runtime services on an EFI
527 	 * that doesn't match the kernel 32/64-bit mode.
528 	 */
529 
530 	if (!efi_runtime_supported())
531 		pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n");
532 	else {
533 		if (efi_runtime_disabled() || efi_runtime_init()) {
534 			efi_memmap_unmap();
535 			return;
536 		}
537 	}
538 
539 	efi_clean_memmap();
540 
541 	if (efi_enabled(EFI_DBG))
542 		efi_print_memmap();
543 }
544 
545 void __init efi_late_init(void)
546 {
547 	efi_bgrt_init();
548 }
549 
550 void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
551 {
552 	u64 addr, npages;
553 
554 	addr = md->virt_addr;
555 	npages = md->num_pages;
556 
557 	memrange_efi_to_native(&addr, &npages);
558 
559 	if (executable)
560 		set_memory_x(addr, npages);
561 	else
562 		set_memory_nx(addr, npages);
563 }
564 
565 void __init runtime_code_page_mkexec(void)
566 {
567 	efi_memory_desc_t *md;
568 
569 	/* Make EFI runtime service code area executable */
570 	for_each_efi_memory_desc(md) {
571 		if (md->type != EFI_RUNTIME_SERVICES_CODE)
572 			continue;
573 
574 		efi_set_executable(md, true);
575 	}
576 }
577 
578 void __init efi_memory_uc(u64 addr, unsigned long size)
579 {
580 	unsigned long page_shift = 1UL << EFI_PAGE_SHIFT;
581 	u64 npages;
582 
583 	npages = round_up(size, page_shift) / page_shift;
584 	memrange_efi_to_native(&addr, &npages);
585 	set_memory_uc(addr, npages);
586 }
587 
588 void __init old_map_region(efi_memory_desc_t *md)
589 {
590 	u64 start_pfn, end_pfn, end;
591 	unsigned long size;
592 	void *va;
593 
594 	start_pfn = PFN_DOWN(md->phys_addr);
595 	size	  = md->num_pages << PAGE_SHIFT;
596 	end	  = md->phys_addr + size;
597 	end_pfn   = PFN_UP(end);
598 
599 	if (pfn_range_is_mapped(start_pfn, end_pfn)) {
600 		va = __va(md->phys_addr);
601 
602 		if (!(md->attribute & EFI_MEMORY_WB))
603 			efi_memory_uc((u64)(unsigned long)va, size);
604 	} else
605 		va = efi_ioremap(md->phys_addr, size,
606 				 md->type, md->attribute);
607 
608 	md->virt_addr = (u64) (unsigned long) va;
609 	if (!va)
610 		pr_err("ioremap of 0x%llX failed!\n",
611 		       (unsigned long long)md->phys_addr);
612 }
613 
614 /* Merge contiguous regions of the same type and attribute */
615 static void __init efi_merge_regions(void)
616 {
617 	efi_memory_desc_t *md, *prev_md = NULL;
618 
619 	for_each_efi_memory_desc(md) {
620 		u64 prev_size;
621 
622 		if (!prev_md) {
623 			prev_md = md;
624 			continue;
625 		}
626 
627 		if (prev_md->type != md->type ||
628 		    prev_md->attribute != md->attribute) {
629 			prev_md = md;
630 			continue;
631 		}
632 
633 		prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
634 
635 		if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
636 			prev_md->num_pages += md->num_pages;
637 			md->type = EFI_RESERVED_TYPE;
638 			md->attribute = 0;
639 			continue;
640 		}
641 		prev_md = md;
642 	}
643 }
644 
645 static void __init get_systab_virt_addr(efi_memory_desc_t *md)
646 {
647 	unsigned long size;
648 	u64 end, systab;
649 
650 	size = md->num_pages << EFI_PAGE_SHIFT;
651 	end = md->phys_addr + size;
652 	systab = (u64)(unsigned long)efi_phys.systab;
653 	if (md->phys_addr <= systab && systab < end) {
654 		systab += md->virt_addr - md->phys_addr;
655 		efi.systab = (efi_system_table_t *)(unsigned long)systab;
656 	}
657 }
658 
659 static void *realloc_pages(void *old_memmap, int old_shift)
660 {
661 	void *ret;
662 
663 	ret = (void *)__get_free_pages(GFP_KERNEL, old_shift + 1);
664 	if (!ret)
665 		goto out;
666 
667 	/*
668 	 * A first-time allocation doesn't have anything to copy.
669 	 */
670 	if (!old_memmap)
671 		return ret;
672 
673 	memcpy(ret, old_memmap, PAGE_SIZE << old_shift);
674 
675 out:
676 	free_pages((unsigned long)old_memmap, old_shift);
677 	return ret;
678 }
679 
680 /*
681  * Iterate the EFI memory map in reverse order because the regions
682  * will be mapped top-down. The end result is the same as if we had
683  * mapped things forward, but doesn't require us to change the
684  * existing implementation of efi_map_region().
685  */
686 static inline void *efi_map_next_entry_reverse(void *entry)
687 {
688 	/* Initial call */
689 	if (!entry)
690 		return efi.memmap.map_end - efi.memmap.desc_size;
691 
692 	entry -= efi.memmap.desc_size;
693 	if (entry < efi.memmap.map)
694 		return NULL;
695 
696 	return entry;
697 }
698 
699 /*
700  * efi_map_next_entry - Return the next EFI memory map descriptor
701  * @entry: Previous EFI memory map descriptor
702  *
703  * This is a helper function to iterate over the EFI memory map, which
704  * we do in different orders depending on the current configuration.
705  *
706  * To begin traversing the memory map @entry must be %NULL.
707  *
708  * Returns %NULL when we reach the end of the memory map.
709  */
710 static void *efi_map_next_entry(void *entry)
711 {
712 	if (!efi_enabled(EFI_OLD_MEMMAP) && efi_enabled(EFI_64BIT)) {
713 		/*
714 		 * Starting in UEFI v2.5 the EFI_PROPERTIES_TABLE
715 		 * config table feature requires us to map all entries
716 		 * in the same order as they appear in the EFI memory
717 		 * map. That is to say, entry N must have a lower
718 		 * virtual address than entry N+1. This is because the
719 		 * firmware toolchain leaves relative references in
720 		 * the code/data sections, which are split and become
721 		 * separate EFI memory regions. Mapping things
722 		 * out-of-order leads to the firmware accessing
723 		 * unmapped addresses.
724 		 *
725 		 * Since we need to map things this way whether or not
726 		 * the kernel actually makes use of
727 		 * EFI_PROPERTIES_TABLE, let's just switch to this
728 		 * scheme by default for 64-bit.
729 		 */
730 		return efi_map_next_entry_reverse(entry);
731 	}
732 
733 	/* Initial call */
734 	if (!entry)
735 		return efi.memmap.map;
736 
737 	entry += efi.memmap.desc_size;
738 	if (entry >= efi.memmap.map_end)
739 		return NULL;
740 
741 	return entry;
742 }
743 
744 static bool should_map_region(efi_memory_desc_t *md)
745 {
746 	/*
747 	 * Runtime regions always require runtime mappings (obviously).
748 	 */
749 	if (md->attribute & EFI_MEMORY_RUNTIME)
750 		return true;
751 
752 	/*
753 	 * 32-bit EFI doesn't suffer from the bug that requires us to
754 	 * reserve boot services regions, and mixed mode support
755 	 * doesn't exist for 32-bit kernels.
756 	 */
757 	if (IS_ENABLED(CONFIG_X86_32))
758 		return false;
759 
760 	/*
761 	 * Map all of RAM so that we can access arguments in the 1:1
762 	 * mapping when making EFI runtime calls.
763 	 */
764 	if (IS_ENABLED(CONFIG_EFI_MIXED) && !efi_is_native()) {
765 		if (md->type == EFI_CONVENTIONAL_MEMORY ||
766 		    md->type == EFI_LOADER_DATA ||
767 		    md->type == EFI_LOADER_CODE)
768 			return true;
769 	}
770 
771 	/*
772 	 * Map boot services regions as a workaround for buggy
773 	 * firmware that accesses them even when they shouldn't.
774 	 *
775 	 * See efi_{reserve,free}_boot_services().
776 	 */
777 	if (md->type == EFI_BOOT_SERVICES_CODE ||
778 	    md->type == EFI_BOOT_SERVICES_DATA)
779 		return true;
780 
781 	return false;
782 }
783 
784 /*
785  * Map the efi memory ranges of the runtime services and update new_mmap with
786  * virtual addresses.
787  */
788 static void * __init efi_map_regions(int *count, int *pg_shift)
789 {
790 	void *p, *new_memmap = NULL;
791 	unsigned long left = 0;
792 	unsigned long desc_size;
793 	efi_memory_desc_t *md;
794 
795 	desc_size = efi.memmap.desc_size;
796 
797 	p = NULL;
798 	while ((p = efi_map_next_entry(p))) {
799 		md = p;
800 
801 		if (!should_map_region(md))
802 			continue;
803 
804 		efi_map_region(md);
805 		get_systab_virt_addr(md);
806 
807 		if (left < desc_size) {
808 			new_memmap = realloc_pages(new_memmap, *pg_shift);
809 			if (!new_memmap)
810 				return NULL;
811 
812 			left += PAGE_SIZE << *pg_shift;
813 			(*pg_shift)++;
814 		}
815 
816 		memcpy(new_memmap + (*count * desc_size), md, desc_size);
817 
818 		left -= desc_size;
819 		(*count)++;
820 	}
821 
822 	return new_memmap;
823 }
824 
825 static void __init kexec_enter_virtual_mode(void)
826 {
827 #ifdef CONFIG_KEXEC_CORE
828 	efi_memory_desc_t *md;
829 	unsigned int num_pages;
830 
831 	efi.systab = NULL;
832 
833 	/*
834 	 * We don't do virtual mode, since we don't do runtime services, on
835 	 * non-native EFI
836 	 */
837 	if (!efi_is_native()) {
838 		efi_memmap_unmap();
839 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
840 		return;
841 	}
842 
843 	if (efi_alloc_page_tables()) {
844 		pr_err("Failed to allocate EFI page tables\n");
845 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
846 		return;
847 	}
848 
849 	/*
850 	* Map efi regions which were passed via setup_data. The virt_addr is a
851 	* fixed addr which was used in first kernel of a kexec boot.
852 	*/
853 	for_each_efi_memory_desc(md) {
854 		efi_map_region_fixed(md); /* FIXME: add error handling */
855 		get_systab_virt_addr(md);
856 	}
857 
858 	/*
859 	 * Unregister the early EFI memmap from efi_init() and install
860 	 * the new EFI memory map.
861 	 */
862 	efi_memmap_unmap();
863 
864 	if (efi_memmap_init_late(efi.memmap.phys_map,
865 				 efi.memmap.desc_size * efi.memmap.nr_map)) {
866 		pr_err("Failed to remap late EFI memory map\n");
867 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
868 		return;
869 	}
870 
871 	BUG_ON(!efi.systab);
872 
873 	num_pages = ALIGN(efi.memmap.nr_map * efi.memmap.desc_size, PAGE_SIZE);
874 	num_pages >>= PAGE_SHIFT;
875 
876 	if (efi_setup_page_tables(efi.memmap.phys_map, num_pages)) {
877 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
878 		return;
879 	}
880 
881 	efi_sync_low_kernel_mappings();
882 
883 	/*
884 	 * Now that EFI is in virtual mode, update the function
885 	 * pointers in the runtime service table to the new virtual addresses.
886 	 *
887 	 * Call EFI services through wrapper functions.
888 	 */
889 	efi.runtime_version = efi_systab.hdr.revision;
890 
891 	efi_native_runtime_setup();
892 
893 	efi.set_virtual_address_map = NULL;
894 
895 	if (efi_enabled(EFI_OLD_MEMMAP) && (__supported_pte_mask & _PAGE_NX))
896 		runtime_code_page_mkexec();
897 
898 	/* clean DUMMY object */
899 	efi_delete_dummy_variable();
900 #endif
901 }
902 
903 /*
904  * This function will switch the EFI runtime services to virtual mode.
905  * Essentially, we look through the EFI memmap and map every region that
906  * has the runtime attribute bit set in its memory descriptor into the
907  * efi_pgd page table.
908  *
909  * The old method which used to update that memory descriptor with the
910  * virtual address obtained from ioremap() is still supported when the
911  * kernel is booted with efi=old_map on its command line. Same old
912  * method enabled the runtime services to be called without having to
913  * thunk back into physical mode for every invocation.
914  *
915  * The new method does a pagetable switch in a preemption-safe manner
916  * so that we're in a different address space when calling a runtime
917  * function. For function arguments passing we do copy the PUDs of the
918  * kernel page table into efi_pgd prior to each call.
919  *
920  * Specially for kexec boot, efi runtime maps in previous kernel should
921  * be passed in via setup_data. In that case runtime ranges will be mapped
922  * to the same virtual addresses as the first kernel, see
923  * kexec_enter_virtual_mode().
924  */
925 static void __init __efi_enter_virtual_mode(void)
926 {
927 	int count = 0, pg_shift = 0;
928 	void *new_memmap = NULL;
929 	efi_status_t status;
930 	unsigned long pa;
931 
932 	efi.systab = NULL;
933 
934 	if (efi_alloc_page_tables()) {
935 		pr_err("Failed to allocate EFI page tables\n");
936 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
937 		return;
938 	}
939 
940 	efi_merge_regions();
941 	new_memmap = efi_map_regions(&count, &pg_shift);
942 	if (!new_memmap) {
943 		pr_err("Error reallocating memory, EFI runtime non-functional!\n");
944 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
945 		return;
946 	}
947 
948 	pa = __pa(new_memmap);
949 
950 	/*
951 	 * Unregister the early EFI memmap from efi_init() and install
952 	 * the new EFI memory map that we are about to pass to the
953 	 * firmware via SetVirtualAddressMap().
954 	 */
955 	efi_memmap_unmap();
956 
957 	if (efi_memmap_init_late(pa, efi.memmap.desc_size * count)) {
958 		pr_err("Failed to remap late EFI memory map\n");
959 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
960 		return;
961 	}
962 
963 	BUG_ON(!efi.systab);
964 
965 	if (efi_setup_page_tables(pa, 1 << pg_shift)) {
966 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
967 		return;
968 	}
969 
970 	efi_sync_low_kernel_mappings();
971 
972 	if (efi_is_native()) {
973 		status = phys_efi_set_virtual_address_map(
974 				efi.memmap.desc_size * count,
975 				efi.memmap.desc_size,
976 				efi.memmap.desc_version,
977 				(efi_memory_desc_t *)pa);
978 	} else {
979 		status = efi_thunk_set_virtual_address_map(
980 				efi_phys.set_virtual_address_map,
981 				efi.memmap.desc_size * count,
982 				efi.memmap.desc_size,
983 				efi.memmap.desc_version,
984 				(efi_memory_desc_t *)pa);
985 	}
986 
987 	if (status != EFI_SUCCESS) {
988 		pr_alert("Unable to switch EFI into virtual mode (status=%lx)!\n",
989 			 status);
990 		panic("EFI call to SetVirtualAddressMap() failed!");
991 	}
992 
993 	/*
994 	 * Now that EFI is in virtual mode, update the function
995 	 * pointers in the runtime service table to the new virtual addresses.
996 	 *
997 	 * Call EFI services through wrapper functions.
998 	 */
999 	efi.runtime_version = efi_systab.hdr.revision;
1000 
1001 	if (efi_is_native())
1002 		efi_native_runtime_setup();
1003 	else
1004 		efi_thunk_runtime_setup();
1005 
1006 	efi.set_virtual_address_map = NULL;
1007 
1008 	/*
1009 	 * Apply more restrictive page table mapping attributes now that
1010 	 * SVAM() has been called and the firmware has performed all
1011 	 * necessary relocation fixups for the new virtual addresses.
1012 	 */
1013 	efi_runtime_update_mappings();
1014 	efi_dump_pagetable();
1015 
1016 	/* clean DUMMY object */
1017 	efi_delete_dummy_variable();
1018 }
1019 
1020 void __init efi_enter_virtual_mode(void)
1021 {
1022 	if (efi_enabled(EFI_PARAVIRT))
1023 		return;
1024 
1025 	if (efi_setup)
1026 		kexec_enter_virtual_mode();
1027 	else
1028 		__efi_enter_virtual_mode();
1029 }
1030 
1031 /*
1032  * Convenience functions to obtain memory types and attributes
1033  */
1034 u32 efi_mem_type(unsigned long phys_addr)
1035 {
1036 	efi_memory_desc_t *md;
1037 
1038 	if (!efi_enabled(EFI_MEMMAP))
1039 		return 0;
1040 
1041 	for_each_efi_memory_desc(md) {
1042 		if ((md->phys_addr <= phys_addr) &&
1043 		    (phys_addr < (md->phys_addr +
1044 				  (md->num_pages << EFI_PAGE_SHIFT))))
1045 			return md->type;
1046 	}
1047 	return 0;
1048 }
1049 
1050 static int __init arch_parse_efi_cmdline(char *str)
1051 {
1052 	if (!str) {
1053 		pr_warn("need at least one option\n");
1054 		return -EINVAL;
1055 	}
1056 
1057 	if (parse_option_str(str, "old_map"))
1058 		set_bit(EFI_OLD_MEMMAP, &efi.flags);
1059 
1060 	return 0;
1061 }
1062 early_param("efi", arch_parse_efi_cmdline);
1063