1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Common EFI (Extensible Firmware Interface) support functions 4 * Based on Extensible Firmware Interface Specification version 1.0 5 * 6 * Copyright (C) 1999 VA Linux Systems 7 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> 8 * Copyright (C) 1999-2002 Hewlett-Packard Co. 9 * David Mosberger-Tang <davidm@hpl.hp.com> 10 * Stephane Eranian <eranian@hpl.hp.com> 11 * Copyright (C) 2005-2008 Intel Co. 12 * Fenghua Yu <fenghua.yu@intel.com> 13 * Bibo Mao <bibo.mao@intel.com> 14 * Chandramouli Narayanan <mouli@linux.intel.com> 15 * Huang Ying <ying.huang@intel.com> 16 * Copyright (C) 2013 SuSE Labs 17 * Borislav Petkov <bp@suse.de> - runtime services VA mapping 18 * 19 * Copied from efi_32.c to eliminate the duplicated code between EFI 20 * 32/64 support code. --ying 2007-10-26 21 * 22 * All EFI Runtime Services are not implemented yet as EFI only 23 * supports physical mode addressing on SoftSDV. This is to be fixed 24 * in a future version. --drummond 1999-07-20 25 * 26 * Implemented EFI runtime services and virtual mode calls. --davidm 27 * 28 * Goutham Rao: <goutham.rao@intel.com> 29 * Skip non-WB memory and ignore empty memory ranges. 30 */ 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 34 #include <linux/kernel.h> 35 #include <linux/init.h> 36 #include <linux/efi.h> 37 #include <linux/efi-bgrt.h> 38 #include <linux/export.h> 39 #include <linux/memblock.h> 40 #include <linux/slab.h> 41 #include <linux/spinlock.h> 42 #include <linux/uaccess.h> 43 #include <linux/time.h> 44 #include <linux/io.h> 45 #include <linux/reboot.h> 46 #include <linux/bcd.h> 47 48 #include <asm/setup.h> 49 #include <asm/efi.h> 50 #include <asm/e820/api.h> 51 #include <asm/time.h> 52 #include <asm/set_memory.h> 53 #include <asm/tlbflush.h> 54 #include <asm/x86_init.h> 55 #include <asm/uv/uv.h> 56 57 static efi_system_table_t efi_systab __initdata; 58 static u64 efi_systab_phys __initdata; 59 60 static efi_config_table_type_t arch_tables[] __initdata = { 61 #ifdef CONFIG_X86_UV 62 {UV_SYSTEM_TABLE_GUID, "UVsystab", &uv_systab_phys}, 63 #endif 64 {NULL_GUID, NULL, NULL}, 65 }; 66 67 static const unsigned long * const efi_tables[] = { 68 &efi.mps, 69 &efi.acpi, 70 &efi.acpi20, 71 &efi.smbios, 72 &efi.smbios3, 73 &efi.boot_info, 74 &efi.hcdp, 75 &efi.uga, 76 #ifdef CONFIG_X86_UV 77 &uv_systab_phys, 78 #endif 79 &efi.fw_vendor, 80 &efi.runtime, 81 &efi.config_table, 82 &efi.esrt, 83 &efi.properties_table, 84 &efi.mem_attr_table, 85 #ifdef CONFIG_EFI_RCI2_TABLE 86 &rci2_table_phys, 87 #endif 88 }; 89 90 u64 efi_setup; /* efi setup_data physical address */ 91 92 static int add_efi_memmap __initdata; 93 static int __init setup_add_efi_memmap(char *arg) 94 { 95 add_efi_memmap = 1; 96 return 0; 97 } 98 early_param("add_efi_memmap", setup_add_efi_memmap); 99 100 void __init efi_find_mirror(void) 101 { 102 efi_memory_desc_t *md; 103 u64 mirror_size = 0, total_size = 0; 104 105 if (!efi_enabled(EFI_MEMMAP)) 106 return; 107 108 for_each_efi_memory_desc(md) { 109 unsigned long long start = md->phys_addr; 110 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT; 111 112 total_size += size; 113 if (md->attribute & EFI_MEMORY_MORE_RELIABLE) { 114 memblock_mark_mirror(start, size); 115 mirror_size += size; 116 } 117 } 118 if (mirror_size) 119 pr_info("Memory: %lldM/%lldM mirrored memory\n", 120 mirror_size>>20, total_size>>20); 121 } 122 123 /* 124 * Tell the kernel about the EFI memory map. This might include 125 * more than the max 128 entries that can fit in the passed in e820 126 * legacy (zeropage) memory map, but the kernel's e820 table can hold 127 * E820_MAX_ENTRIES. 128 */ 129 130 static void __init do_add_efi_memmap(void) 131 { 132 efi_memory_desc_t *md; 133 134 if (!efi_enabled(EFI_MEMMAP)) 135 return; 136 137 for_each_efi_memory_desc(md) { 138 unsigned long long start = md->phys_addr; 139 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT; 140 int e820_type; 141 142 switch (md->type) { 143 case EFI_LOADER_CODE: 144 case EFI_LOADER_DATA: 145 case EFI_BOOT_SERVICES_CODE: 146 case EFI_BOOT_SERVICES_DATA: 147 case EFI_CONVENTIONAL_MEMORY: 148 if (efi_soft_reserve_enabled() 149 && (md->attribute & EFI_MEMORY_SP)) 150 e820_type = E820_TYPE_SOFT_RESERVED; 151 else if (md->attribute & EFI_MEMORY_WB) 152 e820_type = E820_TYPE_RAM; 153 else 154 e820_type = E820_TYPE_RESERVED; 155 break; 156 case EFI_ACPI_RECLAIM_MEMORY: 157 e820_type = E820_TYPE_ACPI; 158 break; 159 case EFI_ACPI_MEMORY_NVS: 160 e820_type = E820_TYPE_NVS; 161 break; 162 case EFI_UNUSABLE_MEMORY: 163 e820_type = E820_TYPE_UNUSABLE; 164 break; 165 case EFI_PERSISTENT_MEMORY: 166 e820_type = E820_TYPE_PMEM; 167 break; 168 default: 169 /* 170 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE 171 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO 172 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE 173 */ 174 e820_type = E820_TYPE_RESERVED; 175 break; 176 } 177 178 e820__range_add(start, size, e820_type); 179 } 180 e820__update_table(e820_table); 181 } 182 183 /* 184 * Given add_efi_memmap defaults to 0 and there there is no alternative 185 * e820 mechanism for soft-reserved memory, import the full EFI memory 186 * map if soft reservations are present and enabled. Otherwise, the 187 * mechanism to disable the kernel's consideration of EFI_MEMORY_SP is 188 * the efi=nosoftreserve option. 189 */ 190 static bool do_efi_soft_reserve(void) 191 { 192 efi_memory_desc_t *md; 193 194 if (!efi_enabled(EFI_MEMMAP)) 195 return false; 196 197 if (!efi_soft_reserve_enabled()) 198 return false; 199 200 for_each_efi_memory_desc(md) 201 if (md->type == EFI_CONVENTIONAL_MEMORY && 202 (md->attribute & EFI_MEMORY_SP)) 203 return true; 204 return false; 205 } 206 207 int __init efi_memblock_x86_reserve_range(void) 208 { 209 struct efi_info *e = &boot_params.efi_info; 210 struct efi_memory_map_data data; 211 phys_addr_t pmap; 212 int rv; 213 214 if (efi_enabled(EFI_PARAVIRT)) 215 return 0; 216 217 #ifdef CONFIG_X86_32 218 /* Can't handle data above 4GB at this time */ 219 if (e->efi_memmap_hi) { 220 pr_err("Memory map is above 4GB, disabling EFI.\n"); 221 return -EINVAL; 222 } 223 pmap = e->efi_memmap; 224 #else 225 pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32)); 226 #endif 227 data.phys_map = pmap; 228 data.size = e->efi_memmap_size; 229 data.desc_size = e->efi_memdesc_size; 230 data.desc_version = e->efi_memdesc_version; 231 232 rv = efi_memmap_init_early(&data); 233 if (rv) 234 return rv; 235 236 if (add_efi_memmap || do_efi_soft_reserve()) 237 do_add_efi_memmap(); 238 239 efi_fake_memmap_early(); 240 241 WARN(efi.memmap.desc_version != 1, 242 "Unexpected EFI_MEMORY_DESCRIPTOR version %ld", 243 efi.memmap.desc_version); 244 245 memblock_reserve(pmap, efi.memmap.nr_map * efi.memmap.desc_size); 246 247 return 0; 248 } 249 250 #define OVERFLOW_ADDR_SHIFT (64 - EFI_PAGE_SHIFT) 251 #define OVERFLOW_ADDR_MASK (U64_MAX << OVERFLOW_ADDR_SHIFT) 252 #define U64_HIGH_BIT (~(U64_MAX >> 1)) 253 254 static bool __init efi_memmap_entry_valid(const efi_memory_desc_t *md, int i) 255 { 256 u64 end = (md->num_pages << EFI_PAGE_SHIFT) + md->phys_addr - 1; 257 u64 end_hi = 0; 258 char buf[64]; 259 260 if (md->num_pages == 0) { 261 end = 0; 262 } else if (md->num_pages > EFI_PAGES_MAX || 263 EFI_PAGES_MAX - md->num_pages < 264 (md->phys_addr >> EFI_PAGE_SHIFT)) { 265 end_hi = (md->num_pages & OVERFLOW_ADDR_MASK) 266 >> OVERFLOW_ADDR_SHIFT; 267 268 if ((md->phys_addr & U64_HIGH_BIT) && !(end & U64_HIGH_BIT)) 269 end_hi += 1; 270 } else { 271 return true; 272 } 273 274 pr_warn_once(FW_BUG "Invalid EFI memory map entries:\n"); 275 276 if (end_hi) { 277 pr_warn("mem%02u: %s range=[0x%016llx-0x%llx%016llx] (invalid)\n", 278 i, efi_md_typeattr_format(buf, sizeof(buf), md), 279 md->phys_addr, end_hi, end); 280 } else { 281 pr_warn("mem%02u: %s range=[0x%016llx-0x%016llx] (invalid)\n", 282 i, efi_md_typeattr_format(buf, sizeof(buf), md), 283 md->phys_addr, end); 284 } 285 return false; 286 } 287 288 static void __init efi_clean_memmap(void) 289 { 290 efi_memory_desc_t *out = efi.memmap.map; 291 const efi_memory_desc_t *in = out; 292 const efi_memory_desc_t *end = efi.memmap.map_end; 293 int i, n_removal; 294 295 for (i = n_removal = 0; in < end; i++) { 296 if (efi_memmap_entry_valid(in, i)) { 297 if (out != in) 298 memcpy(out, in, efi.memmap.desc_size); 299 out = (void *)out + efi.memmap.desc_size; 300 } else { 301 n_removal++; 302 } 303 in = (void *)in + efi.memmap.desc_size; 304 } 305 306 if (n_removal > 0) { 307 struct efi_memory_map_data data = { 308 .phys_map = efi.memmap.phys_map, 309 .desc_version = efi.memmap.desc_version, 310 .desc_size = efi.memmap.desc_size, 311 .size = efi.memmap.desc_size * (efi.memmap.nr_map - n_removal), 312 .flags = 0, 313 }; 314 315 pr_warn("Removing %d invalid memory map entries.\n", n_removal); 316 efi_memmap_install(&data); 317 } 318 } 319 320 void __init efi_print_memmap(void) 321 { 322 efi_memory_desc_t *md; 323 int i = 0; 324 325 for_each_efi_memory_desc(md) { 326 char buf[64]; 327 328 pr_info("mem%02u: %s range=[0x%016llx-0x%016llx] (%lluMB)\n", 329 i++, efi_md_typeattr_format(buf, sizeof(buf), md), 330 md->phys_addr, 331 md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1, 332 (md->num_pages >> (20 - EFI_PAGE_SHIFT))); 333 } 334 } 335 336 static int __init efi_systab_init(u64 phys) 337 { 338 int size = efi_enabled(EFI_64BIT) ? sizeof(efi_system_table_64_t) 339 : sizeof(efi_system_table_32_t); 340 bool over4g = false; 341 void *p; 342 343 p = early_memremap_ro(phys, size); 344 if (p == NULL) { 345 pr_err("Couldn't map the system table!\n"); 346 return -ENOMEM; 347 } 348 349 if (efi_enabled(EFI_64BIT)) { 350 const efi_system_table_64_t *systab64 = p; 351 352 efi_systab.hdr = systab64->hdr; 353 efi_systab.fw_vendor = systab64->fw_vendor; 354 efi_systab.fw_revision = systab64->fw_revision; 355 efi_systab.con_in_handle = systab64->con_in_handle; 356 efi_systab.con_in = systab64->con_in; 357 efi_systab.con_out_handle = systab64->con_out_handle; 358 efi_systab.con_out = (void *)(unsigned long)systab64->con_out; 359 efi_systab.stderr_handle = systab64->stderr_handle; 360 efi_systab.stderr = systab64->stderr; 361 efi_systab.runtime = (void *)(unsigned long)systab64->runtime; 362 efi_systab.boottime = (void *)(unsigned long)systab64->boottime; 363 efi_systab.nr_tables = systab64->nr_tables; 364 efi_systab.tables = systab64->tables; 365 366 over4g = systab64->con_in_handle > U32_MAX || 367 systab64->con_in > U32_MAX || 368 systab64->con_out_handle > U32_MAX || 369 systab64->con_out > U32_MAX || 370 systab64->stderr_handle > U32_MAX || 371 systab64->stderr > U32_MAX || 372 systab64->boottime > U32_MAX; 373 374 if (efi_setup) { 375 struct efi_setup_data *data; 376 377 data = early_memremap_ro(efi_setup, sizeof(*data)); 378 if (!data) { 379 early_memunmap(p, size); 380 return -ENOMEM; 381 } 382 383 efi_systab.fw_vendor = (unsigned long)data->fw_vendor; 384 efi_systab.runtime = (void *)(unsigned long)data->runtime; 385 efi_systab.tables = (unsigned long)data->tables; 386 387 over4g |= data->fw_vendor > U32_MAX || 388 data->runtime > U32_MAX || 389 data->tables > U32_MAX; 390 391 early_memunmap(data, sizeof(*data)); 392 } else { 393 over4g |= systab64->fw_vendor > U32_MAX || 394 systab64->runtime > U32_MAX || 395 systab64->tables > U32_MAX; 396 } 397 } else { 398 const efi_system_table_32_t *systab32 = p; 399 400 efi_systab.hdr = systab32->hdr; 401 efi_systab.fw_vendor = systab32->fw_vendor; 402 efi_systab.fw_revision = systab32->fw_revision; 403 efi_systab.con_in_handle = systab32->con_in_handle; 404 efi_systab.con_in = systab32->con_in; 405 efi_systab.con_out_handle = systab32->con_out_handle; 406 efi_systab.con_out = (void *)(unsigned long)systab32->con_out; 407 efi_systab.stderr_handle = systab32->stderr_handle; 408 efi_systab.stderr = systab32->stderr; 409 efi_systab.runtime = (void *)(unsigned long)systab32->runtime; 410 efi_systab.boottime = (void *)(unsigned long)systab32->boottime; 411 efi_systab.nr_tables = systab32->nr_tables; 412 efi_systab.tables = systab32->tables; 413 } 414 415 early_memunmap(p, size); 416 417 if (IS_ENABLED(CONFIG_X86_32) && over4g) { 418 pr_err("EFI data located above 4GB, disabling EFI.\n"); 419 return -EINVAL; 420 } 421 422 efi.systab = &efi_systab; 423 424 /* 425 * Verify the EFI Table 426 */ 427 if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) { 428 pr_err("System table signature incorrect!\n"); 429 return -EINVAL; 430 } 431 if ((efi.systab->hdr.revision >> 16) == 0) 432 pr_err("Warning: System table version %d.%02d, expected 1.00 or greater!\n", 433 efi.systab->hdr.revision >> 16, 434 efi.systab->hdr.revision & 0xffff); 435 436 return 0; 437 } 438 439 void __init efi_init(void) 440 { 441 efi_char16_t *c16; 442 char vendor[100] = "unknown"; 443 int i = 0; 444 445 if (IS_ENABLED(CONFIG_X86_32) && 446 (boot_params.efi_info.efi_systab_hi || 447 boot_params.efi_info.efi_memmap_hi)) { 448 pr_info("Table located above 4GB, disabling EFI.\n"); 449 return; 450 } 451 452 efi_systab_phys = boot_params.efi_info.efi_systab | 453 ((__u64)boot_params.efi_info.efi_systab_hi << 32); 454 455 if (efi_systab_init(efi_systab_phys)) 456 return; 457 458 efi.config_table = (unsigned long)efi.systab->tables; 459 efi.fw_vendor = (unsigned long)efi.systab->fw_vendor; 460 efi.runtime = (unsigned long)efi.systab->runtime; 461 462 /* 463 * Show what we know for posterity 464 */ 465 c16 = early_memremap_ro(efi.systab->fw_vendor, 466 sizeof(vendor) * sizeof(efi_char16_t)); 467 if (c16) { 468 for (i = 0; i < sizeof(vendor) - 1 && c16[i]; ++i) 469 vendor[i] = c16[i]; 470 vendor[i] = '\0'; 471 early_memunmap(c16, sizeof(vendor) * sizeof(efi_char16_t)); 472 } else { 473 pr_err("Could not map the firmware vendor!\n"); 474 } 475 476 pr_info("EFI v%u.%.02u by %s\n", 477 efi.systab->hdr.revision >> 16, 478 efi.systab->hdr.revision & 0xffff, vendor); 479 480 if (efi_reuse_config(efi.systab->tables, efi.systab->nr_tables)) 481 return; 482 483 if (efi_config_init(arch_tables)) 484 return; 485 486 /* 487 * Note: We currently don't support runtime services on an EFI 488 * that doesn't match the kernel 32/64-bit mode. 489 */ 490 491 if (!efi_runtime_supported()) 492 pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n"); 493 494 if (!efi_runtime_supported() || efi_runtime_disabled()) { 495 efi_memmap_unmap(); 496 return; 497 } 498 499 set_bit(EFI_RUNTIME_SERVICES, &efi.flags); 500 efi_clean_memmap(); 501 502 if (efi_enabled(EFI_DBG)) 503 efi_print_memmap(); 504 } 505 506 #if defined(CONFIG_X86_32) || defined(CONFIG_X86_UV) 507 508 void __init efi_set_executable(efi_memory_desc_t *md, bool executable) 509 { 510 u64 addr, npages; 511 512 addr = md->virt_addr; 513 npages = md->num_pages; 514 515 memrange_efi_to_native(&addr, &npages); 516 517 if (executable) 518 set_memory_x(addr, npages); 519 else 520 set_memory_nx(addr, npages); 521 } 522 523 void __init runtime_code_page_mkexec(void) 524 { 525 efi_memory_desc_t *md; 526 527 /* Make EFI runtime service code area executable */ 528 for_each_efi_memory_desc(md) { 529 if (md->type != EFI_RUNTIME_SERVICES_CODE) 530 continue; 531 532 efi_set_executable(md, true); 533 } 534 } 535 536 void __init efi_memory_uc(u64 addr, unsigned long size) 537 { 538 unsigned long page_shift = 1UL << EFI_PAGE_SHIFT; 539 u64 npages; 540 541 npages = round_up(size, page_shift) / page_shift; 542 memrange_efi_to_native(&addr, &npages); 543 set_memory_uc(addr, npages); 544 } 545 546 void __init old_map_region(efi_memory_desc_t *md) 547 { 548 u64 start_pfn, end_pfn, end; 549 unsigned long size; 550 void *va; 551 552 start_pfn = PFN_DOWN(md->phys_addr); 553 size = md->num_pages << PAGE_SHIFT; 554 end = md->phys_addr + size; 555 end_pfn = PFN_UP(end); 556 557 if (pfn_range_is_mapped(start_pfn, end_pfn)) { 558 va = __va(md->phys_addr); 559 560 if (!(md->attribute & EFI_MEMORY_WB)) 561 efi_memory_uc((u64)(unsigned long)va, size); 562 } else 563 va = efi_ioremap(md->phys_addr, size, 564 md->type, md->attribute); 565 566 md->virt_addr = (u64) (unsigned long) va; 567 if (!va) 568 pr_err("ioremap of 0x%llX failed!\n", 569 (unsigned long long)md->phys_addr); 570 } 571 572 #endif 573 574 /* Merge contiguous regions of the same type and attribute */ 575 static void __init efi_merge_regions(void) 576 { 577 efi_memory_desc_t *md, *prev_md = NULL; 578 579 for_each_efi_memory_desc(md) { 580 u64 prev_size; 581 582 if (!prev_md) { 583 prev_md = md; 584 continue; 585 } 586 587 if (prev_md->type != md->type || 588 prev_md->attribute != md->attribute) { 589 prev_md = md; 590 continue; 591 } 592 593 prev_size = prev_md->num_pages << EFI_PAGE_SHIFT; 594 595 if (md->phys_addr == (prev_md->phys_addr + prev_size)) { 596 prev_md->num_pages += md->num_pages; 597 md->type = EFI_RESERVED_TYPE; 598 md->attribute = 0; 599 continue; 600 } 601 prev_md = md; 602 } 603 } 604 605 static void __init get_systab_virt_addr(efi_memory_desc_t *md) 606 { 607 unsigned long size; 608 u64 end, systab; 609 610 size = md->num_pages << EFI_PAGE_SHIFT; 611 end = md->phys_addr + size; 612 systab = efi_systab_phys; 613 if (md->phys_addr <= systab && systab < end) { 614 systab += md->virt_addr - md->phys_addr; 615 efi.systab = (efi_system_table_t *)(unsigned long)systab; 616 } 617 } 618 619 static void *realloc_pages(void *old_memmap, int old_shift) 620 { 621 void *ret; 622 623 ret = (void *)__get_free_pages(GFP_KERNEL, old_shift + 1); 624 if (!ret) 625 goto out; 626 627 /* 628 * A first-time allocation doesn't have anything to copy. 629 */ 630 if (!old_memmap) 631 return ret; 632 633 memcpy(ret, old_memmap, PAGE_SIZE << old_shift); 634 635 out: 636 free_pages((unsigned long)old_memmap, old_shift); 637 return ret; 638 } 639 640 /* 641 * Iterate the EFI memory map in reverse order because the regions 642 * will be mapped top-down. The end result is the same as if we had 643 * mapped things forward, but doesn't require us to change the 644 * existing implementation of efi_map_region(). 645 */ 646 static inline void *efi_map_next_entry_reverse(void *entry) 647 { 648 /* Initial call */ 649 if (!entry) 650 return efi.memmap.map_end - efi.memmap.desc_size; 651 652 entry -= efi.memmap.desc_size; 653 if (entry < efi.memmap.map) 654 return NULL; 655 656 return entry; 657 } 658 659 /* 660 * efi_map_next_entry - Return the next EFI memory map descriptor 661 * @entry: Previous EFI memory map descriptor 662 * 663 * This is a helper function to iterate over the EFI memory map, which 664 * we do in different orders depending on the current configuration. 665 * 666 * To begin traversing the memory map @entry must be %NULL. 667 * 668 * Returns %NULL when we reach the end of the memory map. 669 */ 670 static void *efi_map_next_entry(void *entry) 671 { 672 if (!efi_have_uv1_memmap() && efi_enabled(EFI_64BIT)) { 673 /* 674 * Starting in UEFI v2.5 the EFI_PROPERTIES_TABLE 675 * config table feature requires us to map all entries 676 * in the same order as they appear in the EFI memory 677 * map. That is to say, entry N must have a lower 678 * virtual address than entry N+1. This is because the 679 * firmware toolchain leaves relative references in 680 * the code/data sections, which are split and become 681 * separate EFI memory regions. Mapping things 682 * out-of-order leads to the firmware accessing 683 * unmapped addresses. 684 * 685 * Since we need to map things this way whether or not 686 * the kernel actually makes use of 687 * EFI_PROPERTIES_TABLE, let's just switch to this 688 * scheme by default for 64-bit. 689 */ 690 return efi_map_next_entry_reverse(entry); 691 } 692 693 /* Initial call */ 694 if (!entry) 695 return efi.memmap.map; 696 697 entry += efi.memmap.desc_size; 698 if (entry >= efi.memmap.map_end) 699 return NULL; 700 701 return entry; 702 } 703 704 static bool should_map_region(efi_memory_desc_t *md) 705 { 706 /* 707 * Runtime regions always require runtime mappings (obviously). 708 */ 709 if (md->attribute & EFI_MEMORY_RUNTIME) 710 return true; 711 712 /* 713 * 32-bit EFI doesn't suffer from the bug that requires us to 714 * reserve boot services regions, and mixed mode support 715 * doesn't exist for 32-bit kernels. 716 */ 717 if (IS_ENABLED(CONFIG_X86_32)) 718 return false; 719 720 /* 721 * EFI specific purpose memory may be reserved by default 722 * depending on kernel config and boot options. 723 */ 724 if (md->type == EFI_CONVENTIONAL_MEMORY && 725 efi_soft_reserve_enabled() && 726 (md->attribute & EFI_MEMORY_SP)) 727 return false; 728 729 /* 730 * Map all of RAM so that we can access arguments in the 1:1 731 * mapping when making EFI runtime calls. 732 */ 733 if (efi_is_mixed()) { 734 if (md->type == EFI_CONVENTIONAL_MEMORY || 735 md->type == EFI_LOADER_DATA || 736 md->type == EFI_LOADER_CODE) 737 return true; 738 } 739 740 /* 741 * Map boot services regions as a workaround for buggy 742 * firmware that accesses them even when they shouldn't. 743 * 744 * See efi_{reserve,free}_boot_services(). 745 */ 746 if (md->type == EFI_BOOT_SERVICES_CODE || 747 md->type == EFI_BOOT_SERVICES_DATA) 748 return true; 749 750 return false; 751 } 752 753 /* 754 * Map the efi memory ranges of the runtime services and update new_mmap with 755 * virtual addresses. 756 */ 757 static void * __init efi_map_regions(int *count, int *pg_shift) 758 { 759 void *p, *new_memmap = NULL; 760 unsigned long left = 0; 761 unsigned long desc_size; 762 efi_memory_desc_t *md; 763 764 desc_size = efi.memmap.desc_size; 765 766 p = NULL; 767 while ((p = efi_map_next_entry(p))) { 768 md = p; 769 770 if (!should_map_region(md)) 771 continue; 772 773 efi_map_region(md); 774 get_systab_virt_addr(md); 775 776 if (left < desc_size) { 777 new_memmap = realloc_pages(new_memmap, *pg_shift); 778 if (!new_memmap) 779 return NULL; 780 781 left += PAGE_SIZE << *pg_shift; 782 (*pg_shift)++; 783 } 784 785 memcpy(new_memmap + (*count * desc_size), md, desc_size); 786 787 left -= desc_size; 788 (*count)++; 789 } 790 791 return new_memmap; 792 } 793 794 static void __init kexec_enter_virtual_mode(void) 795 { 796 #ifdef CONFIG_KEXEC_CORE 797 efi_memory_desc_t *md; 798 unsigned int num_pages; 799 800 efi.systab = NULL; 801 802 /* 803 * We don't do virtual mode, since we don't do runtime services, on 804 * non-native EFI. With the UV1 memmap, we don't do runtime services in 805 * kexec kernel because in the initial boot something else might 806 * have been mapped at these virtual addresses. 807 */ 808 if (efi_is_mixed() || efi_have_uv1_memmap()) { 809 efi_memmap_unmap(); 810 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); 811 return; 812 } 813 814 if (efi_alloc_page_tables()) { 815 pr_err("Failed to allocate EFI page tables\n"); 816 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); 817 return; 818 } 819 820 /* 821 * Map efi regions which were passed via setup_data. The virt_addr is a 822 * fixed addr which was used in first kernel of a kexec boot. 823 */ 824 for_each_efi_memory_desc(md) { 825 efi_map_region_fixed(md); /* FIXME: add error handling */ 826 get_systab_virt_addr(md); 827 } 828 829 /* 830 * Unregister the early EFI memmap from efi_init() and install 831 * the new EFI memory map. 832 */ 833 efi_memmap_unmap(); 834 835 if (efi_memmap_init_late(efi.memmap.phys_map, 836 efi.memmap.desc_size * efi.memmap.nr_map)) { 837 pr_err("Failed to remap late EFI memory map\n"); 838 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); 839 return; 840 } 841 842 BUG_ON(!efi.systab); 843 844 num_pages = ALIGN(efi.memmap.nr_map * efi.memmap.desc_size, PAGE_SIZE); 845 num_pages >>= PAGE_SHIFT; 846 847 if (efi_setup_page_tables(efi.memmap.phys_map, num_pages)) { 848 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); 849 return; 850 } 851 852 efi_sync_low_kernel_mappings(); 853 854 /* 855 * Now that EFI is in virtual mode, update the function 856 * pointers in the runtime service table to the new virtual addresses. 857 * 858 * Call EFI services through wrapper functions. 859 */ 860 efi.runtime_version = efi_systab.hdr.revision; 861 862 efi_native_runtime_setup(); 863 #endif 864 } 865 866 /* 867 * This function will switch the EFI runtime services to virtual mode. 868 * Essentially, we look through the EFI memmap and map every region that 869 * has the runtime attribute bit set in its memory descriptor into the 870 * efi_pgd page table. 871 * 872 * The old method which used to update that memory descriptor with the 873 * virtual address obtained from ioremap() is still supported when the 874 * kernel is booted on SG1 UV1 hardware. Same old method enabled the 875 * runtime services to be called without having to thunk back into 876 * physical mode for every invocation. 877 * 878 * The new method does a pagetable switch in a preemption-safe manner 879 * so that we're in a different address space when calling a runtime 880 * function. For function arguments passing we do copy the PUDs of the 881 * kernel page table into efi_pgd prior to each call. 882 * 883 * Specially for kexec boot, efi runtime maps in previous kernel should 884 * be passed in via setup_data. In that case runtime ranges will be mapped 885 * to the same virtual addresses as the first kernel, see 886 * kexec_enter_virtual_mode(). 887 */ 888 static void __init __efi_enter_virtual_mode(void) 889 { 890 int count = 0, pg_shift = 0; 891 void *new_memmap = NULL; 892 efi_status_t status; 893 unsigned long pa; 894 895 efi.systab = NULL; 896 897 if (efi_alloc_page_tables()) { 898 pr_err("Failed to allocate EFI page tables\n"); 899 goto err; 900 } 901 902 efi_merge_regions(); 903 new_memmap = efi_map_regions(&count, &pg_shift); 904 if (!new_memmap) { 905 pr_err("Error reallocating memory, EFI runtime non-functional!\n"); 906 goto err; 907 } 908 909 pa = __pa(new_memmap); 910 911 /* 912 * Unregister the early EFI memmap from efi_init() and install 913 * the new EFI memory map that we are about to pass to the 914 * firmware via SetVirtualAddressMap(). 915 */ 916 efi_memmap_unmap(); 917 918 if (efi_memmap_init_late(pa, efi.memmap.desc_size * count)) { 919 pr_err("Failed to remap late EFI memory map\n"); 920 goto err; 921 } 922 923 if (efi_enabled(EFI_DBG)) { 924 pr_info("EFI runtime memory map:\n"); 925 efi_print_memmap(); 926 } 927 928 if (WARN_ON(!efi.systab)) 929 goto err; 930 931 if (efi_setup_page_tables(pa, 1 << pg_shift)) 932 goto err; 933 934 efi_sync_low_kernel_mappings(); 935 936 status = efi_set_virtual_address_map(efi.memmap.desc_size * count, 937 efi.memmap.desc_size, 938 efi.memmap.desc_version, 939 (efi_memory_desc_t *)pa); 940 if (status != EFI_SUCCESS) { 941 pr_err("Unable to switch EFI into virtual mode (status=%lx)!\n", 942 status); 943 goto err; 944 } 945 946 efi_free_boot_services(); 947 948 /* 949 * Now that EFI is in virtual mode, update the function 950 * pointers in the runtime service table to the new virtual addresses. 951 * 952 * Call EFI services through wrapper functions. 953 */ 954 efi.runtime_version = efi_systab.hdr.revision; 955 956 if (!efi_is_mixed()) 957 efi_native_runtime_setup(); 958 else 959 efi_thunk_runtime_setup(); 960 961 /* 962 * Apply more restrictive page table mapping attributes now that 963 * SVAM() has been called and the firmware has performed all 964 * necessary relocation fixups for the new virtual addresses. 965 */ 966 efi_runtime_update_mappings(); 967 968 /* clean DUMMY object */ 969 efi_delete_dummy_variable(); 970 return; 971 972 err: 973 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); 974 } 975 976 void __init efi_enter_virtual_mode(void) 977 { 978 if (efi_enabled(EFI_PARAVIRT)) 979 return; 980 981 if (efi_setup) 982 kexec_enter_virtual_mode(); 983 else 984 __efi_enter_virtual_mode(); 985 986 efi_dump_pagetable(); 987 } 988 989 bool efi_is_table_address(unsigned long phys_addr) 990 { 991 unsigned int i; 992 993 if (phys_addr == EFI_INVALID_TABLE_ADDR) 994 return false; 995 996 for (i = 0; i < ARRAY_SIZE(efi_tables); i++) 997 if (*(efi_tables[i]) == phys_addr) 998 return true; 999 1000 return false; 1001 } 1002