xref: /openbmc/linux/arch/x86/platform/efi/efi.c (revision f677b30b487ca3763c3de3f1b4d8c976c2961cd1)
1 /*
2  * Common EFI (Extensible Firmware Interface) support functions
3  * Based on Extensible Firmware Interface Specification version 1.0
4  *
5  * Copyright (C) 1999 VA Linux Systems
6  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
7  * Copyright (C) 1999-2002 Hewlett-Packard Co.
8  *	David Mosberger-Tang <davidm@hpl.hp.com>
9  *	Stephane Eranian <eranian@hpl.hp.com>
10  * Copyright (C) 2005-2008 Intel Co.
11  *	Fenghua Yu <fenghua.yu@intel.com>
12  *	Bibo Mao <bibo.mao@intel.com>
13  *	Chandramouli Narayanan <mouli@linux.intel.com>
14  *	Huang Ying <ying.huang@intel.com>
15  *
16  * Copied from efi_32.c to eliminate the duplicated code between EFI
17  * 32/64 support code. --ying 2007-10-26
18  *
19  * All EFI Runtime Services are not implemented yet as EFI only
20  * supports physical mode addressing on SoftSDV. This is to be fixed
21  * in a future version.  --drummond 1999-07-20
22  *
23  * Implemented EFI runtime services and virtual mode calls.  --davidm
24  *
25  * Goutham Rao: <goutham.rao@intel.com>
26  *	Skip non-WB memory and ignore empty memory ranges.
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/efi.h>
34 #include <linux/efi-bgrt.h>
35 #include <linux/export.h>
36 #include <linux/bootmem.h>
37 #include <linux/slab.h>
38 #include <linux/memblock.h>
39 #include <linux/spinlock.h>
40 #include <linux/uaccess.h>
41 #include <linux/time.h>
42 #include <linux/io.h>
43 #include <linux/reboot.h>
44 #include <linux/bcd.h>
45 
46 #include <asm/setup.h>
47 #include <asm/efi.h>
48 #include <asm/time.h>
49 #include <asm/cacheflush.h>
50 #include <asm/tlbflush.h>
51 #include <asm/x86_init.h>
52 #include <asm/rtc.h>
53 
54 #define EFI_DEBUG	1
55 
56 #define EFI_MIN_RESERVE 5120
57 
58 #define EFI_DUMMY_GUID \
59 	EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9)
60 
61 static efi_char16_t efi_dummy_name[6] = { 'D', 'U', 'M', 'M', 'Y', 0 };
62 
63 struct efi_memory_map memmap;
64 
65 static struct efi efi_phys __initdata;
66 static efi_system_table_t efi_systab __initdata;
67 
68 unsigned long x86_efi_facility;
69 
70 static __initdata efi_config_table_type_t arch_tables[] = {
71 #ifdef CONFIG_X86_UV
72 	{UV_SYSTEM_TABLE_GUID, "UVsystab", &efi.uv_systab},
73 #endif
74 	{NULL_GUID, NULL, NULL},
75 };
76 
77 /*
78  * Returns 1 if 'facility' is enabled, 0 otherwise.
79  */
80 int efi_enabled(int facility)
81 {
82 	return test_bit(facility, &x86_efi_facility) != 0;
83 }
84 EXPORT_SYMBOL(efi_enabled);
85 
86 static bool __initdata disable_runtime = false;
87 static int __init setup_noefi(char *arg)
88 {
89 	disable_runtime = true;
90 	return 0;
91 }
92 early_param("noefi", setup_noefi);
93 
94 int add_efi_memmap;
95 EXPORT_SYMBOL(add_efi_memmap);
96 
97 static int __init setup_add_efi_memmap(char *arg)
98 {
99 	add_efi_memmap = 1;
100 	return 0;
101 }
102 early_param("add_efi_memmap", setup_add_efi_memmap);
103 
104 static bool efi_no_storage_paranoia;
105 
106 static int __init setup_storage_paranoia(char *arg)
107 {
108 	efi_no_storage_paranoia = true;
109 	return 0;
110 }
111 early_param("efi_no_storage_paranoia", setup_storage_paranoia);
112 
113 
114 static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
115 {
116 	unsigned long flags;
117 	efi_status_t status;
118 
119 	spin_lock_irqsave(&rtc_lock, flags);
120 	status = efi_call_virt2(get_time, tm, tc);
121 	spin_unlock_irqrestore(&rtc_lock, flags);
122 	return status;
123 }
124 
125 static efi_status_t virt_efi_set_time(efi_time_t *tm)
126 {
127 	unsigned long flags;
128 	efi_status_t status;
129 
130 	spin_lock_irqsave(&rtc_lock, flags);
131 	status = efi_call_virt1(set_time, tm);
132 	spin_unlock_irqrestore(&rtc_lock, flags);
133 	return status;
134 }
135 
136 static efi_status_t virt_efi_get_wakeup_time(efi_bool_t *enabled,
137 					     efi_bool_t *pending,
138 					     efi_time_t *tm)
139 {
140 	unsigned long flags;
141 	efi_status_t status;
142 
143 	spin_lock_irqsave(&rtc_lock, flags);
144 	status = efi_call_virt3(get_wakeup_time,
145 				enabled, pending, tm);
146 	spin_unlock_irqrestore(&rtc_lock, flags);
147 	return status;
148 }
149 
150 static efi_status_t virt_efi_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
151 {
152 	unsigned long flags;
153 	efi_status_t status;
154 
155 	spin_lock_irqsave(&rtc_lock, flags);
156 	status = efi_call_virt2(set_wakeup_time,
157 				enabled, tm);
158 	spin_unlock_irqrestore(&rtc_lock, flags);
159 	return status;
160 }
161 
162 static efi_status_t virt_efi_get_variable(efi_char16_t *name,
163 					  efi_guid_t *vendor,
164 					  u32 *attr,
165 					  unsigned long *data_size,
166 					  void *data)
167 {
168 	return efi_call_virt5(get_variable,
169 			      name, vendor, attr,
170 			      data_size, data);
171 }
172 
173 static efi_status_t virt_efi_get_next_variable(unsigned long *name_size,
174 					       efi_char16_t *name,
175 					       efi_guid_t *vendor)
176 {
177 	return efi_call_virt3(get_next_variable,
178 			      name_size, name, vendor);
179 }
180 
181 static efi_status_t virt_efi_set_variable(efi_char16_t *name,
182 					  efi_guid_t *vendor,
183 					  u32 attr,
184 					  unsigned long data_size,
185 					  void *data)
186 {
187 	return efi_call_virt5(set_variable,
188 			      name, vendor, attr,
189 			      data_size, data);
190 }
191 
192 static efi_status_t virt_efi_query_variable_info(u32 attr,
193 						 u64 *storage_space,
194 						 u64 *remaining_space,
195 						 u64 *max_variable_size)
196 {
197 	if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
198 		return EFI_UNSUPPORTED;
199 
200 	return efi_call_virt4(query_variable_info, attr, storage_space,
201 			      remaining_space, max_variable_size);
202 }
203 
204 static efi_status_t virt_efi_get_next_high_mono_count(u32 *count)
205 {
206 	return efi_call_virt1(get_next_high_mono_count, count);
207 }
208 
209 static void virt_efi_reset_system(int reset_type,
210 				  efi_status_t status,
211 				  unsigned long data_size,
212 				  efi_char16_t *data)
213 {
214 	efi_call_virt4(reset_system, reset_type, status,
215 		       data_size, data);
216 }
217 
218 static efi_status_t virt_efi_update_capsule(efi_capsule_header_t **capsules,
219 					    unsigned long count,
220 					    unsigned long sg_list)
221 {
222 	if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
223 		return EFI_UNSUPPORTED;
224 
225 	return efi_call_virt3(update_capsule, capsules, count, sg_list);
226 }
227 
228 static efi_status_t virt_efi_query_capsule_caps(efi_capsule_header_t **capsules,
229 						unsigned long count,
230 						u64 *max_size,
231 						int *reset_type)
232 {
233 	if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
234 		return EFI_UNSUPPORTED;
235 
236 	return efi_call_virt4(query_capsule_caps, capsules, count, max_size,
237 			      reset_type);
238 }
239 
240 static efi_status_t __init phys_efi_set_virtual_address_map(
241 	unsigned long memory_map_size,
242 	unsigned long descriptor_size,
243 	u32 descriptor_version,
244 	efi_memory_desc_t *virtual_map)
245 {
246 	efi_status_t status;
247 
248 	efi_call_phys_prelog();
249 	status = efi_call_phys4(efi_phys.set_virtual_address_map,
250 				memory_map_size, descriptor_size,
251 				descriptor_version, virtual_map);
252 	efi_call_phys_epilog();
253 	return status;
254 }
255 
256 static efi_status_t __init phys_efi_get_time(efi_time_t *tm,
257 					     efi_time_cap_t *tc)
258 {
259 	unsigned long flags;
260 	efi_status_t status;
261 
262 	spin_lock_irqsave(&rtc_lock, flags);
263 	efi_call_phys_prelog();
264 	status = efi_call_phys2(efi_phys.get_time, virt_to_phys(tm),
265 				virt_to_phys(tc));
266 	efi_call_phys_epilog();
267 	spin_unlock_irqrestore(&rtc_lock, flags);
268 	return status;
269 }
270 
271 int efi_set_rtc_mmss(const struct timespec *now)
272 {
273 	unsigned long nowtime = now->tv_sec;
274 	efi_status_t 	status;
275 	efi_time_t 	eft;
276 	efi_time_cap_t 	cap;
277 	struct rtc_time	tm;
278 
279 	status = efi.get_time(&eft, &cap);
280 	if (status != EFI_SUCCESS) {
281 		pr_err("Oops: efitime: can't read time!\n");
282 		return -1;
283 	}
284 
285 	rtc_time_to_tm(nowtime, &tm);
286 	if (!rtc_valid_tm(&tm)) {
287 		eft.year = tm.tm_year + 1900;
288 		eft.month = tm.tm_mon + 1;
289 		eft.day = tm.tm_mday;
290 		eft.minute = tm.tm_min;
291 		eft.second = tm.tm_sec;
292 		eft.nanosecond = 0;
293 	} else {
294 		printk(KERN_ERR
295 		       "%s: Invalid EFI RTC value: write of %lx to EFI RTC failed\n",
296 		       __FUNCTION__, nowtime);
297 		return -1;
298 	}
299 
300 	status = efi.set_time(&eft);
301 	if (status != EFI_SUCCESS) {
302 		pr_err("Oops: efitime: can't write time!\n");
303 		return -1;
304 	}
305 	return 0;
306 }
307 
308 void efi_get_time(struct timespec *now)
309 {
310 	efi_status_t status;
311 	efi_time_t eft;
312 	efi_time_cap_t cap;
313 
314 	status = efi.get_time(&eft, &cap);
315 	if (status != EFI_SUCCESS)
316 		pr_err("Oops: efitime: can't read time!\n");
317 
318 	now->tv_sec = mktime(eft.year, eft.month, eft.day, eft.hour,
319 			     eft.minute, eft.second);
320 	now->tv_nsec = 0;
321 }
322 
323 /*
324  * Tell the kernel about the EFI memory map.  This might include
325  * more than the max 128 entries that can fit in the e820 legacy
326  * (zeropage) memory map.
327  */
328 
329 static void __init do_add_efi_memmap(void)
330 {
331 	void *p;
332 
333 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
334 		efi_memory_desc_t *md = p;
335 		unsigned long long start = md->phys_addr;
336 		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
337 		int e820_type;
338 
339 		switch (md->type) {
340 		case EFI_LOADER_CODE:
341 		case EFI_LOADER_DATA:
342 		case EFI_BOOT_SERVICES_CODE:
343 		case EFI_BOOT_SERVICES_DATA:
344 		case EFI_CONVENTIONAL_MEMORY:
345 			if (md->attribute & EFI_MEMORY_WB)
346 				e820_type = E820_RAM;
347 			else
348 				e820_type = E820_RESERVED;
349 			break;
350 		case EFI_ACPI_RECLAIM_MEMORY:
351 			e820_type = E820_ACPI;
352 			break;
353 		case EFI_ACPI_MEMORY_NVS:
354 			e820_type = E820_NVS;
355 			break;
356 		case EFI_UNUSABLE_MEMORY:
357 			e820_type = E820_UNUSABLE;
358 			break;
359 		default:
360 			/*
361 			 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
362 			 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
363 			 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
364 			 */
365 			e820_type = E820_RESERVED;
366 			break;
367 		}
368 		e820_add_region(start, size, e820_type);
369 	}
370 	sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
371 }
372 
373 int __init efi_memblock_x86_reserve_range(void)
374 {
375 	struct efi_info *e = &boot_params.efi_info;
376 	unsigned long pmap;
377 
378 #ifdef CONFIG_X86_32
379 	/* Can't handle data above 4GB at this time */
380 	if (e->efi_memmap_hi) {
381 		pr_err("Memory map is above 4GB, disabling EFI.\n");
382 		return -EINVAL;
383 	}
384 	pmap =  e->efi_memmap;
385 #else
386 	pmap = (e->efi_memmap |	((__u64)e->efi_memmap_hi << 32));
387 #endif
388 	memmap.phys_map		= (void *)pmap;
389 	memmap.nr_map		= e->efi_memmap_size /
390 				  e->efi_memdesc_size;
391 	memmap.desc_size	= e->efi_memdesc_size;
392 	memmap.desc_version	= e->efi_memdesc_version;
393 
394 	memblock_reserve(pmap, memmap.nr_map * memmap.desc_size);
395 
396 	efi.memmap = &memmap;
397 
398 	return 0;
399 }
400 
401 #if EFI_DEBUG
402 static void __init print_efi_memmap(void)
403 {
404 	efi_memory_desc_t *md;
405 	void *p;
406 	int i;
407 
408 	for (p = memmap.map, i = 0;
409 	     p < memmap.map_end;
410 	     p += memmap.desc_size, i++) {
411 		md = p;
412 		pr_info("mem%02u: type=%u, attr=0x%llx, "
413 			"range=[0x%016llx-0x%016llx) (%lluMB)\n",
414 			i, md->type, md->attribute, md->phys_addr,
415 			md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
416 			(md->num_pages >> (20 - EFI_PAGE_SHIFT)));
417 	}
418 }
419 #endif  /*  EFI_DEBUG  */
420 
421 void __init efi_reserve_boot_services(void)
422 {
423 	void *p;
424 
425 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
426 		efi_memory_desc_t *md = p;
427 		u64 start = md->phys_addr;
428 		u64 size = md->num_pages << EFI_PAGE_SHIFT;
429 
430 		if (md->type != EFI_BOOT_SERVICES_CODE &&
431 		    md->type != EFI_BOOT_SERVICES_DATA)
432 			continue;
433 		/* Only reserve where possible:
434 		 * - Not within any already allocated areas
435 		 * - Not over any memory area (really needed, if above?)
436 		 * - Not within any part of the kernel
437 		 * - Not the bios reserved area
438 		*/
439 		if ((start+size >= __pa_symbol(_text)
440 				&& start <= __pa_symbol(_end)) ||
441 			!e820_all_mapped(start, start+size, E820_RAM) ||
442 			memblock_is_region_reserved(start, size)) {
443 			/* Could not reserve, skip it */
444 			md->num_pages = 0;
445 			memblock_dbg("Could not reserve boot range "
446 					"[0x%010llx-0x%010llx]\n",
447 						start, start+size-1);
448 		} else
449 			memblock_reserve(start, size);
450 	}
451 }
452 
453 void __init efi_unmap_memmap(void)
454 {
455 	clear_bit(EFI_MEMMAP, &x86_efi_facility);
456 	if (memmap.map) {
457 		early_iounmap(memmap.map, memmap.nr_map * memmap.desc_size);
458 		memmap.map = NULL;
459 	}
460 }
461 
462 void __init efi_free_boot_services(void)
463 {
464 	void *p;
465 
466 	if (!efi_is_native())
467 		return;
468 
469 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
470 		efi_memory_desc_t *md = p;
471 		unsigned long long start = md->phys_addr;
472 		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
473 
474 		if (md->type != EFI_BOOT_SERVICES_CODE &&
475 		    md->type != EFI_BOOT_SERVICES_DATA)
476 			continue;
477 
478 		/* Could not reserve boot area */
479 		if (!size)
480 			continue;
481 
482 		free_bootmem_late(start, size);
483 	}
484 
485 	efi_unmap_memmap();
486 }
487 
488 static int __init efi_systab_init(void *phys)
489 {
490 	if (efi_enabled(EFI_64BIT)) {
491 		efi_system_table_64_t *systab64;
492 		u64 tmp = 0;
493 
494 		systab64 = early_ioremap((unsigned long)phys,
495 					 sizeof(*systab64));
496 		if (systab64 == NULL) {
497 			pr_err("Couldn't map the system table!\n");
498 			return -ENOMEM;
499 		}
500 
501 		efi_systab.hdr = systab64->hdr;
502 		efi_systab.fw_vendor = systab64->fw_vendor;
503 		tmp |= systab64->fw_vendor;
504 		efi_systab.fw_revision = systab64->fw_revision;
505 		efi_systab.con_in_handle = systab64->con_in_handle;
506 		tmp |= systab64->con_in_handle;
507 		efi_systab.con_in = systab64->con_in;
508 		tmp |= systab64->con_in;
509 		efi_systab.con_out_handle = systab64->con_out_handle;
510 		tmp |= systab64->con_out_handle;
511 		efi_systab.con_out = systab64->con_out;
512 		tmp |= systab64->con_out;
513 		efi_systab.stderr_handle = systab64->stderr_handle;
514 		tmp |= systab64->stderr_handle;
515 		efi_systab.stderr = systab64->stderr;
516 		tmp |= systab64->stderr;
517 		efi_systab.runtime = (void *)(unsigned long)systab64->runtime;
518 		tmp |= systab64->runtime;
519 		efi_systab.boottime = (void *)(unsigned long)systab64->boottime;
520 		tmp |= systab64->boottime;
521 		efi_systab.nr_tables = systab64->nr_tables;
522 		efi_systab.tables = systab64->tables;
523 		tmp |= systab64->tables;
524 
525 		early_iounmap(systab64, sizeof(*systab64));
526 #ifdef CONFIG_X86_32
527 		if (tmp >> 32) {
528 			pr_err("EFI data located above 4GB, disabling EFI.\n");
529 			return -EINVAL;
530 		}
531 #endif
532 	} else {
533 		efi_system_table_32_t *systab32;
534 
535 		systab32 = early_ioremap((unsigned long)phys,
536 					 sizeof(*systab32));
537 		if (systab32 == NULL) {
538 			pr_err("Couldn't map the system table!\n");
539 			return -ENOMEM;
540 		}
541 
542 		efi_systab.hdr = systab32->hdr;
543 		efi_systab.fw_vendor = systab32->fw_vendor;
544 		efi_systab.fw_revision = systab32->fw_revision;
545 		efi_systab.con_in_handle = systab32->con_in_handle;
546 		efi_systab.con_in = systab32->con_in;
547 		efi_systab.con_out_handle = systab32->con_out_handle;
548 		efi_systab.con_out = systab32->con_out;
549 		efi_systab.stderr_handle = systab32->stderr_handle;
550 		efi_systab.stderr = systab32->stderr;
551 		efi_systab.runtime = (void *)(unsigned long)systab32->runtime;
552 		efi_systab.boottime = (void *)(unsigned long)systab32->boottime;
553 		efi_systab.nr_tables = systab32->nr_tables;
554 		efi_systab.tables = systab32->tables;
555 
556 		early_iounmap(systab32, sizeof(*systab32));
557 	}
558 
559 	efi.systab = &efi_systab;
560 
561 	/*
562 	 * Verify the EFI Table
563 	 */
564 	if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
565 		pr_err("System table signature incorrect!\n");
566 		return -EINVAL;
567 	}
568 	if ((efi.systab->hdr.revision >> 16) == 0)
569 		pr_err("Warning: System table version "
570 		       "%d.%02d, expected 1.00 or greater!\n",
571 		       efi.systab->hdr.revision >> 16,
572 		       efi.systab->hdr.revision & 0xffff);
573 
574 	return 0;
575 }
576 
577 static int __init efi_runtime_init(void)
578 {
579 	efi_runtime_services_t *runtime;
580 
581 	/*
582 	 * Check out the runtime services table. We need to map
583 	 * the runtime services table so that we can grab the physical
584 	 * address of several of the EFI runtime functions, needed to
585 	 * set the firmware into virtual mode.
586 	 */
587 	runtime = early_ioremap((unsigned long)efi.systab->runtime,
588 				sizeof(efi_runtime_services_t));
589 	if (!runtime) {
590 		pr_err("Could not map the runtime service table!\n");
591 		return -ENOMEM;
592 	}
593 	/*
594 	 * We will only need *early* access to the following
595 	 * two EFI runtime services before set_virtual_address_map
596 	 * is invoked.
597 	 */
598 	efi_phys.get_time = (efi_get_time_t *)runtime->get_time;
599 	efi_phys.set_virtual_address_map =
600 		(efi_set_virtual_address_map_t *)
601 		runtime->set_virtual_address_map;
602 	/*
603 	 * Make efi_get_time can be called before entering
604 	 * virtual mode.
605 	 */
606 	efi.get_time = phys_efi_get_time;
607 	early_iounmap(runtime, sizeof(efi_runtime_services_t));
608 
609 	return 0;
610 }
611 
612 static int __init efi_memmap_init(void)
613 {
614 	/* Map the EFI memory map */
615 	memmap.map = early_ioremap((unsigned long)memmap.phys_map,
616 				   memmap.nr_map * memmap.desc_size);
617 	if (memmap.map == NULL) {
618 		pr_err("Could not map the memory map!\n");
619 		return -ENOMEM;
620 	}
621 	memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
622 
623 	if (add_efi_memmap)
624 		do_add_efi_memmap();
625 
626 	return 0;
627 }
628 
629 void __init efi_init(void)
630 {
631 	efi_char16_t *c16;
632 	char vendor[100] = "unknown";
633 	int i = 0;
634 	void *tmp;
635 
636 #ifdef CONFIG_X86_32
637 	if (boot_params.efi_info.efi_systab_hi ||
638 	    boot_params.efi_info.efi_memmap_hi) {
639 		pr_info("Table located above 4GB, disabling EFI.\n");
640 		return;
641 	}
642 	efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
643 #else
644 	efi_phys.systab = (efi_system_table_t *)
645 			  (boot_params.efi_info.efi_systab |
646 			  ((__u64)boot_params.efi_info.efi_systab_hi<<32));
647 #endif
648 
649 	if (efi_systab_init(efi_phys.systab))
650 		return;
651 
652 	set_bit(EFI_SYSTEM_TABLES, &x86_efi_facility);
653 
654 	/*
655 	 * Show what we know for posterity
656 	 */
657 	c16 = tmp = early_ioremap(efi.systab->fw_vendor, 2);
658 	if (c16) {
659 		for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i)
660 			vendor[i] = *c16++;
661 		vendor[i] = '\0';
662 	} else
663 		pr_err("Could not map the firmware vendor!\n");
664 	early_iounmap(tmp, 2);
665 
666 	pr_info("EFI v%u.%.02u by %s\n",
667 		efi.systab->hdr.revision >> 16,
668 		efi.systab->hdr.revision & 0xffff, vendor);
669 
670 	if (efi_config_init(arch_tables))
671 		return;
672 
673 	set_bit(EFI_CONFIG_TABLES, &x86_efi_facility);
674 
675 	/*
676 	 * Note: We currently don't support runtime services on an EFI
677 	 * that doesn't match the kernel 32/64-bit mode.
678 	 */
679 
680 	if (!efi_is_native())
681 		pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n");
682 	else {
683 		if (disable_runtime || efi_runtime_init())
684 			return;
685 		set_bit(EFI_RUNTIME_SERVICES, &x86_efi_facility);
686 	}
687 
688 	if (efi_memmap_init())
689 		return;
690 
691 	set_bit(EFI_MEMMAP, &x86_efi_facility);
692 
693 #if EFI_DEBUG
694 	print_efi_memmap();
695 #endif
696 }
697 
698 void __init efi_late_init(void)
699 {
700 	efi_bgrt_init();
701 }
702 
703 void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
704 {
705 	u64 addr, npages;
706 
707 	addr = md->virt_addr;
708 	npages = md->num_pages;
709 
710 	memrange_efi_to_native(&addr, &npages);
711 
712 	if (executable)
713 		set_memory_x(addr, npages);
714 	else
715 		set_memory_nx(addr, npages);
716 }
717 
718 static void __init runtime_code_page_mkexec(void)
719 {
720 	efi_memory_desc_t *md;
721 	void *p;
722 
723 	/* Make EFI runtime service code area executable */
724 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
725 		md = p;
726 
727 		if (md->type != EFI_RUNTIME_SERVICES_CODE)
728 			continue;
729 
730 		efi_set_executable(md, true);
731 	}
732 }
733 
734 void efi_memory_uc(u64 addr, unsigned long size)
735 {
736 	unsigned long page_shift = 1UL << EFI_PAGE_SHIFT;
737 	u64 npages;
738 
739 	npages = round_up(size, page_shift) / page_shift;
740 	memrange_efi_to_native(&addr, &npages);
741 	set_memory_uc(addr, npages);
742 }
743 
744 /*
745  * This function will switch the EFI runtime services to virtual mode.
746  * Essentially, look through the EFI memmap and map every region that
747  * has the runtime attribute bit set in its memory descriptor and update
748  * that memory descriptor with the virtual address obtained from ioremap().
749  * This enables the runtime services to be called without having to
750  * thunk back into physical mode for every invocation.
751  */
752 void __init efi_enter_virtual_mode(void)
753 {
754 	efi_memory_desc_t *md, *prev_md = NULL;
755 	efi_status_t status;
756 	unsigned long size;
757 	u64 end, systab, start_pfn, end_pfn;
758 	void *p, *va, *new_memmap = NULL;
759 	int count = 0;
760 
761 	efi.systab = NULL;
762 
763 	/*
764 	 * We don't do virtual mode, since we don't do runtime services, on
765 	 * non-native EFI
766 	 */
767 
768 	if (!efi_is_native()) {
769 		efi_unmap_memmap();
770 		return;
771 	}
772 
773 	/* Merge contiguous regions of the same type and attribute */
774 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
775 		u64 prev_size;
776 		md = p;
777 
778 		if (!prev_md) {
779 			prev_md = md;
780 			continue;
781 		}
782 
783 		if (prev_md->type != md->type ||
784 		    prev_md->attribute != md->attribute) {
785 			prev_md = md;
786 			continue;
787 		}
788 
789 		prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
790 
791 		if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
792 			prev_md->num_pages += md->num_pages;
793 			md->type = EFI_RESERVED_TYPE;
794 			md->attribute = 0;
795 			continue;
796 		}
797 		prev_md = md;
798 	}
799 
800 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
801 		md = p;
802 		if (!(md->attribute & EFI_MEMORY_RUNTIME)) {
803 #ifdef CONFIG_X86_64
804 			if (md->type != EFI_BOOT_SERVICES_CODE &&
805 			    md->type != EFI_BOOT_SERVICES_DATA)
806 #endif
807 				continue;
808 		}
809 
810 		size = md->num_pages << EFI_PAGE_SHIFT;
811 		end = md->phys_addr + size;
812 
813 		start_pfn = PFN_DOWN(md->phys_addr);
814 		end_pfn = PFN_UP(end);
815 		if (pfn_range_is_mapped(start_pfn, end_pfn)) {
816 			va = __va(md->phys_addr);
817 
818 			if (!(md->attribute & EFI_MEMORY_WB))
819 				efi_memory_uc((u64)(unsigned long)va, size);
820 		} else
821 			va = efi_ioremap(md->phys_addr, size,
822 					 md->type, md->attribute);
823 
824 		md->virt_addr = (u64) (unsigned long) va;
825 
826 		if (!va) {
827 			pr_err("ioremap of 0x%llX failed!\n",
828 			       (unsigned long long)md->phys_addr);
829 			continue;
830 		}
831 
832 		systab = (u64) (unsigned long) efi_phys.systab;
833 		if (md->phys_addr <= systab && systab < end) {
834 			systab += md->virt_addr - md->phys_addr;
835 			efi.systab = (efi_system_table_t *) (unsigned long) systab;
836 		}
837 		new_memmap = krealloc(new_memmap,
838 				      (count + 1) * memmap.desc_size,
839 				      GFP_KERNEL);
840 		memcpy(new_memmap + (count * memmap.desc_size), md,
841 		       memmap.desc_size);
842 		count++;
843 	}
844 
845 	BUG_ON(!efi.systab);
846 
847 	status = phys_efi_set_virtual_address_map(
848 		memmap.desc_size * count,
849 		memmap.desc_size,
850 		memmap.desc_version,
851 		(efi_memory_desc_t *)__pa(new_memmap));
852 
853 	if (status != EFI_SUCCESS) {
854 		pr_alert("Unable to switch EFI into virtual mode "
855 			 "(status=%lx)!\n", status);
856 		panic("EFI call to SetVirtualAddressMap() failed!");
857 	}
858 
859 	/*
860 	 * Now that EFI is in virtual mode, update the function
861 	 * pointers in the runtime service table to the new virtual addresses.
862 	 *
863 	 * Call EFI services through wrapper functions.
864 	 */
865 	efi.runtime_version = efi_systab.hdr.revision;
866 	efi.get_time = virt_efi_get_time;
867 	efi.set_time = virt_efi_set_time;
868 	efi.get_wakeup_time = virt_efi_get_wakeup_time;
869 	efi.set_wakeup_time = virt_efi_set_wakeup_time;
870 	efi.get_variable = virt_efi_get_variable;
871 	efi.get_next_variable = virt_efi_get_next_variable;
872 	efi.set_variable = virt_efi_set_variable;
873 	efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count;
874 	efi.reset_system = virt_efi_reset_system;
875 	efi.set_virtual_address_map = NULL;
876 	efi.query_variable_info = virt_efi_query_variable_info;
877 	efi.update_capsule = virt_efi_update_capsule;
878 	efi.query_capsule_caps = virt_efi_query_capsule_caps;
879 	if (__supported_pte_mask & _PAGE_NX)
880 		runtime_code_page_mkexec();
881 
882 	kfree(new_memmap);
883 
884 	/* clean DUMMY object */
885 	efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
886 			 EFI_VARIABLE_NON_VOLATILE |
887 			 EFI_VARIABLE_BOOTSERVICE_ACCESS |
888 			 EFI_VARIABLE_RUNTIME_ACCESS,
889 			 0, NULL);
890 }
891 
892 /*
893  * Convenience functions to obtain memory types and attributes
894  */
895 u32 efi_mem_type(unsigned long phys_addr)
896 {
897 	efi_memory_desc_t *md;
898 	void *p;
899 
900 	if (!efi_enabled(EFI_MEMMAP))
901 		return 0;
902 
903 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
904 		md = p;
905 		if ((md->phys_addr <= phys_addr) &&
906 		    (phys_addr < (md->phys_addr +
907 				  (md->num_pages << EFI_PAGE_SHIFT))))
908 			return md->type;
909 	}
910 	return 0;
911 }
912 
913 u64 efi_mem_attributes(unsigned long phys_addr)
914 {
915 	efi_memory_desc_t *md;
916 	void *p;
917 
918 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
919 		md = p;
920 		if ((md->phys_addr <= phys_addr) &&
921 		    (phys_addr < (md->phys_addr +
922 				  (md->num_pages << EFI_PAGE_SHIFT))))
923 			return md->attribute;
924 	}
925 	return 0;
926 }
927 
928 /*
929  * Some firmware has serious problems when using more than 50% of the EFI
930  * variable store, i.e. it triggers bugs that can brick machines. Ensure that
931  * we never use more than this safe limit.
932  *
933  * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable
934  * store.
935  */
936 efi_status_t efi_query_variable_store(u32 attributes, unsigned long size)
937 {
938 	efi_status_t status;
939 	u64 storage_size, remaining_size, max_size;
940 
941 	if (!(attributes & EFI_VARIABLE_NON_VOLATILE))
942 		return 0;
943 
944 	status = efi.query_variable_info(attributes, &storage_size,
945 					 &remaining_size, &max_size);
946 	if (status != EFI_SUCCESS)
947 		return status;
948 
949 	/*
950 	 * Some firmware implementations refuse to boot if there's insufficient
951 	 * space in the variable store. We account for that by refusing the
952 	 * write if permitting it would reduce the available space to under
953 	 * 5KB. This figure was provided by Samsung, so should be safe.
954 	 */
955 	if ((remaining_size - size < EFI_MIN_RESERVE) &&
956 		!efi_no_storage_paranoia) {
957 
958 		/*
959 		 * Triggering garbage collection may require that the firmware
960 		 * generate a real EFI_OUT_OF_RESOURCES error. We can force
961 		 * that by attempting to use more space than is available.
962 		 */
963 		unsigned long dummy_size = remaining_size + 1024;
964 		void *dummy = kzalloc(dummy_size, GFP_ATOMIC);
965 
966 		if (!dummy)
967 			return EFI_OUT_OF_RESOURCES;
968 
969 		status = efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
970 					  EFI_VARIABLE_NON_VOLATILE |
971 					  EFI_VARIABLE_BOOTSERVICE_ACCESS |
972 					  EFI_VARIABLE_RUNTIME_ACCESS,
973 					  dummy_size, dummy);
974 
975 		if (status == EFI_SUCCESS) {
976 			/*
977 			 * This should have failed, so if it didn't make sure
978 			 * that we delete it...
979 			 */
980 			efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
981 					 EFI_VARIABLE_NON_VOLATILE |
982 					 EFI_VARIABLE_BOOTSERVICE_ACCESS |
983 					 EFI_VARIABLE_RUNTIME_ACCESS,
984 					 0, dummy);
985 		}
986 
987 		kfree(dummy);
988 
989 		/*
990 		 * The runtime code may now have triggered a garbage collection
991 		 * run, so check the variable info again
992 		 */
993 		status = efi.query_variable_info(attributes, &storage_size,
994 						 &remaining_size, &max_size);
995 
996 		if (status != EFI_SUCCESS)
997 			return status;
998 
999 		/*
1000 		 * There still isn't enough room, so return an error
1001 		 */
1002 		if (remaining_size - size < EFI_MIN_RESERVE)
1003 			return EFI_OUT_OF_RESOURCES;
1004 	}
1005 
1006 	return EFI_SUCCESS;
1007 }
1008 EXPORT_SYMBOL_GPL(efi_query_variable_store);
1009