1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Common EFI (Extensible Firmware Interface) support functions 4 * Based on Extensible Firmware Interface Specification version 1.0 5 * 6 * Copyright (C) 1999 VA Linux Systems 7 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> 8 * Copyright (C) 1999-2002 Hewlett-Packard Co. 9 * David Mosberger-Tang <davidm@hpl.hp.com> 10 * Stephane Eranian <eranian@hpl.hp.com> 11 * Copyright (C) 2005-2008 Intel Co. 12 * Fenghua Yu <fenghua.yu@intel.com> 13 * Bibo Mao <bibo.mao@intel.com> 14 * Chandramouli Narayanan <mouli@linux.intel.com> 15 * Huang Ying <ying.huang@intel.com> 16 * Copyright (C) 2013 SuSE Labs 17 * Borislav Petkov <bp@suse.de> - runtime services VA mapping 18 * 19 * Copied from efi_32.c to eliminate the duplicated code between EFI 20 * 32/64 support code. --ying 2007-10-26 21 * 22 * All EFI Runtime Services are not implemented yet as EFI only 23 * supports physical mode addressing on SoftSDV. This is to be fixed 24 * in a future version. --drummond 1999-07-20 25 * 26 * Implemented EFI runtime services and virtual mode calls. --davidm 27 * 28 * Goutham Rao: <goutham.rao@intel.com> 29 * Skip non-WB memory and ignore empty memory ranges. 30 */ 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 34 #include <linux/kernel.h> 35 #include <linux/init.h> 36 #include <linux/efi.h> 37 #include <linux/efi-bgrt.h> 38 #include <linux/export.h> 39 #include <linux/memblock.h> 40 #include <linux/slab.h> 41 #include <linux/spinlock.h> 42 #include <linux/uaccess.h> 43 #include <linux/time.h> 44 #include <linux/io.h> 45 #include <linux/reboot.h> 46 #include <linux/bcd.h> 47 48 #include <asm/setup.h> 49 #include <asm/efi.h> 50 #include <asm/e820/api.h> 51 #include <asm/time.h> 52 #include <asm/tlbflush.h> 53 #include <asm/x86_init.h> 54 #include <asm/uv/uv.h> 55 56 static unsigned long efi_systab_phys __initdata; 57 static unsigned long prop_phys = EFI_INVALID_TABLE_ADDR; 58 static unsigned long uga_phys = EFI_INVALID_TABLE_ADDR; 59 static unsigned long efi_runtime, efi_nr_tables; 60 61 unsigned long efi_fw_vendor, efi_config_table; 62 63 static const efi_config_table_type_t arch_tables[] __initconst = { 64 {EFI_PROPERTIES_TABLE_GUID, &prop_phys, "PROP" }, 65 {UGA_IO_PROTOCOL_GUID, &uga_phys, "UGA" }, 66 #ifdef CONFIG_X86_UV 67 {UV_SYSTEM_TABLE_GUID, &uv_systab_phys, "UVsystab" }, 68 #endif 69 {}, 70 }; 71 72 static const unsigned long * const efi_tables[] = { 73 &efi.acpi, 74 &efi.acpi20, 75 &efi.smbios, 76 &efi.smbios3, 77 &uga_phys, 78 #ifdef CONFIG_X86_UV 79 &uv_systab_phys, 80 #endif 81 &efi_fw_vendor, 82 &efi_runtime, 83 &efi_config_table, 84 &efi.esrt, 85 &prop_phys, 86 &efi_mem_attr_table, 87 #ifdef CONFIG_EFI_RCI2_TABLE 88 &rci2_table_phys, 89 #endif 90 &efi.tpm_log, 91 &efi.tpm_final_log, 92 &efi_rng_seed, 93 }; 94 95 u64 efi_setup; /* efi setup_data physical address */ 96 97 static int add_efi_memmap __initdata; 98 static int __init setup_add_efi_memmap(char *arg) 99 { 100 add_efi_memmap = 1; 101 return 0; 102 } 103 early_param("add_efi_memmap", setup_add_efi_memmap); 104 105 void __init efi_find_mirror(void) 106 { 107 efi_memory_desc_t *md; 108 u64 mirror_size = 0, total_size = 0; 109 110 if (!efi_enabled(EFI_MEMMAP)) 111 return; 112 113 for_each_efi_memory_desc(md) { 114 unsigned long long start = md->phys_addr; 115 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT; 116 117 total_size += size; 118 if (md->attribute & EFI_MEMORY_MORE_RELIABLE) { 119 memblock_mark_mirror(start, size); 120 mirror_size += size; 121 } 122 } 123 if (mirror_size) 124 pr_info("Memory: %lldM/%lldM mirrored memory\n", 125 mirror_size>>20, total_size>>20); 126 } 127 128 /* 129 * Tell the kernel about the EFI memory map. This might include 130 * more than the max 128 entries that can fit in the passed in e820 131 * legacy (zeropage) memory map, but the kernel's e820 table can hold 132 * E820_MAX_ENTRIES. 133 */ 134 135 static void __init do_add_efi_memmap(void) 136 { 137 efi_memory_desc_t *md; 138 139 if (!efi_enabled(EFI_MEMMAP)) 140 return; 141 142 for_each_efi_memory_desc(md) { 143 unsigned long long start = md->phys_addr; 144 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT; 145 int e820_type; 146 147 switch (md->type) { 148 case EFI_LOADER_CODE: 149 case EFI_LOADER_DATA: 150 case EFI_BOOT_SERVICES_CODE: 151 case EFI_BOOT_SERVICES_DATA: 152 case EFI_CONVENTIONAL_MEMORY: 153 if (efi_soft_reserve_enabled() 154 && (md->attribute & EFI_MEMORY_SP)) 155 e820_type = E820_TYPE_SOFT_RESERVED; 156 else if (md->attribute & EFI_MEMORY_WB) 157 e820_type = E820_TYPE_RAM; 158 else 159 e820_type = E820_TYPE_RESERVED; 160 break; 161 case EFI_ACPI_RECLAIM_MEMORY: 162 e820_type = E820_TYPE_ACPI; 163 break; 164 case EFI_ACPI_MEMORY_NVS: 165 e820_type = E820_TYPE_NVS; 166 break; 167 case EFI_UNUSABLE_MEMORY: 168 e820_type = E820_TYPE_UNUSABLE; 169 break; 170 case EFI_PERSISTENT_MEMORY: 171 e820_type = E820_TYPE_PMEM; 172 break; 173 default: 174 /* 175 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE 176 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO 177 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE 178 */ 179 e820_type = E820_TYPE_RESERVED; 180 break; 181 } 182 183 e820__range_add(start, size, e820_type); 184 } 185 e820__update_table(e820_table); 186 } 187 188 /* 189 * Given add_efi_memmap defaults to 0 and there there is no alternative 190 * e820 mechanism for soft-reserved memory, import the full EFI memory 191 * map if soft reservations are present and enabled. Otherwise, the 192 * mechanism to disable the kernel's consideration of EFI_MEMORY_SP is 193 * the efi=nosoftreserve option. 194 */ 195 static bool do_efi_soft_reserve(void) 196 { 197 efi_memory_desc_t *md; 198 199 if (!efi_enabled(EFI_MEMMAP)) 200 return false; 201 202 if (!efi_soft_reserve_enabled()) 203 return false; 204 205 for_each_efi_memory_desc(md) 206 if (md->type == EFI_CONVENTIONAL_MEMORY && 207 (md->attribute & EFI_MEMORY_SP)) 208 return true; 209 return false; 210 } 211 212 int __init efi_memblock_x86_reserve_range(void) 213 { 214 struct efi_info *e = &boot_params.efi_info; 215 struct efi_memory_map_data data; 216 phys_addr_t pmap; 217 int rv; 218 219 if (efi_enabled(EFI_PARAVIRT)) 220 return 0; 221 222 /* Can't handle firmware tables above 4GB on i386 */ 223 if (IS_ENABLED(CONFIG_X86_32) && e->efi_memmap_hi > 0) { 224 pr_err("Memory map is above 4GB, disabling EFI.\n"); 225 return -EINVAL; 226 } 227 pmap = (phys_addr_t)(e->efi_memmap | ((u64)e->efi_memmap_hi << 32)); 228 229 data.phys_map = pmap; 230 data.size = e->efi_memmap_size; 231 data.desc_size = e->efi_memdesc_size; 232 data.desc_version = e->efi_memdesc_version; 233 234 rv = efi_memmap_init_early(&data); 235 if (rv) 236 return rv; 237 238 if (add_efi_memmap || do_efi_soft_reserve()) 239 do_add_efi_memmap(); 240 241 efi_fake_memmap_early(); 242 243 WARN(efi.memmap.desc_version != 1, 244 "Unexpected EFI_MEMORY_DESCRIPTOR version %ld", 245 efi.memmap.desc_version); 246 247 memblock_reserve(pmap, efi.memmap.nr_map * efi.memmap.desc_size); 248 set_bit(EFI_PRESERVE_BS_REGIONS, &efi.flags); 249 250 return 0; 251 } 252 253 #define OVERFLOW_ADDR_SHIFT (64 - EFI_PAGE_SHIFT) 254 #define OVERFLOW_ADDR_MASK (U64_MAX << OVERFLOW_ADDR_SHIFT) 255 #define U64_HIGH_BIT (~(U64_MAX >> 1)) 256 257 static bool __init efi_memmap_entry_valid(const efi_memory_desc_t *md, int i) 258 { 259 u64 end = (md->num_pages << EFI_PAGE_SHIFT) + md->phys_addr - 1; 260 u64 end_hi = 0; 261 char buf[64]; 262 263 if (md->num_pages == 0) { 264 end = 0; 265 } else if (md->num_pages > EFI_PAGES_MAX || 266 EFI_PAGES_MAX - md->num_pages < 267 (md->phys_addr >> EFI_PAGE_SHIFT)) { 268 end_hi = (md->num_pages & OVERFLOW_ADDR_MASK) 269 >> OVERFLOW_ADDR_SHIFT; 270 271 if ((md->phys_addr & U64_HIGH_BIT) && !(end & U64_HIGH_BIT)) 272 end_hi += 1; 273 } else { 274 return true; 275 } 276 277 pr_warn_once(FW_BUG "Invalid EFI memory map entries:\n"); 278 279 if (end_hi) { 280 pr_warn("mem%02u: %s range=[0x%016llx-0x%llx%016llx] (invalid)\n", 281 i, efi_md_typeattr_format(buf, sizeof(buf), md), 282 md->phys_addr, end_hi, end); 283 } else { 284 pr_warn("mem%02u: %s range=[0x%016llx-0x%016llx] (invalid)\n", 285 i, efi_md_typeattr_format(buf, sizeof(buf), md), 286 md->phys_addr, end); 287 } 288 return false; 289 } 290 291 static void __init efi_clean_memmap(void) 292 { 293 efi_memory_desc_t *out = efi.memmap.map; 294 const efi_memory_desc_t *in = out; 295 const efi_memory_desc_t *end = efi.memmap.map_end; 296 int i, n_removal; 297 298 for (i = n_removal = 0; in < end; i++) { 299 if (efi_memmap_entry_valid(in, i)) { 300 if (out != in) 301 memcpy(out, in, efi.memmap.desc_size); 302 out = (void *)out + efi.memmap.desc_size; 303 } else { 304 n_removal++; 305 } 306 in = (void *)in + efi.memmap.desc_size; 307 } 308 309 if (n_removal > 0) { 310 struct efi_memory_map_data data = { 311 .phys_map = efi.memmap.phys_map, 312 .desc_version = efi.memmap.desc_version, 313 .desc_size = efi.memmap.desc_size, 314 .size = efi.memmap.desc_size * (efi.memmap.nr_map - n_removal), 315 .flags = 0, 316 }; 317 318 pr_warn("Removing %d invalid memory map entries.\n", n_removal); 319 efi_memmap_install(&data); 320 } 321 } 322 323 void __init efi_print_memmap(void) 324 { 325 efi_memory_desc_t *md; 326 int i = 0; 327 328 for_each_efi_memory_desc(md) { 329 char buf[64]; 330 331 pr_info("mem%02u: %s range=[0x%016llx-0x%016llx] (%lluMB)\n", 332 i++, efi_md_typeattr_format(buf, sizeof(buf), md), 333 md->phys_addr, 334 md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1, 335 (md->num_pages >> (20 - EFI_PAGE_SHIFT))); 336 } 337 } 338 339 static int __init efi_systab_init(unsigned long phys) 340 { 341 int size = efi_enabled(EFI_64BIT) ? sizeof(efi_system_table_64_t) 342 : sizeof(efi_system_table_32_t); 343 const efi_table_hdr_t *hdr; 344 bool over4g = false; 345 void *p; 346 int ret; 347 348 hdr = p = early_memremap_ro(phys, size); 349 if (p == NULL) { 350 pr_err("Couldn't map the system table!\n"); 351 return -ENOMEM; 352 } 353 354 ret = efi_systab_check_header(hdr, 1); 355 if (ret) { 356 early_memunmap(p, size); 357 return ret; 358 } 359 360 if (efi_enabled(EFI_64BIT)) { 361 const efi_system_table_64_t *systab64 = p; 362 363 efi_runtime = systab64->runtime; 364 over4g = systab64->runtime > U32_MAX; 365 366 if (efi_setup) { 367 struct efi_setup_data *data; 368 369 data = early_memremap_ro(efi_setup, sizeof(*data)); 370 if (!data) { 371 early_memunmap(p, size); 372 return -ENOMEM; 373 } 374 375 efi_fw_vendor = (unsigned long)data->fw_vendor; 376 efi_config_table = (unsigned long)data->tables; 377 378 over4g |= data->fw_vendor > U32_MAX || 379 data->tables > U32_MAX; 380 381 early_memunmap(data, sizeof(*data)); 382 } else { 383 efi_fw_vendor = systab64->fw_vendor; 384 efi_config_table = systab64->tables; 385 386 over4g |= systab64->fw_vendor > U32_MAX || 387 systab64->tables > U32_MAX; 388 } 389 efi_nr_tables = systab64->nr_tables; 390 } else { 391 const efi_system_table_32_t *systab32 = p; 392 393 efi_fw_vendor = systab32->fw_vendor; 394 efi_runtime = systab32->runtime; 395 efi_config_table = systab32->tables; 396 efi_nr_tables = systab32->nr_tables; 397 } 398 399 efi.runtime_version = hdr->revision; 400 401 efi_systab_report_header(hdr, efi_fw_vendor); 402 early_memunmap(p, size); 403 404 if (IS_ENABLED(CONFIG_X86_32) && over4g) { 405 pr_err("EFI data located above 4GB, disabling EFI.\n"); 406 return -EINVAL; 407 } 408 409 return 0; 410 } 411 412 static int __init efi_config_init(const efi_config_table_type_t *arch_tables) 413 { 414 void *config_tables; 415 int sz, ret; 416 417 if (efi_nr_tables == 0) 418 return 0; 419 420 if (efi_enabled(EFI_64BIT)) 421 sz = sizeof(efi_config_table_64_t); 422 else 423 sz = sizeof(efi_config_table_32_t); 424 425 /* 426 * Let's see what config tables the firmware passed to us. 427 */ 428 config_tables = early_memremap(efi_config_table, efi_nr_tables * sz); 429 if (config_tables == NULL) { 430 pr_err("Could not map Configuration table!\n"); 431 return -ENOMEM; 432 } 433 434 ret = efi_config_parse_tables(config_tables, efi_nr_tables, 435 arch_tables); 436 437 early_memunmap(config_tables, efi_nr_tables * sz); 438 return ret; 439 } 440 441 void __init efi_init(void) 442 { 443 if (IS_ENABLED(CONFIG_X86_32) && 444 (boot_params.efi_info.efi_systab_hi || 445 boot_params.efi_info.efi_memmap_hi)) { 446 pr_info("Table located above 4GB, disabling EFI.\n"); 447 return; 448 } 449 450 efi_systab_phys = boot_params.efi_info.efi_systab | 451 ((__u64)boot_params.efi_info.efi_systab_hi << 32); 452 453 if (efi_systab_init(efi_systab_phys)) 454 return; 455 456 if (efi_reuse_config(efi_config_table, efi_nr_tables)) 457 return; 458 459 if (efi_config_init(arch_tables)) 460 return; 461 462 /* 463 * Note: We currently don't support runtime services on an EFI 464 * that doesn't match the kernel 32/64-bit mode. 465 */ 466 467 if (!efi_runtime_supported()) 468 pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n"); 469 470 if (!efi_runtime_supported() || efi_runtime_disabled()) { 471 efi_memmap_unmap(); 472 return; 473 } 474 475 /* Parse the EFI Properties table if it exists */ 476 if (prop_phys != EFI_INVALID_TABLE_ADDR) { 477 efi_properties_table_t *tbl; 478 479 tbl = early_memremap_ro(prop_phys, sizeof(*tbl)); 480 if (tbl == NULL) { 481 pr_err("Could not map Properties table!\n"); 482 } else { 483 if (tbl->memory_protection_attribute & 484 EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA) 485 set_bit(EFI_NX_PE_DATA, &efi.flags); 486 487 early_memunmap(tbl, sizeof(*tbl)); 488 } 489 } 490 491 set_bit(EFI_RUNTIME_SERVICES, &efi.flags); 492 efi_clean_memmap(); 493 494 if (efi_enabled(EFI_DBG)) 495 efi_print_memmap(); 496 } 497 498 /* Merge contiguous regions of the same type and attribute */ 499 static void __init efi_merge_regions(void) 500 { 501 efi_memory_desc_t *md, *prev_md = NULL; 502 503 for_each_efi_memory_desc(md) { 504 u64 prev_size; 505 506 if (!prev_md) { 507 prev_md = md; 508 continue; 509 } 510 511 if (prev_md->type != md->type || 512 prev_md->attribute != md->attribute) { 513 prev_md = md; 514 continue; 515 } 516 517 prev_size = prev_md->num_pages << EFI_PAGE_SHIFT; 518 519 if (md->phys_addr == (prev_md->phys_addr + prev_size)) { 520 prev_md->num_pages += md->num_pages; 521 md->type = EFI_RESERVED_TYPE; 522 md->attribute = 0; 523 continue; 524 } 525 prev_md = md; 526 } 527 } 528 529 static void *realloc_pages(void *old_memmap, int old_shift) 530 { 531 void *ret; 532 533 ret = (void *)__get_free_pages(GFP_KERNEL, old_shift + 1); 534 if (!ret) 535 goto out; 536 537 /* 538 * A first-time allocation doesn't have anything to copy. 539 */ 540 if (!old_memmap) 541 return ret; 542 543 memcpy(ret, old_memmap, PAGE_SIZE << old_shift); 544 545 out: 546 free_pages((unsigned long)old_memmap, old_shift); 547 return ret; 548 } 549 550 /* 551 * Iterate the EFI memory map in reverse order because the regions 552 * will be mapped top-down. The end result is the same as if we had 553 * mapped things forward, but doesn't require us to change the 554 * existing implementation of efi_map_region(). 555 */ 556 static inline void *efi_map_next_entry_reverse(void *entry) 557 { 558 /* Initial call */ 559 if (!entry) 560 return efi.memmap.map_end - efi.memmap.desc_size; 561 562 entry -= efi.memmap.desc_size; 563 if (entry < efi.memmap.map) 564 return NULL; 565 566 return entry; 567 } 568 569 /* 570 * efi_map_next_entry - Return the next EFI memory map descriptor 571 * @entry: Previous EFI memory map descriptor 572 * 573 * This is a helper function to iterate over the EFI memory map, which 574 * we do in different orders depending on the current configuration. 575 * 576 * To begin traversing the memory map @entry must be %NULL. 577 * 578 * Returns %NULL when we reach the end of the memory map. 579 */ 580 static void *efi_map_next_entry(void *entry) 581 { 582 if (efi_enabled(EFI_64BIT)) { 583 /* 584 * Starting in UEFI v2.5 the EFI_PROPERTIES_TABLE 585 * config table feature requires us to map all entries 586 * in the same order as they appear in the EFI memory 587 * map. That is to say, entry N must have a lower 588 * virtual address than entry N+1. This is because the 589 * firmware toolchain leaves relative references in 590 * the code/data sections, which are split and become 591 * separate EFI memory regions. Mapping things 592 * out-of-order leads to the firmware accessing 593 * unmapped addresses. 594 * 595 * Since we need to map things this way whether or not 596 * the kernel actually makes use of 597 * EFI_PROPERTIES_TABLE, let's just switch to this 598 * scheme by default for 64-bit. 599 */ 600 return efi_map_next_entry_reverse(entry); 601 } 602 603 /* Initial call */ 604 if (!entry) 605 return efi.memmap.map; 606 607 entry += efi.memmap.desc_size; 608 if (entry >= efi.memmap.map_end) 609 return NULL; 610 611 return entry; 612 } 613 614 static bool should_map_region(efi_memory_desc_t *md) 615 { 616 /* 617 * Runtime regions always require runtime mappings (obviously). 618 */ 619 if (md->attribute & EFI_MEMORY_RUNTIME) 620 return true; 621 622 /* 623 * 32-bit EFI doesn't suffer from the bug that requires us to 624 * reserve boot services regions, and mixed mode support 625 * doesn't exist for 32-bit kernels. 626 */ 627 if (IS_ENABLED(CONFIG_X86_32)) 628 return false; 629 630 /* 631 * EFI specific purpose memory may be reserved by default 632 * depending on kernel config and boot options. 633 */ 634 if (md->type == EFI_CONVENTIONAL_MEMORY && 635 efi_soft_reserve_enabled() && 636 (md->attribute & EFI_MEMORY_SP)) 637 return false; 638 639 /* 640 * Map all of RAM so that we can access arguments in the 1:1 641 * mapping when making EFI runtime calls. 642 */ 643 if (efi_is_mixed()) { 644 if (md->type == EFI_CONVENTIONAL_MEMORY || 645 md->type == EFI_LOADER_DATA || 646 md->type == EFI_LOADER_CODE) 647 return true; 648 } 649 650 /* 651 * Map boot services regions as a workaround for buggy 652 * firmware that accesses them even when they shouldn't. 653 * 654 * See efi_{reserve,free}_boot_services(). 655 */ 656 if (md->type == EFI_BOOT_SERVICES_CODE || 657 md->type == EFI_BOOT_SERVICES_DATA) 658 return true; 659 660 return false; 661 } 662 663 /* 664 * Map the efi memory ranges of the runtime services and update new_mmap with 665 * virtual addresses. 666 */ 667 static void * __init efi_map_regions(int *count, int *pg_shift) 668 { 669 void *p, *new_memmap = NULL; 670 unsigned long left = 0; 671 unsigned long desc_size; 672 efi_memory_desc_t *md; 673 674 desc_size = efi.memmap.desc_size; 675 676 p = NULL; 677 while ((p = efi_map_next_entry(p))) { 678 md = p; 679 680 if (!should_map_region(md)) 681 continue; 682 683 efi_map_region(md); 684 685 if (left < desc_size) { 686 new_memmap = realloc_pages(new_memmap, *pg_shift); 687 if (!new_memmap) 688 return NULL; 689 690 left += PAGE_SIZE << *pg_shift; 691 (*pg_shift)++; 692 } 693 694 memcpy(new_memmap + (*count * desc_size), md, desc_size); 695 696 left -= desc_size; 697 (*count)++; 698 } 699 700 return new_memmap; 701 } 702 703 static void __init kexec_enter_virtual_mode(void) 704 { 705 #ifdef CONFIG_KEXEC_CORE 706 efi_memory_desc_t *md; 707 unsigned int num_pages; 708 709 /* 710 * We don't do virtual mode, since we don't do runtime services, on 711 * non-native EFI. 712 */ 713 if (efi_is_mixed()) { 714 efi_memmap_unmap(); 715 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); 716 return; 717 } 718 719 if (efi_alloc_page_tables()) { 720 pr_err("Failed to allocate EFI page tables\n"); 721 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); 722 return; 723 } 724 725 /* 726 * Map efi regions which were passed via setup_data. The virt_addr is a 727 * fixed addr which was used in first kernel of a kexec boot. 728 */ 729 for_each_efi_memory_desc(md) 730 efi_map_region_fixed(md); /* FIXME: add error handling */ 731 732 /* 733 * Unregister the early EFI memmap from efi_init() and install 734 * the new EFI memory map. 735 */ 736 efi_memmap_unmap(); 737 738 if (efi_memmap_init_late(efi.memmap.phys_map, 739 efi.memmap.desc_size * efi.memmap.nr_map)) { 740 pr_err("Failed to remap late EFI memory map\n"); 741 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); 742 return; 743 } 744 745 num_pages = ALIGN(efi.memmap.nr_map * efi.memmap.desc_size, PAGE_SIZE); 746 num_pages >>= PAGE_SHIFT; 747 748 if (efi_setup_page_tables(efi.memmap.phys_map, num_pages)) { 749 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); 750 return; 751 } 752 753 efi_sync_low_kernel_mappings(); 754 efi_native_runtime_setup(); 755 #endif 756 } 757 758 /* 759 * This function will switch the EFI runtime services to virtual mode. 760 * Essentially, we look through the EFI memmap and map every region that 761 * has the runtime attribute bit set in its memory descriptor into the 762 * efi_pgd page table. 763 * 764 * The new method does a pagetable switch in a preemption-safe manner 765 * so that we're in a different address space when calling a runtime 766 * function. For function arguments passing we do copy the PUDs of the 767 * kernel page table into efi_pgd prior to each call. 768 * 769 * Specially for kexec boot, efi runtime maps in previous kernel should 770 * be passed in via setup_data. In that case runtime ranges will be mapped 771 * to the same virtual addresses as the first kernel, see 772 * kexec_enter_virtual_mode(). 773 */ 774 static void __init __efi_enter_virtual_mode(void) 775 { 776 int count = 0, pg_shift = 0; 777 void *new_memmap = NULL; 778 efi_status_t status; 779 unsigned long pa; 780 781 if (efi_alloc_page_tables()) { 782 pr_err("Failed to allocate EFI page tables\n"); 783 goto err; 784 } 785 786 efi_merge_regions(); 787 new_memmap = efi_map_regions(&count, &pg_shift); 788 if (!new_memmap) { 789 pr_err("Error reallocating memory, EFI runtime non-functional!\n"); 790 goto err; 791 } 792 793 pa = __pa(new_memmap); 794 795 /* 796 * Unregister the early EFI memmap from efi_init() and install 797 * the new EFI memory map that we are about to pass to the 798 * firmware via SetVirtualAddressMap(). 799 */ 800 efi_memmap_unmap(); 801 802 if (efi_memmap_init_late(pa, efi.memmap.desc_size * count)) { 803 pr_err("Failed to remap late EFI memory map\n"); 804 goto err; 805 } 806 807 if (efi_enabled(EFI_DBG)) { 808 pr_info("EFI runtime memory map:\n"); 809 efi_print_memmap(); 810 } 811 812 if (efi_setup_page_tables(pa, 1 << pg_shift)) 813 goto err; 814 815 efi_sync_low_kernel_mappings(); 816 817 status = efi_set_virtual_address_map(efi.memmap.desc_size * count, 818 efi.memmap.desc_size, 819 efi.memmap.desc_version, 820 (efi_memory_desc_t *)pa, 821 efi_systab_phys); 822 if (status != EFI_SUCCESS) { 823 pr_err("Unable to switch EFI into virtual mode (status=%lx)!\n", 824 status); 825 goto err; 826 } 827 828 efi_check_for_embedded_firmwares(); 829 efi_free_boot_services(); 830 831 if (!efi_is_mixed()) 832 efi_native_runtime_setup(); 833 else 834 efi_thunk_runtime_setup(); 835 836 /* 837 * Apply more restrictive page table mapping attributes now that 838 * SVAM() has been called and the firmware has performed all 839 * necessary relocation fixups for the new virtual addresses. 840 */ 841 efi_runtime_update_mappings(); 842 843 /* clean DUMMY object */ 844 efi_delete_dummy_variable(); 845 return; 846 847 err: 848 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); 849 } 850 851 void __init efi_enter_virtual_mode(void) 852 { 853 if (efi_enabled(EFI_PARAVIRT)) 854 return; 855 856 efi.runtime = (efi_runtime_services_t *)efi_runtime; 857 858 if (efi_setup) 859 kexec_enter_virtual_mode(); 860 else 861 __efi_enter_virtual_mode(); 862 863 efi_dump_pagetable(); 864 } 865 866 bool efi_is_table_address(unsigned long phys_addr) 867 { 868 unsigned int i; 869 870 if (phys_addr == EFI_INVALID_TABLE_ADDR) 871 return false; 872 873 for (i = 0; i < ARRAY_SIZE(efi_tables); i++) 874 if (*(efi_tables[i]) == phys_addr) 875 return true; 876 877 return false; 878 } 879 880 char *efi_systab_show_arch(char *str) 881 { 882 if (uga_phys != EFI_INVALID_TABLE_ADDR) 883 str += sprintf(str, "UGA=0x%lx\n", uga_phys); 884 return str; 885 } 886 887 #define EFI_FIELD(var) efi_ ## var 888 889 #define EFI_ATTR_SHOW(name) \ 890 static ssize_t name##_show(struct kobject *kobj, \ 891 struct kobj_attribute *attr, char *buf) \ 892 { \ 893 return sprintf(buf, "0x%lx\n", EFI_FIELD(name)); \ 894 } 895 896 EFI_ATTR_SHOW(fw_vendor); 897 EFI_ATTR_SHOW(runtime); 898 EFI_ATTR_SHOW(config_table); 899 900 struct kobj_attribute efi_attr_fw_vendor = __ATTR_RO(fw_vendor); 901 struct kobj_attribute efi_attr_runtime = __ATTR_RO(runtime); 902 struct kobj_attribute efi_attr_config_table = __ATTR_RO(config_table); 903 904 umode_t efi_attr_is_visible(struct kobject *kobj, struct attribute *attr, int n) 905 { 906 if (attr == &efi_attr_fw_vendor.attr) { 907 if (efi_enabled(EFI_PARAVIRT) || 908 efi_fw_vendor == EFI_INVALID_TABLE_ADDR) 909 return 0; 910 } else if (attr == &efi_attr_runtime.attr) { 911 if (efi_runtime == EFI_INVALID_TABLE_ADDR) 912 return 0; 913 } else if (attr == &efi_attr_config_table.attr) { 914 if (efi_config_table == EFI_INVALID_TABLE_ADDR) 915 return 0; 916 } 917 return attr->mode; 918 } 919