1 /* 2 * Common EFI (Extensible Firmware Interface) support functions 3 * Based on Extensible Firmware Interface Specification version 1.0 4 * 5 * Copyright (C) 1999 VA Linux Systems 6 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> 7 * Copyright (C) 1999-2002 Hewlett-Packard Co. 8 * David Mosberger-Tang <davidm@hpl.hp.com> 9 * Stephane Eranian <eranian@hpl.hp.com> 10 * Copyright (C) 2005-2008 Intel Co. 11 * Fenghua Yu <fenghua.yu@intel.com> 12 * Bibo Mao <bibo.mao@intel.com> 13 * Chandramouli Narayanan <mouli@linux.intel.com> 14 * Huang Ying <ying.huang@intel.com> 15 * Copyright (C) 2013 SuSE Labs 16 * Borislav Petkov <bp@suse.de> - runtime services VA mapping 17 * 18 * Copied from efi_32.c to eliminate the duplicated code between EFI 19 * 32/64 support code. --ying 2007-10-26 20 * 21 * All EFI Runtime Services are not implemented yet as EFI only 22 * supports physical mode addressing on SoftSDV. This is to be fixed 23 * in a future version. --drummond 1999-07-20 24 * 25 * Implemented EFI runtime services and virtual mode calls. --davidm 26 * 27 * Goutham Rao: <goutham.rao@intel.com> 28 * Skip non-WB memory and ignore empty memory ranges. 29 */ 30 31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 32 33 #include <linux/kernel.h> 34 #include <linux/init.h> 35 #include <linux/efi.h> 36 #include <linux/efi-bgrt.h> 37 #include <linux/export.h> 38 #include <linux/bootmem.h> 39 #include <linux/slab.h> 40 #include <linux/memblock.h> 41 #include <linux/spinlock.h> 42 #include <linux/uaccess.h> 43 #include <linux/time.h> 44 #include <linux/io.h> 45 #include <linux/reboot.h> 46 #include <linux/bcd.h> 47 48 #include <asm/setup.h> 49 #include <asm/efi.h> 50 #include <asm/time.h> 51 #include <asm/cacheflush.h> 52 #include <asm/tlbflush.h> 53 #include <asm/x86_init.h> 54 #include <asm/uv/uv.h> 55 56 static struct efi efi_phys __initdata; 57 static efi_system_table_t efi_systab __initdata; 58 59 static efi_config_table_type_t arch_tables[] __initdata = { 60 #ifdef CONFIG_X86_UV 61 {UV_SYSTEM_TABLE_GUID, "UVsystab", &efi.uv_systab}, 62 #endif 63 {NULL_GUID, NULL, NULL}, 64 }; 65 66 u64 efi_setup; /* efi setup_data physical address */ 67 68 static int add_efi_memmap __initdata; 69 static int __init setup_add_efi_memmap(char *arg) 70 { 71 add_efi_memmap = 1; 72 return 0; 73 } 74 early_param("add_efi_memmap", setup_add_efi_memmap); 75 76 static efi_status_t __init phys_efi_set_virtual_address_map( 77 unsigned long memory_map_size, 78 unsigned long descriptor_size, 79 u32 descriptor_version, 80 efi_memory_desc_t *virtual_map) 81 { 82 efi_status_t status; 83 unsigned long flags; 84 pgd_t *save_pgd; 85 86 save_pgd = efi_call_phys_prolog(); 87 88 /* Disable interrupts around EFI calls: */ 89 local_irq_save(flags); 90 status = efi_call_phys(efi_phys.set_virtual_address_map, 91 memory_map_size, descriptor_size, 92 descriptor_version, virtual_map); 93 local_irq_restore(flags); 94 95 efi_call_phys_epilog(save_pgd); 96 97 return status; 98 } 99 100 void __init efi_find_mirror(void) 101 { 102 efi_memory_desc_t *md; 103 u64 mirror_size = 0, total_size = 0; 104 105 for_each_efi_memory_desc(md) { 106 unsigned long long start = md->phys_addr; 107 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT; 108 109 total_size += size; 110 if (md->attribute & EFI_MEMORY_MORE_RELIABLE) { 111 memblock_mark_mirror(start, size); 112 mirror_size += size; 113 } 114 } 115 if (mirror_size) 116 pr_info("Memory: %lldM/%lldM mirrored memory\n", 117 mirror_size>>20, total_size>>20); 118 } 119 120 /* 121 * Tell the kernel about the EFI memory map. This might include 122 * more than the max 128 entries that can fit in the e820 legacy 123 * (zeropage) memory map. 124 */ 125 126 static void __init do_add_efi_memmap(void) 127 { 128 efi_memory_desc_t *md; 129 130 for_each_efi_memory_desc(md) { 131 unsigned long long start = md->phys_addr; 132 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT; 133 int e820_type; 134 135 switch (md->type) { 136 case EFI_LOADER_CODE: 137 case EFI_LOADER_DATA: 138 case EFI_BOOT_SERVICES_CODE: 139 case EFI_BOOT_SERVICES_DATA: 140 case EFI_CONVENTIONAL_MEMORY: 141 if (md->attribute & EFI_MEMORY_WB) 142 e820_type = E820_RAM; 143 else 144 e820_type = E820_RESERVED; 145 break; 146 case EFI_ACPI_RECLAIM_MEMORY: 147 e820_type = E820_ACPI; 148 break; 149 case EFI_ACPI_MEMORY_NVS: 150 e820_type = E820_NVS; 151 break; 152 case EFI_UNUSABLE_MEMORY: 153 e820_type = E820_UNUSABLE; 154 break; 155 case EFI_PERSISTENT_MEMORY: 156 e820_type = E820_PMEM; 157 break; 158 default: 159 /* 160 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE 161 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO 162 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE 163 */ 164 e820_type = E820_RESERVED; 165 break; 166 } 167 e820_add_region(start, size, e820_type); 168 } 169 sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map); 170 } 171 172 int __init efi_memblock_x86_reserve_range(void) 173 { 174 struct efi_info *e = &boot_params.efi_info; 175 phys_addr_t pmap; 176 177 if (efi_enabled(EFI_PARAVIRT)) 178 return 0; 179 180 #ifdef CONFIG_X86_32 181 /* Can't handle data above 4GB at this time */ 182 if (e->efi_memmap_hi) { 183 pr_err("Memory map is above 4GB, disabling EFI.\n"); 184 return -EINVAL; 185 } 186 pmap = e->efi_memmap; 187 #else 188 pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32)); 189 #endif 190 efi.memmap.phys_map = pmap; 191 efi.memmap.nr_map = e->efi_memmap_size / 192 e->efi_memdesc_size; 193 efi.memmap.desc_size = e->efi_memdesc_size; 194 efi.memmap.desc_version = e->efi_memdesc_version; 195 196 WARN(efi.memmap.desc_version != 1, 197 "Unexpected EFI_MEMORY_DESCRIPTOR version %ld", 198 efi.memmap.desc_version); 199 200 memblock_reserve(pmap, efi.memmap.nr_map * efi.memmap.desc_size); 201 202 return 0; 203 } 204 205 void __init efi_print_memmap(void) 206 { 207 efi_memory_desc_t *md; 208 int i = 0; 209 210 for_each_efi_memory_desc(md) { 211 char buf[64]; 212 213 pr_info("mem%02u: %s range=[0x%016llx-0x%016llx] (%lluMB)\n", 214 i++, efi_md_typeattr_format(buf, sizeof(buf), md), 215 md->phys_addr, 216 md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1, 217 (md->num_pages >> (20 - EFI_PAGE_SHIFT))); 218 } 219 } 220 221 void __init efi_unmap_memmap(void) 222 { 223 unsigned long size; 224 225 clear_bit(EFI_MEMMAP, &efi.flags); 226 227 size = efi.memmap.nr_map * efi.memmap.desc_size; 228 if (efi.memmap.map) { 229 early_memunmap(efi.memmap.map, size); 230 efi.memmap.map = NULL; 231 } 232 } 233 234 static int __init efi_systab_init(void *phys) 235 { 236 if (efi_enabled(EFI_64BIT)) { 237 efi_system_table_64_t *systab64; 238 struct efi_setup_data *data = NULL; 239 u64 tmp = 0; 240 241 if (efi_setup) { 242 data = early_memremap(efi_setup, sizeof(*data)); 243 if (!data) 244 return -ENOMEM; 245 } 246 systab64 = early_memremap((unsigned long)phys, 247 sizeof(*systab64)); 248 if (systab64 == NULL) { 249 pr_err("Couldn't map the system table!\n"); 250 if (data) 251 early_memunmap(data, sizeof(*data)); 252 return -ENOMEM; 253 } 254 255 efi_systab.hdr = systab64->hdr; 256 efi_systab.fw_vendor = data ? (unsigned long)data->fw_vendor : 257 systab64->fw_vendor; 258 tmp |= data ? data->fw_vendor : systab64->fw_vendor; 259 efi_systab.fw_revision = systab64->fw_revision; 260 efi_systab.con_in_handle = systab64->con_in_handle; 261 tmp |= systab64->con_in_handle; 262 efi_systab.con_in = systab64->con_in; 263 tmp |= systab64->con_in; 264 efi_systab.con_out_handle = systab64->con_out_handle; 265 tmp |= systab64->con_out_handle; 266 efi_systab.con_out = systab64->con_out; 267 tmp |= systab64->con_out; 268 efi_systab.stderr_handle = systab64->stderr_handle; 269 tmp |= systab64->stderr_handle; 270 efi_systab.stderr = systab64->stderr; 271 tmp |= systab64->stderr; 272 efi_systab.runtime = data ? 273 (void *)(unsigned long)data->runtime : 274 (void *)(unsigned long)systab64->runtime; 275 tmp |= data ? data->runtime : systab64->runtime; 276 efi_systab.boottime = (void *)(unsigned long)systab64->boottime; 277 tmp |= systab64->boottime; 278 efi_systab.nr_tables = systab64->nr_tables; 279 efi_systab.tables = data ? (unsigned long)data->tables : 280 systab64->tables; 281 tmp |= data ? data->tables : systab64->tables; 282 283 early_memunmap(systab64, sizeof(*systab64)); 284 if (data) 285 early_memunmap(data, sizeof(*data)); 286 #ifdef CONFIG_X86_32 287 if (tmp >> 32) { 288 pr_err("EFI data located above 4GB, disabling EFI.\n"); 289 return -EINVAL; 290 } 291 #endif 292 } else { 293 efi_system_table_32_t *systab32; 294 295 systab32 = early_memremap((unsigned long)phys, 296 sizeof(*systab32)); 297 if (systab32 == NULL) { 298 pr_err("Couldn't map the system table!\n"); 299 return -ENOMEM; 300 } 301 302 efi_systab.hdr = systab32->hdr; 303 efi_systab.fw_vendor = systab32->fw_vendor; 304 efi_systab.fw_revision = systab32->fw_revision; 305 efi_systab.con_in_handle = systab32->con_in_handle; 306 efi_systab.con_in = systab32->con_in; 307 efi_systab.con_out_handle = systab32->con_out_handle; 308 efi_systab.con_out = systab32->con_out; 309 efi_systab.stderr_handle = systab32->stderr_handle; 310 efi_systab.stderr = systab32->stderr; 311 efi_systab.runtime = (void *)(unsigned long)systab32->runtime; 312 efi_systab.boottime = (void *)(unsigned long)systab32->boottime; 313 efi_systab.nr_tables = systab32->nr_tables; 314 efi_systab.tables = systab32->tables; 315 316 early_memunmap(systab32, sizeof(*systab32)); 317 } 318 319 efi.systab = &efi_systab; 320 321 /* 322 * Verify the EFI Table 323 */ 324 if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) { 325 pr_err("System table signature incorrect!\n"); 326 return -EINVAL; 327 } 328 if ((efi.systab->hdr.revision >> 16) == 0) 329 pr_err("Warning: System table version %d.%02d, expected 1.00 or greater!\n", 330 efi.systab->hdr.revision >> 16, 331 efi.systab->hdr.revision & 0xffff); 332 333 return 0; 334 } 335 336 static int __init efi_runtime_init32(void) 337 { 338 efi_runtime_services_32_t *runtime; 339 340 runtime = early_memremap((unsigned long)efi.systab->runtime, 341 sizeof(efi_runtime_services_32_t)); 342 if (!runtime) { 343 pr_err("Could not map the runtime service table!\n"); 344 return -ENOMEM; 345 } 346 347 /* 348 * We will only need *early* access to the SetVirtualAddressMap 349 * EFI runtime service. All other runtime services will be called 350 * via the virtual mapping. 351 */ 352 efi_phys.set_virtual_address_map = 353 (efi_set_virtual_address_map_t *) 354 (unsigned long)runtime->set_virtual_address_map; 355 early_memunmap(runtime, sizeof(efi_runtime_services_32_t)); 356 357 return 0; 358 } 359 360 static int __init efi_runtime_init64(void) 361 { 362 efi_runtime_services_64_t *runtime; 363 364 runtime = early_memremap((unsigned long)efi.systab->runtime, 365 sizeof(efi_runtime_services_64_t)); 366 if (!runtime) { 367 pr_err("Could not map the runtime service table!\n"); 368 return -ENOMEM; 369 } 370 371 /* 372 * We will only need *early* access to the SetVirtualAddressMap 373 * EFI runtime service. All other runtime services will be called 374 * via the virtual mapping. 375 */ 376 efi_phys.set_virtual_address_map = 377 (efi_set_virtual_address_map_t *) 378 (unsigned long)runtime->set_virtual_address_map; 379 early_memunmap(runtime, sizeof(efi_runtime_services_64_t)); 380 381 return 0; 382 } 383 384 static int __init efi_runtime_init(void) 385 { 386 int rv; 387 388 /* 389 * Check out the runtime services table. We need to map 390 * the runtime services table so that we can grab the physical 391 * address of several of the EFI runtime functions, needed to 392 * set the firmware into virtual mode. 393 * 394 * When EFI_PARAVIRT is in force then we could not map runtime 395 * service memory region because we do not have direct access to it. 396 * However, runtime services are available through proxy functions 397 * (e.g. in case of Xen dom0 EFI implementation they call special 398 * hypercall which executes relevant EFI functions) and that is why 399 * they are always enabled. 400 */ 401 402 if (!efi_enabled(EFI_PARAVIRT)) { 403 if (efi_enabled(EFI_64BIT)) 404 rv = efi_runtime_init64(); 405 else 406 rv = efi_runtime_init32(); 407 408 if (rv) 409 return rv; 410 } 411 412 set_bit(EFI_RUNTIME_SERVICES, &efi.flags); 413 414 return 0; 415 } 416 417 static int __init efi_memmap_init(void) 418 { 419 unsigned long addr, size; 420 421 if (efi_enabled(EFI_PARAVIRT)) 422 return 0; 423 424 /* Map the EFI memory map */ 425 size = efi.memmap.nr_map * efi.memmap.desc_size; 426 addr = (unsigned long)efi.memmap.phys_map; 427 428 efi.memmap.map = early_memremap(addr, size); 429 if (efi.memmap.map == NULL) { 430 pr_err("Could not map the memory map!\n"); 431 return -ENOMEM; 432 } 433 434 efi.memmap.map_end = efi.memmap.map + size; 435 436 if (add_efi_memmap) 437 do_add_efi_memmap(); 438 439 set_bit(EFI_MEMMAP, &efi.flags); 440 441 return 0; 442 } 443 444 void __init efi_init(void) 445 { 446 efi_char16_t *c16; 447 char vendor[100] = "unknown"; 448 int i = 0; 449 void *tmp; 450 451 #ifdef CONFIG_X86_32 452 if (boot_params.efi_info.efi_systab_hi || 453 boot_params.efi_info.efi_memmap_hi) { 454 pr_info("Table located above 4GB, disabling EFI.\n"); 455 return; 456 } 457 efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab; 458 #else 459 efi_phys.systab = (efi_system_table_t *) 460 (boot_params.efi_info.efi_systab | 461 ((__u64)boot_params.efi_info.efi_systab_hi<<32)); 462 #endif 463 464 if (efi_systab_init(efi_phys.systab)) 465 return; 466 467 efi.config_table = (unsigned long)efi.systab->tables; 468 efi.fw_vendor = (unsigned long)efi.systab->fw_vendor; 469 efi.runtime = (unsigned long)efi.systab->runtime; 470 471 /* 472 * Show what we know for posterity 473 */ 474 c16 = tmp = early_memremap(efi.systab->fw_vendor, 2); 475 if (c16) { 476 for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i) 477 vendor[i] = *c16++; 478 vendor[i] = '\0'; 479 } else 480 pr_err("Could not map the firmware vendor!\n"); 481 early_memunmap(tmp, 2); 482 483 pr_info("EFI v%u.%.02u by %s\n", 484 efi.systab->hdr.revision >> 16, 485 efi.systab->hdr.revision & 0xffff, vendor); 486 487 if (efi_reuse_config(efi.systab->tables, efi.systab->nr_tables)) 488 return; 489 490 if (efi_config_init(arch_tables)) 491 return; 492 493 /* 494 * Note: We currently don't support runtime services on an EFI 495 * that doesn't match the kernel 32/64-bit mode. 496 */ 497 498 if (!efi_runtime_supported()) 499 pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n"); 500 else { 501 if (efi_runtime_disabled() || efi_runtime_init()) 502 return; 503 } 504 if (efi_memmap_init()) 505 return; 506 507 if (efi_enabled(EFI_DBG)) 508 efi_print_memmap(); 509 510 efi_esrt_init(); 511 } 512 513 void __init efi_late_init(void) 514 { 515 efi_bgrt_init(); 516 } 517 518 void __init efi_set_executable(efi_memory_desc_t *md, bool executable) 519 { 520 u64 addr, npages; 521 522 addr = md->virt_addr; 523 npages = md->num_pages; 524 525 memrange_efi_to_native(&addr, &npages); 526 527 if (executable) 528 set_memory_x(addr, npages); 529 else 530 set_memory_nx(addr, npages); 531 } 532 533 void __init runtime_code_page_mkexec(void) 534 { 535 efi_memory_desc_t *md; 536 537 /* Make EFI runtime service code area executable */ 538 for_each_efi_memory_desc(md) { 539 if (md->type != EFI_RUNTIME_SERVICES_CODE) 540 continue; 541 542 efi_set_executable(md, true); 543 } 544 } 545 546 void __init efi_memory_uc(u64 addr, unsigned long size) 547 { 548 unsigned long page_shift = 1UL << EFI_PAGE_SHIFT; 549 u64 npages; 550 551 npages = round_up(size, page_shift) / page_shift; 552 memrange_efi_to_native(&addr, &npages); 553 set_memory_uc(addr, npages); 554 } 555 556 void __init old_map_region(efi_memory_desc_t *md) 557 { 558 u64 start_pfn, end_pfn, end; 559 unsigned long size; 560 void *va; 561 562 start_pfn = PFN_DOWN(md->phys_addr); 563 size = md->num_pages << PAGE_SHIFT; 564 end = md->phys_addr + size; 565 end_pfn = PFN_UP(end); 566 567 if (pfn_range_is_mapped(start_pfn, end_pfn)) { 568 va = __va(md->phys_addr); 569 570 if (!(md->attribute & EFI_MEMORY_WB)) 571 efi_memory_uc((u64)(unsigned long)va, size); 572 } else 573 va = efi_ioremap(md->phys_addr, size, 574 md->type, md->attribute); 575 576 md->virt_addr = (u64) (unsigned long) va; 577 if (!va) 578 pr_err("ioremap of 0x%llX failed!\n", 579 (unsigned long long)md->phys_addr); 580 } 581 582 /* Merge contiguous regions of the same type and attribute */ 583 static void __init efi_merge_regions(void) 584 { 585 efi_memory_desc_t *md, *prev_md = NULL; 586 587 for_each_efi_memory_desc(md) { 588 u64 prev_size; 589 590 if (!prev_md) { 591 prev_md = md; 592 continue; 593 } 594 595 if (prev_md->type != md->type || 596 prev_md->attribute != md->attribute) { 597 prev_md = md; 598 continue; 599 } 600 601 prev_size = prev_md->num_pages << EFI_PAGE_SHIFT; 602 603 if (md->phys_addr == (prev_md->phys_addr + prev_size)) { 604 prev_md->num_pages += md->num_pages; 605 md->type = EFI_RESERVED_TYPE; 606 md->attribute = 0; 607 continue; 608 } 609 prev_md = md; 610 } 611 } 612 613 static void __init get_systab_virt_addr(efi_memory_desc_t *md) 614 { 615 unsigned long size; 616 u64 end, systab; 617 618 size = md->num_pages << EFI_PAGE_SHIFT; 619 end = md->phys_addr + size; 620 systab = (u64)(unsigned long)efi_phys.systab; 621 if (md->phys_addr <= systab && systab < end) { 622 systab += md->virt_addr - md->phys_addr; 623 efi.systab = (efi_system_table_t *)(unsigned long)systab; 624 } 625 } 626 627 static void __init save_runtime_map(void) 628 { 629 #ifdef CONFIG_KEXEC_CORE 630 unsigned long desc_size; 631 efi_memory_desc_t *md; 632 void *tmp, *q = NULL; 633 int count = 0; 634 635 if (efi_enabled(EFI_OLD_MEMMAP)) 636 return; 637 638 desc_size = efi.memmap.desc_size; 639 640 for_each_efi_memory_desc(md) { 641 if (!(md->attribute & EFI_MEMORY_RUNTIME) || 642 (md->type == EFI_BOOT_SERVICES_CODE) || 643 (md->type == EFI_BOOT_SERVICES_DATA)) 644 continue; 645 tmp = krealloc(q, (count + 1) * desc_size, GFP_KERNEL); 646 if (!tmp) 647 goto out; 648 q = tmp; 649 650 memcpy(q + count * desc_size, md, desc_size); 651 count++; 652 } 653 654 efi_runtime_map_setup(q, count, desc_size); 655 return; 656 657 out: 658 kfree(q); 659 pr_err("Error saving runtime map, efi runtime on kexec non-functional!!\n"); 660 #endif 661 } 662 663 static void *realloc_pages(void *old_memmap, int old_shift) 664 { 665 void *ret; 666 667 ret = (void *)__get_free_pages(GFP_KERNEL, old_shift + 1); 668 if (!ret) 669 goto out; 670 671 /* 672 * A first-time allocation doesn't have anything to copy. 673 */ 674 if (!old_memmap) 675 return ret; 676 677 memcpy(ret, old_memmap, PAGE_SIZE << old_shift); 678 679 out: 680 free_pages((unsigned long)old_memmap, old_shift); 681 return ret; 682 } 683 684 /* 685 * Iterate the EFI memory map in reverse order because the regions 686 * will be mapped top-down. The end result is the same as if we had 687 * mapped things forward, but doesn't require us to change the 688 * existing implementation of efi_map_region(). 689 */ 690 static inline void *efi_map_next_entry_reverse(void *entry) 691 { 692 /* Initial call */ 693 if (!entry) 694 return efi.memmap.map_end - efi.memmap.desc_size; 695 696 entry -= efi.memmap.desc_size; 697 if (entry < efi.memmap.map) 698 return NULL; 699 700 return entry; 701 } 702 703 /* 704 * efi_map_next_entry - Return the next EFI memory map descriptor 705 * @entry: Previous EFI memory map descriptor 706 * 707 * This is a helper function to iterate over the EFI memory map, which 708 * we do in different orders depending on the current configuration. 709 * 710 * To begin traversing the memory map @entry must be %NULL. 711 * 712 * Returns %NULL when we reach the end of the memory map. 713 */ 714 static void *efi_map_next_entry(void *entry) 715 { 716 if (!efi_enabled(EFI_OLD_MEMMAP) && efi_enabled(EFI_64BIT)) { 717 /* 718 * Starting in UEFI v2.5 the EFI_PROPERTIES_TABLE 719 * config table feature requires us to map all entries 720 * in the same order as they appear in the EFI memory 721 * map. That is to say, entry N must have a lower 722 * virtual address than entry N+1. This is because the 723 * firmware toolchain leaves relative references in 724 * the code/data sections, which are split and become 725 * separate EFI memory regions. Mapping things 726 * out-of-order leads to the firmware accessing 727 * unmapped addresses. 728 * 729 * Since we need to map things this way whether or not 730 * the kernel actually makes use of 731 * EFI_PROPERTIES_TABLE, let's just switch to this 732 * scheme by default for 64-bit. 733 */ 734 return efi_map_next_entry_reverse(entry); 735 } 736 737 /* Initial call */ 738 if (!entry) 739 return efi.memmap.map; 740 741 entry += efi.memmap.desc_size; 742 if (entry >= efi.memmap.map_end) 743 return NULL; 744 745 return entry; 746 } 747 748 /* 749 * Map the efi memory ranges of the runtime services and update new_mmap with 750 * virtual addresses. 751 */ 752 static void * __init efi_map_regions(int *count, int *pg_shift) 753 { 754 void *p, *new_memmap = NULL; 755 unsigned long left = 0; 756 unsigned long desc_size; 757 efi_memory_desc_t *md; 758 759 desc_size = efi.memmap.desc_size; 760 761 p = NULL; 762 while ((p = efi_map_next_entry(p))) { 763 md = p; 764 if (!(md->attribute & EFI_MEMORY_RUNTIME)) { 765 #ifdef CONFIG_X86_64 766 if (md->type != EFI_BOOT_SERVICES_CODE && 767 md->type != EFI_BOOT_SERVICES_DATA) 768 #endif 769 continue; 770 } 771 772 efi_map_region(md); 773 get_systab_virt_addr(md); 774 775 if (left < desc_size) { 776 new_memmap = realloc_pages(new_memmap, *pg_shift); 777 if (!new_memmap) 778 return NULL; 779 780 left += PAGE_SIZE << *pg_shift; 781 (*pg_shift)++; 782 } 783 784 memcpy(new_memmap + (*count * desc_size), md, desc_size); 785 786 left -= desc_size; 787 (*count)++; 788 } 789 790 return new_memmap; 791 } 792 793 static void __init kexec_enter_virtual_mode(void) 794 { 795 #ifdef CONFIG_KEXEC_CORE 796 efi_memory_desc_t *md; 797 unsigned int num_pages; 798 799 efi.systab = NULL; 800 801 /* 802 * We don't do virtual mode, since we don't do runtime services, on 803 * non-native EFI 804 */ 805 if (!efi_is_native()) { 806 efi_unmap_memmap(); 807 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); 808 return; 809 } 810 811 if (efi_alloc_page_tables()) { 812 pr_err("Failed to allocate EFI page tables\n"); 813 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); 814 return; 815 } 816 817 /* 818 * Map efi regions which were passed via setup_data. The virt_addr is a 819 * fixed addr which was used in first kernel of a kexec boot. 820 */ 821 for_each_efi_memory_desc(md) { 822 efi_map_region_fixed(md); /* FIXME: add error handling */ 823 get_systab_virt_addr(md); 824 } 825 826 save_runtime_map(); 827 828 BUG_ON(!efi.systab); 829 830 num_pages = ALIGN(efi.memmap.nr_map * efi.memmap.desc_size, PAGE_SIZE); 831 num_pages >>= PAGE_SHIFT; 832 833 if (efi_setup_page_tables(efi.memmap.phys_map, num_pages)) { 834 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); 835 return; 836 } 837 838 efi_sync_low_kernel_mappings(); 839 840 /* 841 * Now that EFI is in virtual mode, update the function 842 * pointers in the runtime service table to the new virtual addresses. 843 * 844 * Call EFI services through wrapper functions. 845 */ 846 efi.runtime_version = efi_systab.hdr.revision; 847 848 efi_native_runtime_setup(); 849 850 efi.set_virtual_address_map = NULL; 851 852 if (efi_enabled(EFI_OLD_MEMMAP) && (__supported_pte_mask & _PAGE_NX)) 853 runtime_code_page_mkexec(); 854 855 /* clean DUMMY object */ 856 efi_delete_dummy_variable(); 857 #endif 858 } 859 860 /* 861 * This function will switch the EFI runtime services to virtual mode. 862 * Essentially, we look through the EFI memmap and map every region that 863 * has the runtime attribute bit set in its memory descriptor into the 864 * efi_pgd page table. 865 * 866 * The old method which used to update that memory descriptor with the 867 * virtual address obtained from ioremap() is still supported when the 868 * kernel is booted with efi=old_map on its command line. Same old 869 * method enabled the runtime services to be called without having to 870 * thunk back into physical mode for every invocation. 871 * 872 * The new method does a pagetable switch in a preemption-safe manner 873 * so that we're in a different address space when calling a runtime 874 * function. For function arguments passing we do copy the PUDs of the 875 * kernel page table into efi_pgd prior to each call. 876 * 877 * Specially for kexec boot, efi runtime maps in previous kernel should 878 * be passed in via setup_data. In that case runtime ranges will be mapped 879 * to the same virtual addresses as the first kernel, see 880 * kexec_enter_virtual_mode(). 881 */ 882 static void __init __efi_enter_virtual_mode(void) 883 { 884 int count = 0, pg_shift = 0; 885 void *new_memmap = NULL; 886 efi_status_t status; 887 888 efi.systab = NULL; 889 890 if (efi_alloc_page_tables()) { 891 pr_err("Failed to allocate EFI page tables\n"); 892 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); 893 return; 894 } 895 896 efi_merge_regions(); 897 new_memmap = efi_map_regions(&count, &pg_shift); 898 if (!new_memmap) { 899 pr_err("Error reallocating memory, EFI runtime non-functional!\n"); 900 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); 901 return; 902 } 903 904 save_runtime_map(); 905 906 BUG_ON(!efi.systab); 907 908 if (efi_setup_page_tables(__pa(new_memmap), 1 << pg_shift)) { 909 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); 910 return; 911 } 912 913 efi_sync_low_kernel_mappings(); 914 915 if (efi_is_native()) { 916 status = phys_efi_set_virtual_address_map( 917 efi.memmap.desc_size * count, 918 efi.memmap.desc_size, 919 efi.memmap.desc_version, 920 (efi_memory_desc_t *)__pa(new_memmap)); 921 } else { 922 status = efi_thunk_set_virtual_address_map( 923 efi_phys.set_virtual_address_map, 924 efi.memmap.desc_size * count, 925 efi.memmap.desc_size, 926 efi.memmap.desc_version, 927 (efi_memory_desc_t *)__pa(new_memmap)); 928 } 929 930 if (status != EFI_SUCCESS) { 931 pr_alert("Unable to switch EFI into virtual mode (status=%lx)!\n", 932 status); 933 panic("EFI call to SetVirtualAddressMap() failed!"); 934 } 935 936 /* 937 * Now that EFI is in virtual mode, update the function 938 * pointers in the runtime service table to the new virtual addresses. 939 * 940 * Call EFI services through wrapper functions. 941 */ 942 efi.runtime_version = efi_systab.hdr.revision; 943 944 if (efi_is_native()) 945 efi_native_runtime_setup(); 946 else 947 efi_thunk_runtime_setup(); 948 949 efi.set_virtual_address_map = NULL; 950 951 /* 952 * Apply more restrictive page table mapping attributes now that 953 * SVAM() has been called and the firmware has performed all 954 * necessary relocation fixups for the new virtual addresses. 955 */ 956 efi_runtime_update_mappings(); 957 efi_dump_pagetable(); 958 959 /* 960 * We mapped the descriptor array into the EFI pagetable above 961 * but we're not unmapping it here because if we're running in 962 * EFI mixed mode we need all of memory to be accessible when 963 * we pass parameters to the EFI runtime services in the 964 * thunking code. 965 */ 966 free_pages((unsigned long)new_memmap, pg_shift); 967 968 /* clean DUMMY object */ 969 efi_delete_dummy_variable(); 970 } 971 972 void __init efi_enter_virtual_mode(void) 973 { 974 if (efi_enabled(EFI_PARAVIRT)) 975 return; 976 977 if (efi_setup) 978 kexec_enter_virtual_mode(); 979 else 980 __efi_enter_virtual_mode(); 981 } 982 983 /* 984 * Convenience functions to obtain memory types and attributes 985 */ 986 u32 efi_mem_type(unsigned long phys_addr) 987 { 988 efi_memory_desc_t *md; 989 990 if (!efi_enabled(EFI_MEMMAP)) 991 return 0; 992 993 for_each_efi_memory_desc(md) { 994 if ((md->phys_addr <= phys_addr) && 995 (phys_addr < (md->phys_addr + 996 (md->num_pages << EFI_PAGE_SHIFT)))) 997 return md->type; 998 } 999 return 0; 1000 } 1001 1002 static int __init arch_parse_efi_cmdline(char *str) 1003 { 1004 if (!str) { 1005 pr_warn("need at least one option\n"); 1006 return -EINVAL; 1007 } 1008 1009 if (parse_option_str(str, "old_map")) 1010 set_bit(EFI_OLD_MEMMAP, &efi.flags); 1011 1012 return 0; 1013 } 1014 early_param("efi", arch_parse_efi_cmdline); 1015