xref: /openbmc/linux/arch/x86/platform/efi/efi.c (revision bc5aa3a0)
1 /*
2  * Common EFI (Extensible Firmware Interface) support functions
3  * Based on Extensible Firmware Interface Specification version 1.0
4  *
5  * Copyright (C) 1999 VA Linux Systems
6  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
7  * Copyright (C) 1999-2002 Hewlett-Packard Co.
8  *	David Mosberger-Tang <davidm@hpl.hp.com>
9  *	Stephane Eranian <eranian@hpl.hp.com>
10  * Copyright (C) 2005-2008 Intel Co.
11  *	Fenghua Yu <fenghua.yu@intel.com>
12  *	Bibo Mao <bibo.mao@intel.com>
13  *	Chandramouli Narayanan <mouli@linux.intel.com>
14  *	Huang Ying <ying.huang@intel.com>
15  * Copyright (C) 2013 SuSE Labs
16  *	Borislav Petkov <bp@suse.de> - runtime services VA mapping
17  *
18  * Copied from efi_32.c to eliminate the duplicated code between EFI
19  * 32/64 support code. --ying 2007-10-26
20  *
21  * All EFI Runtime Services are not implemented yet as EFI only
22  * supports physical mode addressing on SoftSDV. This is to be fixed
23  * in a future version.  --drummond 1999-07-20
24  *
25  * Implemented EFI runtime services and virtual mode calls.  --davidm
26  *
27  * Goutham Rao: <goutham.rao@intel.com>
28  *	Skip non-WB memory and ignore empty memory ranges.
29  */
30 
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/efi.h>
36 #include <linux/efi-bgrt.h>
37 #include <linux/export.h>
38 #include <linux/bootmem.h>
39 #include <linux/slab.h>
40 #include <linux/memblock.h>
41 #include <linux/spinlock.h>
42 #include <linux/uaccess.h>
43 #include <linux/time.h>
44 #include <linux/io.h>
45 #include <linux/reboot.h>
46 #include <linux/bcd.h>
47 
48 #include <asm/setup.h>
49 #include <asm/efi.h>
50 #include <asm/time.h>
51 #include <asm/cacheflush.h>
52 #include <asm/tlbflush.h>
53 #include <asm/x86_init.h>
54 #include <asm/uv/uv.h>
55 
56 static struct efi efi_phys __initdata;
57 static efi_system_table_t efi_systab __initdata;
58 
59 static efi_config_table_type_t arch_tables[] __initdata = {
60 #ifdef CONFIG_X86_UV
61 	{UV_SYSTEM_TABLE_GUID, "UVsystab", &efi.uv_systab},
62 #endif
63 	{NULL_GUID, NULL, NULL},
64 };
65 
66 u64 efi_setup;		/* efi setup_data physical address */
67 
68 static int add_efi_memmap __initdata;
69 static int __init setup_add_efi_memmap(char *arg)
70 {
71 	add_efi_memmap = 1;
72 	return 0;
73 }
74 early_param("add_efi_memmap", setup_add_efi_memmap);
75 
76 static efi_status_t __init phys_efi_set_virtual_address_map(
77 	unsigned long memory_map_size,
78 	unsigned long descriptor_size,
79 	u32 descriptor_version,
80 	efi_memory_desc_t *virtual_map)
81 {
82 	efi_status_t status;
83 	unsigned long flags;
84 	pgd_t *save_pgd;
85 
86 	save_pgd = efi_call_phys_prolog();
87 
88 	/* Disable interrupts around EFI calls: */
89 	local_irq_save(flags);
90 	status = efi_call_phys(efi_phys.set_virtual_address_map,
91 			       memory_map_size, descriptor_size,
92 			       descriptor_version, virtual_map);
93 	local_irq_restore(flags);
94 
95 	efi_call_phys_epilog(save_pgd);
96 
97 	return status;
98 }
99 
100 void __init efi_find_mirror(void)
101 {
102 	efi_memory_desc_t *md;
103 	u64 mirror_size = 0, total_size = 0;
104 
105 	for_each_efi_memory_desc(md) {
106 		unsigned long long start = md->phys_addr;
107 		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
108 
109 		total_size += size;
110 		if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
111 			memblock_mark_mirror(start, size);
112 			mirror_size += size;
113 		}
114 	}
115 	if (mirror_size)
116 		pr_info("Memory: %lldM/%lldM mirrored memory\n",
117 			mirror_size>>20, total_size>>20);
118 }
119 
120 /*
121  * Tell the kernel about the EFI memory map.  This might include
122  * more than the max 128 entries that can fit in the e820 legacy
123  * (zeropage) memory map.
124  */
125 
126 static void __init do_add_efi_memmap(void)
127 {
128 	efi_memory_desc_t *md;
129 
130 	for_each_efi_memory_desc(md) {
131 		unsigned long long start = md->phys_addr;
132 		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
133 		int e820_type;
134 
135 		switch (md->type) {
136 		case EFI_LOADER_CODE:
137 		case EFI_LOADER_DATA:
138 		case EFI_BOOT_SERVICES_CODE:
139 		case EFI_BOOT_SERVICES_DATA:
140 		case EFI_CONVENTIONAL_MEMORY:
141 			if (md->attribute & EFI_MEMORY_WB)
142 				e820_type = E820_RAM;
143 			else
144 				e820_type = E820_RESERVED;
145 			break;
146 		case EFI_ACPI_RECLAIM_MEMORY:
147 			e820_type = E820_ACPI;
148 			break;
149 		case EFI_ACPI_MEMORY_NVS:
150 			e820_type = E820_NVS;
151 			break;
152 		case EFI_UNUSABLE_MEMORY:
153 			e820_type = E820_UNUSABLE;
154 			break;
155 		case EFI_PERSISTENT_MEMORY:
156 			e820_type = E820_PMEM;
157 			break;
158 		default:
159 			/*
160 			 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
161 			 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
162 			 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
163 			 */
164 			e820_type = E820_RESERVED;
165 			break;
166 		}
167 		e820_add_region(start, size, e820_type);
168 	}
169 	sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
170 }
171 
172 int __init efi_memblock_x86_reserve_range(void)
173 {
174 	struct efi_info *e = &boot_params.efi_info;
175 	phys_addr_t pmap;
176 
177 	if (efi_enabled(EFI_PARAVIRT))
178 		return 0;
179 
180 #ifdef CONFIG_X86_32
181 	/* Can't handle data above 4GB at this time */
182 	if (e->efi_memmap_hi) {
183 		pr_err("Memory map is above 4GB, disabling EFI.\n");
184 		return -EINVAL;
185 	}
186 	pmap =  e->efi_memmap;
187 #else
188 	pmap = (e->efi_memmap |	((__u64)e->efi_memmap_hi << 32));
189 #endif
190 	efi.memmap.phys_map	= pmap;
191 	efi.memmap.nr_map	= e->efi_memmap_size /
192 				  e->efi_memdesc_size;
193 	efi.memmap.desc_size	= e->efi_memdesc_size;
194 	efi.memmap.desc_version	= e->efi_memdesc_version;
195 
196 	WARN(efi.memmap.desc_version != 1,
197 	     "Unexpected EFI_MEMORY_DESCRIPTOR version %ld",
198 	     efi.memmap.desc_version);
199 
200 	memblock_reserve(pmap, efi.memmap.nr_map * efi.memmap.desc_size);
201 
202 	return 0;
203 }
204 
205 void __init efi_print_memmap(void)
206 {
207 	efi_memory_desc_t *md;
208 	int i = 0;
209 
210 	for_each_efi_memory_desc(md) {
211 		char buf[64];
212 
213 		pr_info("mem%02u: %s range=[0x%016llx-0x%016llx] (%lluMB)\n",
214 			i++, efi_md_typeattr_format(buf, sizeof(buf), md),
215 			md->phys_addr,
216 			md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1,
217 			(md->num_pages >> (20 - EFI_PAGE_SHIFT)));
218 	}
219 }
220 
221 void __init efi_unmap_memmap(void)
222 {
223 	unsigned long size;
224 
225 	clear_bit(EFI_MEMMAP, &efi.flags);
226 
227 	size = efi.memmap.nr_map * efi.memmap.desc_size;
228 	if (efi.memmap.map) {
229 		early_memunmap(efi.memmap.map, size);
230 		efi.memmap.map = NULL;
231 	}
232 }
233 
234 static int __init efi_systab_init(void *phys)
235 {
236 	if (efi_enabled(EFI_64BIT)) {
237 		efi_system_table_64_t *systab64;
238 		struct efi_setup_data *data = NULL;
239 		u64 tmp = 0;
240 
241 		if (efi_setup) {
242 			data = early_memremap(efi_setup, sizeof(*data));
243 			if (!data)
244 				return -ENOMEM;
245 		}
246 		systab64 = early_memremap((unsigned long)phys,
247 					 sizeof(*systab64));
248 		if (systab64 == NULL) {
249 			pr_err("Couldn't map the system table!\n");
250 			if (data)
251 				early_memunmap(data, sizeof(*data));
252 			return -ENOMEM;
253 		}
254 
255 		efi_systab.hdr = systab64->hdr;
256 		efi_systab.fw_vendor = data ? (unsigned long)data->fw_vendor :
257 					      systab64->fw_vendor;
258 		tmp |= data ? data->fw_vendor : systab64->fw_vendor;
259 		efi_systab.fw_revision = systab64->fw_revision;
260 		efi_systab.con_in_handle = systab64->con_in_handle;
261 		tmp |= systab64->con_in_handle;
262 		efi_systab.con_in = systab64->con_in;
263 		tmp |= systab64->con_in;
264 		efi_systab.con_out_handle = systab64->con_out_handle;
265 		tmp |= systab64->con_out_handle;
266 		efi_systab.con_out = systab64->con_out;
267 		tmp |= systab64->con_out;
268 		efi_systab.stderr_handle = systab64->stderr_handle;
269 		tmp |= systab64->stderr_handle;
270 		efi_systab.stderr = systab64->stderr;
271 		tmp |= systab64->stderr;
272 		efi_systab.runtime = data ?
273 				     (void *)(unsigned long)data->runtime :
274 				     (void *)(unsigned long)systab64->runtime;
275 		tmp |= data ? data->runtime : systab64->runtime;
276 		efi_systab.boottime = (void *)(unsigned long)systab64->boottime;
277 		tmp |= systab64->boottime;
278 		efi_systab.nr_tables = systab64->nr_tables;
279 		efi_systab.tables = data ? (unsigned long)data->tables :
280 					   systab64->tables;
281 		tmp |= data ? data->tables : systab64->tables;
282 
283 		early_memunmap(systab64, sizeof(*systab64));
284 		if (data)
285 			early_memunmap(data, sizeof(*data));
286 #ifdef CONFIG_X86_32
287 		if (tmp >> 32) {
288 			pr_err("EFI data located above 4GB, disabling EFI.\n");
289 			return -EINVAL;
290 		}
291 #endif
292 	} else {
293 		efi_system_table_32_t *systab32;
294 
295 		systab32 = early_memremap((unsigned long)phys,
296 					 sizeof(*systab32));
297 		if (systab32 == NULL) {
298 			pr_err("Couldn't map the system table!\n");
299 			return -ENOMEM;
300 		}
301 
302 		efi_systab.hdr = systab32->hdr;
303 		efi_systab.fw_vendor = systab32->fw_vendor;
304 		efi_systab.fw_revision = systab32->fw_revision;
305 		efi_systab.con_in_handle = systab32->con_in_handle;
306 		efi_systab.con_in = systab32->con_in;
307 		efi_systab.con_out_handle = systab32->con_out_handle;
308 		efi_systab.con_out = systab32->con_out;
309 		efi_systab.stderr_handle = systab32->stderr_handle;
310 		efi_systab.stderr = systab32->stderr;
311 		efi_systab.runtime = (void *)(unsigned long)systab32->runtime;
312 		efi_systab.boottime = (void *)(unsigned long)systab32->boottime;
313 		efi_systab.nr_tables = systab32->nr_tables;
314 		efi_systab.tables = systab32->tables;
315 
316 		early_memunmap(systab32, sizeof(*systab32));
317 	}
318 
319 	efi.systab = &efi_systab;
320 
321 	/*
322 	 * Verify the EFI Table
323 	 */
324 	if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
325 		pr_err("System table signature incorrect!\n");
326 		return -EINVAL;
327 	}
328 	if ((efi.systab->hdr.revision >> 16) == 0)
329 		pr_err("Warning: System table version %d.%02d, expected 1.00 or greater!\n",
330 		       efi.systab->hdr.revision >> 16,
331 		       efi.systab->hdr.revision & 0xffff);
332 
333 	return 0;
334 }
335 
336 static int __init efi_runtime_init32(void)
337 {
338 	efi_runtime_services_32_t *runtime;
339 
340 	runtime = early_memremap((unsigned long)efi.systab->runtime,
341 			sizeof(efi_runtime_services_32_t));
342 	if (!runtime) {
343 		pr_err("Could not map the runtime service table!\n");
344 		return -ENOMEM;
345 	}
346 
347 	/*
348 	 * We will only need *early* access to the SetVirtualAddressMap
349 	 * EFI runtime service. All other runtime services will be called
350 	 * via the virtual mapping.
351 	 */
352 	efi_phys.set_virtual_address_map =
353 			(efi_set_virtual_address_map_t *)
354 			(unsigned long)runtime->set_virtual_address_map;
355 	early_memunmap(runtime, sizeof(efi_runtime_services_32_t));
356 
357 	return 0;
358 }
359 
360 static int __init efi_runtime_init64(void)
361 {
362 	efi_runtime_services_64_t *runtime;
363 
364 	runtime = early_memremap((unsigned long)efi.systab->runtime,
365 			sizeof(efi_runtime_services_64_t));
366 	if (!runtime) {
367 		pr_err("Could not map the runtime service table!\n");
368 		return -ENOMEM;
369 	}
370 
371 	/*
372 	 * We will only need *early* access to the SetVirtualAddressMap
373 	 * EFI runtime service. All other runtime services will be called
374 	 * via the virtual mapping.
375 	 */
376 	efi_phys.set_virtual_address_map =
377 			(efi_set_virtual_address_map_t *)
378 			(unsigned long)runtime->set_virtual_address_map;
379 	early_memunmap(runtime, sizeof(efi_runtime_services_64_t));
380 
381 	return 0;
382 }
383 
384 static int __init efi_runtime_init(void)
385 {
386 	int rv;
387 
388 	/*
389 	 * Check out the runtime services table. We need to map
390 	 * the runtime services table so that we can grab the physical
391 	 * address of several of the EFI runtime functions, needed to
392 	 * set the firmware into virtual mode.
393 	 *
394 	 * When EFI_PARAVIRT is in force then we could not map runtime
395 	 * service memory region because we do not have direct access to it.
396 	 * However, runtime services are available through proxy functions
397 	 * (e.g. in case of Xen dom0 EFI implementation they call special
398 	 * hypercall which executes relevant EFI functions) and that is why
399 	 * they are always enabled.
400 	 */
401 
402 	if (!efi_enabled(EFI_PARAVIRT)) {
403 		if (efi_enabled(EFI_64BIT))
404 			rv = efi_runtime_init64();
405 		else
406 			rv = efi_runtime_init32();
407 
408 		if (rv)
409 			return rv;
410 	}
411 
412 	set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
413 
414 	return 0;
415 }
416 
417 static int __init efi_memmap_init(void)
418 {
419 	unsigned long addr, size;
420 
421 	if (efi_enabled(EFI_PARAVIRT))
422 		return 0;
423 
424 	/* Map the EFI memory map */
425 	size = efi.memmap.nr_map * efi.memmap.desc_size;
426 	addr = (unsigned long)efi.memmap.phys_map;
427 
428 	efi.memmap.map = early_memremap(addr, size);
429 	if (efi.memmap.map == NULL) {
430 		pr_err("Could not map the memory map!\n");
431 		return -ENOMEM;
432 	}
433 
434 	efi.memmap.map_end = efi.memmap.map + size;
435 
436 	if (add_efi_memmap)
437 		do_add_efi_memmap();
438 
439 	set_bit(EFI_MEMMAP, &efi.flags);
440 
441 	return 0;
442 }
443 
444 void __init efi_init(void)
445 {
446 	efi_char16_t *c16;
447 	char vendor[100] = "unknown";
448 	int i = 0;
449 	void *tmp;
450 
451 #ifdef CONFIG_X86_32
452 	if (boot_params.efi_info.efi_systab_hi ||
453 	    boot_params.efi_info.efi_memmap_hi) {
454 		pr_info("Table located above 4GB, disabling EFI.\n");
455 		return;
456 	}
457 	efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
458 #else
459 	efi_phys.systab = (efi_system_table_t *)
460 			  (boot_params.efi_info.efi_systab |
461 			  ((__u64)boot_params.efi_info.efi_systab_hi<<32));
462 #endif
463 
464 	if (efi_systab_init(efi_phys.systab))
465 		return;
466 
467 	efi.config_table = (unsigned long)efi.systab->tables;
468 	efi.fw_vendor	 = (unsigned long)efi.systab->fw_vendor;
469 	efi.runtime	 = (unsigned long)efi.systab->runtime;
470 
471 	/*
472 	 * Show what we know for posterity
473 	 */
474 	c16 = tmp = early_memremap(efi.systab->fw_vendor, 2);
475 	if (c16) {
476 		for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i)
477 			vendor[i] = *c16++;
478 		vendor[i] = '\0';
479 	} else
480 		pr_err("Could not map the firmware vendor!\n");
481 	early_memunmap(tmp, 2);
482 
483 	pr_info("EFI v%u.%.02u by %s\n",
484 		efi.systab->hdr.revision >> 16,
485 		efi.systab->hdr.revision & 0xffff, vendor);
486 
487 	if (efi_reuse_config(efi.systab->tables, efi.systab->nr_tables))
488 		return;
489 
490 	if (efi_config_init(arch_tables))
491 		return;
492 
493 	/*
494 	 * Note: We currently don't support runtime services on an EFI
495 	 * that doesn't match the kernel 32/64-bit mode.
496 	 */
497 
498 	if (!efi_runtime_supported())
499 		pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n");
500 	else {
501 		if (efi_runtime_disabled() || efi_runtime_init())
502 			return;
503 	}
504 	if (efi_memmap_init())
505 		return;
506 
507 	if (efi_enabled(EFI_DBG))
508 		efi_print_memmap();
509 
510 	efi_esrt_init();
511 }
512 
513 void __init efi_late_init(void)
514 {
515 	efi_bgrt_init();
516 }
517 
518 void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
519 {
520 	u64 addr, npages;
521 
522 	addr = md->virt_addr;
523 	npages = md->num_pages;
524 
525 	memrange_efi_to_native(&addr, &npages);
526 
527 	if (executable)
528 		set_memory_x(addr, npages);
529 	else
530 		set_memory_nx(addr, npages);
531 }
532 
533 void __init runtime_code_page_mkexec(void)
534 {
535 	efi_memory_desc_t *md;
536 
537 	/* Make EFI runtime service code area executable */
538 	for_each_efi_memory_desc(md) {
539 		if (md->type != EFI_RUNTIME_SERVICES_CODE)
540 			continue;
541 
542 		efi_set_executable(md, true);
543 	}
544 }
545 
546 void __init efi_memory_uc(u64 addr, unsigned long size)
547 {
548 	unsigned long page_shift = 1UL << EFI_PAGE_SHIFT;
549 	u64 npages;
550 
551 	npages = round_up(size, page_shift) / page_shift;
552 	memrange_efi_to_native(&addr, &npages);
553 	set_memory_uc(addr, npages);
554 }
555 
556 void __init old_map_region(efi_memory_desc_t *md)
557 {
558 	u64 start_pfn, end_pfn, end;
559 	unsigned long size;
560 	void *va;
561 
562 	start_pfn = PFN_DOWN(md->phys_addr);
563 	size	  = md->num_pages << PAGE_SHIFT;
564 	end	  = md->phys_addr + size;
565 	end_pfn   = PFN_UP(end);
566 
567 	if (pfn_range_is_mapped(start_pfn, end_pfn)) {
568 		va = __va(md->phys_addr);
569 
570 		if (!(md->attribute & EFI_MEMORY_WB))
571 			efi_memory_uc((u64)(unsigned long)va, size);
572 	} else
573 		va = efi_ioremap(md->phys_addr, size,
574 				 md->type, md->attribute);
575 
576 	md->virt_addr = (u64) (unsigned long) va;
577 	if (!va)
578 		pr_err("ioremap of 0x%llX failed!\n",
579 		       (unsigned long long)md->phys_addr);
580 }
581 
582 /* Merge contiguous regions of the same type and attribute */
583 static void __init efi_merge_regions(void)
584 {
585 	efi_memory_desc_t *md, *prev_md = NULL;
586 
587 	for_each_efi_memory_desc(md) {
588 		u64 prev_size;
589 
590 		if (!prev_md) {
591 			prev_md = md;
592 			continue;
593 		}
594 
595 		if (prev_md->type != md->type ||
596 		    prev_md->attribute != md->attribute) {
597 			prev_md = md;
598 			continue;
599 		}
600 
601 		prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
602 
603 		if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
604 			prev_md->num_pages += md->num_pages;
605 			md->type = EFI_RESERVED_TYPE;
606 			md->attribute = 0;
607 			continue;
608 		}
609 		prev_md = md;
610 	}
611 }
612 
613 static void __init get_systab_virt_addr(efi_memory_desc_t *md)
614 {
615 	unsigned long size;
616 	u64 end, systab;
617 
618 	size = md->num_pages << EFI_PAGE_SHIFT;
619 	end = md->phys_addr + size;
620 	systab = (u64)(unsigned long)efi_phys.systab;
621 	if (md->phys_addr <= systab && systab < end) {
622 		systab += md->virt_addr - md->phys_addr;
623 		efi.systab = (efi_system_table_t *)(unsigned long)systab;
624 	}
625 }
626 
627 static void __init save_runtime_map(void)
628 {
629 #ifdef CONFIG_KEXEC_CORE
630 	unsigned long desc_size;
631 	efi_memory_desc_t *md;
632 	void *tmp, *q = NULL;
633 	int count = 0;
634 
635 	if (efi_enabled(EFI_OLD_MEMMAP))
636 		return;
637 
638 	desc_size = efi.memmap.desc_size;
639 
640 	for_each_efi_memory_desc(md) {
641 		if (!(md->attribute & EFI_MEMORY_RUNTIME) ||
642 		    (md->type == EFI_BOOT_SERVICES_CODE) ||
643 		    (md->type == EFI_BOOT_SERVICES_DATA))
644 			continue;
645 		tmp = krealloc(q, (count + 1) * desc_size, GFP_KERNEL);
646 		if (!tmp)
647 			goto out;
648 		q = tmp;
649 
650 		memcpy(q + count * desc_size, md, desc_size);
651 		count++;
652 	}
653 
654 	efi_runtime_map_setup(q, count, desc_size);
655 	return;
656 
657 out:
658 	kfree(q);
659 	pr_err("Error saving runtime map, efi runtime on kexec non-functional!!\n");
660 #endif
661 }
662 
663 static void *realloc_pages(void *old_memmap, int old_shift)
664 {
665 	void *ret;
666 
667 	ret = (void *)__get_free_pages(GFP_KERNEL, old_shift + 1);
668 	if (!ret)
669 		goto out;
670 
671 	/*
672 	 * A first-time allocation doesn't have anything to copy.
673 	 */
674 	if (!old_memmap)
675 		return ret;
676 
677 	memcpy(ret, old_memmap, PAGE_SIZE << old_shift);
678 
679 out:
680 	free_pages((unsigned long)old_memmap, old_shift);
681 	return ret;
682 }
683 
684 /*
685  * Iterate the EFI memory map in reverse order because the regions
686  * will be mapped top-down. The end result is the same as if we had
687  * mapped things forward, but doesn't require us to change the
688  * existing implementation of efi_map_region().
689  */
690 static inline void *efi_map_next_entry_reverse(void *entry)
691 {
692 	/* Initial call */
693 	if (!entry)
694 		return efi.memmap.map_end - efi.memmap.desc_size;
695 
696 	entry -= efi.memmap.desc_size;
697 	if (entry < efi.memmap.map)
698 		return NULL;
699 
700 	return entry;
701 }
702 
703 /*
704  * efi_map_next_entry - Return the next EFI memory map descriptor
705  * @entry: Previous EFI memory map descriptor
706  *
707  * This is a helper function to iterate over the EFI memory map, which
708  * we do in different orders depending on the current configuration.
709  *
710  * To begin traversing the memory map @entry must be %NULL.
711  *
712  * Returns %NULL when we reach the end of the memory map.
713  */
714 static void *efi_map_next_entry(void *entry)
715 {
716 	if (!efi_enabled(EFI_OLD_MEMMAP) && efi_enabled(EFI_64BIT)) {
717 		/*
718 		 * Starting in UEFI v2.5 the EFI_PROPERTIES_TABLE
719 		 * config table feature requires us to map all entries
720 		 * in the same order as they appear in the EFI memory
721 		 * map. That is to say, entry N must have a lower
722 		 * virtual address than entry N+1. This is because the
723 		 * firmware toolchain leaves relative references in
724 		 * the code/data sections, which are split and become
725 		 * separate EFI memory regions. Mapping things
726 		 * out-of-order leads to the firmware accessing
727 		 * unmapped addresses.
728 		 *
729 		 * Since we need to map things this way whether or not
730 		 * the kernel actually makes use of
731 		 * EFI_PROPERTIES_TABLE, let's just switch to this
732 		 * scheme by default for 64-bit.
733 		 */
734 		return efi_map_next_entry_reverse(entry);
735 	}
736 
737 	/* Initial call */
738 	if (!entry)
739 		return efi.memmap.map;
740 
741 	entry += efi.memmap.desc_size;
742 	if (entry >= efi.memmap.map_end)
743 		return NULL;
744 
745 	return entry;
746 }
747 
748 /*
749  * Map the efi memory ranges of the runtime services and update new_mmap with
750  * virtual addresses.
751  */
752 static void * __init efi_map_regions(int *count, int *pg_shift)
753 {
754 	void *p, *new_memmap = NULL;
755 	unsigned long left = 0;
756 	unsigned long desc_size;
757 	efi_memory_desc_t *md;
758 
759 	desc_size = efi.memmap.desc_size;
760 
761 	p = NULL;
762 	while ((p = efi_map_next_entry(p))) {
763 		md = p;
764 		if (!(md->attribute & EFI_MEMORY_RUNTIME)) {
765 #ifdef CONFIG_X86_64
766 			if (md->type != EFI_BOOT_SERVICES_CODE &&
767 			    md->type != EFI_BOOT_SERVICES_DATA)
768 #endif
769 				continue;
770 		}
771 
772 		efi_map_region(md);
773 		get_systab_virt_addr(md);
774 
775 		if (left < desc_size) {
776 			new_memmap = realloc_pages(new_memmap, *pg_shift);
777 			if (!new_memmap)
778 				return NULL;
779 
780 			left += PAGE_SIZE << *pg_shift;
781 			(*pg_shift)++;
782 		}
783 
784 		memcpy(new_memmap + (*count * desc_size), md, desc_size);
785 
786 		left -= desc_size;
787 		(*count)++;
788 	}
789 
790 	return new_memmap;
791 }
792 
793 static void __init kexec_enter_virtual_mode(void)
794 {
795 #ifdef CONFIG_KEXEC_CORE
796 	efi_memory_desc_t *md;
797 	unsigned int num_pages;
798 
799 	efi.systab = NULL;
800 
801 	/*
802 	 * We don't do virtual mode, since we don't do runtime services, on
803 	 * non-native EFI
804 	 */
805 	if (!efi_is_native()) {
806 		efi_unmap_memmap();
807 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
808 		return;
809 	}
810 
811 	if (efi_alloc_page_tables()) {
812 		pr_err("Failed to allocate EFI page tables\n");
813 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
814 		return;
815 	}
816 
817 	/*
818 	* Map efi regions which were passed via setup_data. The virt_addr is a
819 	* fixed addr which was used in first kernel of a kexec boot.
820 	*/
821 	for_each_efi_memory_desc(md) {
822 		efi_map_region_fixed(md); /* FIXME: add error handling */
823 		get_systab_virt_addr(md);
824 	}
825 
826 	save_runtime_map();
827 
828 	BUG_ON(!efi.systab);
829 
830 	num_pages = ALIGN(efi.memmap.nr_map * efi.memmap.desc_size, PAGE_SIZE);
831 	num_pages >>= PAGE_SHIFT;
832 
833 	if (efi_setup_page_tables(efi.memmap.phys_map, num_pages)) {
834 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
835 		return;
836 	}
837 
838 	efi_sync_low_kernel_mappings();
839 
840 	/*
841 	 * Now that EFI is in virtual mode, update the function
842 	 * pointers in the runtime service table to the new virtual addresses.
843 	 *
844 	 * Call EFI services through wrapper functions.
845 	 */
846 	efi.runtime_version = efi_systab.hdr.revision;
847 
848 	efi_native_runtime_setup();
849 
850 	efi.set_virtual_address_map = NULL;
851 
852 	if (efi_enabled(EFI_OLD_MEMMAP) && (__supported_pte_mask & _PAGE_NX))
853 		runtime_code_page_mkexec();
854 
855 	/* clean DUMMY object */
856 	efi_delete_dummy_variable();
857 #endif
858 }
859 
860 /*
861  * This function will switch the EFI runtime services to virtual mode.
862  * Essentially, we look through the EFI memmap and map every region that
863  * has the runtime attribute bit set in its memory descriptor into the
864  * efi_pgd page table.
865  *
866  * The old method which used to update that memory descriptor with the
867  * virtual address obtained from ioremap() is still supported when the
868  * kernel is booted with efi=old_map on its command line. Same old
869  * method enabled the runtime services to be called without having to
870  * thunk back into physical mode for every invocation.
871  *
872  * The new method does a pagetable switch in a preemption-safe manner
873  * so that we're in a different address space when calling a runtime
874  * function. For function arguments passing we do copy the PUDs of the
875  * kernel page table into efi_pgd prior to each call.
876  *
877  * Specially for kexec boot, efi runtime maps in previous kernel should
878  * be passed in via setup_data. In that case runtime ranges will be mapped
879  * to the same virtual addresses as the first kernel, see
880  * kexec_enter_virtual_mode().
881  */
882 static void __init __efi_enter_virtual_mode(void)
883 {
884 	int count = 0, pg_shift = 0;
885 	void *new_memmap = NULL;
886 	efi_status_t status;
887 
888 	efi.systab = NULL;
889 
890 	if (efi_alloc_page_tables()) {
891 		pr_err("Failed to allocate EFI page tables\n");
892 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
893 		return;
894 	}
895 
896 	efi_merge_regions();
897 	new_memmap = efi_map_regions(&count, &pg_shift);
898 	if (!new_memmap) {
899 		pr_err("Error reallocating memory, EFI runtime non-functional!\n");
900 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
901 		return;
902 	}
903 
904 	save_runtime_map();
905 
906 	BUG_ON(!efi.systab);
907 
908 	if (efi_setup_page_tables(__pa(new_memmap), 1 << pg_shift)) {
909 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
910 		return;
911 	}
912 
913 	efi_sync_low_kernel_mappings();
914 
915 	if (efi_is_native()) {
916 		status = phys_efi_set_virtual_address_map(
917 				efi.memmap.desc_size * count,
918 				efi.memmap.desc_size,
919 				efi.memmap.desc_version,
920 				(efi_memory_desc_t *)__pa(new_memmap));
921 	} else {
922 		status = efi_thunk_set_virtual_address_map(
923 				efi_phys.set_virtual_address_map,
924 				efi.memmap.desc_size * count,
925 				efi.memmap.desc_size,
926 				efi.memmap.desc_version,
927 				(efi_memory_desc_t *)__pa(new_memmap));
928 	}
929 
930 	if (status != EFI_SUCCESS) {
931 		pr_alert("Unable to switch EFI into virtual mode (status=%lx)!\n",
932 			 status);
933 		panic("EFI call to SetVirtualAddressMap() failed!");
934 	}
935 
936 	/*
937 	 * Now that EFI is in virtual mode, update the function
938 	 * pointers in the runtime service table to the new virtual addresses.
939 	 *
940 	 * Call EFI services through wrapper functions.
941 	 */
942 	efi.runtime_version = efi_systab.hdr.revision;
943 
944 	if (efi_is_native())
945 		efi_native_runtime_setup();
946 	else
947 		efi_thunk_runtime_setup();
948 
949 	efi.set_virtual_address_map = NULL;
950 
951 	/*
952 	 * Apply more restrictive page table mapping attributes now that
953 	 * SVAM() has been called and the firmware has performed all
954 	 * necessary relocation fixups for the new virtual addresses.
955 	 */
956 	efi_runtime_update_mappings();
957 	efi_dump_pagetable();
958 
959 	/*
960 	 * We mapped the descriptor array into the EFI pagetable above
961 	 * but we're not unmapping it here because if we're running in
962 	 * EFI mixed mode we need all of memory to be accessible when
963 	 * we pass parameters to the EFI runtime services in the
964 	 * thunking code.
965 	 */
966 	free_pages((unsigned long)new_memmap, pg_shift);
967 
968 	/* clean DUMMY object */
969 	efi_delete_dummy_variable();
970 }
971 
972 void __init efi_enter_virtual_mode(void)
973 {
974 	if (efi_enabled(EFI_PARAVIRT))
975 		return;
976 
977 	if (efi_setup)
978 		kexec_enter_virtual_mode();
979 	else
980 		__efi_enter_virtual_mode();
981 }
982 
983 /*
984  * Convenience functions to obtain memory types and attributes
985  */
986 u32 efi_mem_type(unsigned long phys_addr)
987 {
988 	efi_memory_desc_t *md;
989 
990 	if (!efi_enabled(EFI_MEMMAP))
991 		return 0;
992 
993 	for_each_efi_memory_desc(md) {
994 		if ((md->phys_addr <= phys_addr) &&
995 		    (phys_addr < (md->phys_addr +
996 				  (md->num_pages << EFI_PAGE_SHIFT))))
997 			return md->type;
998 	}
999 	return 0;
1000 }
1001 
1002 static int __init arch_parse_efi_cmdline(char *str)
1003 {
1004 	if (!str) {
1005 		pr_warn("need at least one option\n");
1006 		return -EINVAL;
1007 	}
1008 
1009 	if (parse_option_str(str, "old_map"))
1010 		set_bit(EFI_OLD_MEMMAP, &efi.flags);
1011 
1012 	return 0;
1013 }
1014 early_param("efi", arch_parse_efi_cmdline);
1015