xref: /openbmc/linux/arch/x86/platform/efi/efi.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  * Common EFI (Extensible Firmware Interface) support functions
3  * Based on Extensible Firmware Interface Specification version 1.0
4  *
5  * Copyright (C) 1999 VA Linux Systems
6  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
7  * Copyright (C) 1999-2002 Hewlett-Packard Co.
8  *	David Mosberger-Tang <davidm@hpl.hp.com>
9  *	Stephane Eranian <eranian@hpl.hp.com>
10  * Copyright (C) 2005-2008 Intel Co.
11  *	Fenghua Yu <fenghua.yu@intel.com>
12  *	Bibo Mao <bibo.mao@intel.com>
13  *	Chandramouli Narayanan <mouli@linux.intel.com>
14  *	Huang Ying <ying.huang@intel.com>
15  *
16  * Copied from efi_32.c to eliminate the duplicated code between EFI
17  * 32/64 support code. --ying 2007-10-26
18  *
19  * All EFI Runtime Services are not implemented yet as EFI only
20  * supports physical mode addressing on SoftSDV. This is to be fixed
21  * in a future version.  --drummond 1999-07-20
22  *
23  * Implemented EFI runtime services and virtual mode calls.  --davidm
24  *
25  * Goutham Rao: <goutham.rao@intel.com>
26  *	Skip non-WB memory and ignore empty memory ranges.
27  */
28 
29 #include <linux/kernel.h>
30 #include <linux/init.h>
31 #include <linux/efi.h>
32 #include <linux/bootmem.h>
33 #include <linux/memblock.h>
34 #include <linux/spinlock.h>
35 #include <linux/uaccess.h>
36 #include <linux/time.h>
37 #include <linux/io.h>
38 #include <linux/reboot.h>
39 #include <linux/bcd.h>
40 
41 #include <asm/setup.h>
42 #include <asm/efi.h>
43 #include <asm/time.h>
44 #include <asm/cacheflush.h>
45 #include <asm/tlbflush.h>
46 #include <asm/x86_init.h>
47 
48 #define EFI_DEBUG	1
49 #define PFX 		"EFI: "
50 
51 int efi_enabled;
52 EXPORT_SYMBOL(efi_enabled);
53 
54 struct efi efi;
55 EXPORT_SYMBOL(efi);
56 
57 struct efi_memory_map memmap;
58 
59 static struct efi efi_phys __initdata;
60 static efi_system_table_t efi_systab __initdata;
61 
62 static int __init setup_noefi(char *arg)
63 {
64 	efi_enabled = 0;
65 	return 0;
66 }
67 early_param("noefi", setup_noefi);
68 
69 int add_efi_memmap;
70 EXPORT_SYMBOL(add_efi_memmap);
71 
72 static int __init setup_add_efi_memmap(char *arg)
73 {
74 	add_efi_memmap = 1;
75 	return 0;
76 }
77 early_param("add_efi_memmap", setup_add_efi_memmap);
78 
79 
80 static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
81 {
82 	return efi_call_virt2(get_time, tm, tc);
83 }
84 
85 static efi_status_t virt_efi_set_time(efi_time_t *tm)
86 {
87 	return efi_call_virt1(set_time, tm);
88 }
89 
90 static efi_status_t virt_efi_get_wakeup_time(efi_bool_t *enabled,
91 					     efi_bool_t *pending,
92 					     efi_time_t *tm)
93 {
94 	return efi_call_virt3(get_wakeup_time,
95 			      enabled, pending, tm);
96 }
97 
98 static efi_status_t virt_efi_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
99 {
100 	return efi_call_virt2(set_wakeup_time,
101 			      enabled, tm);
102 }
103 
104 static efi_status_t virt_efi_get_variable(efi_char16_t *name,
105 					  efi_guid_t *vendor,
106 					  u32 *attr,
107 					  unsigned long *data_size,
108 					  void *data)
109 {
110 	return efi_call_virt5(get_variable,
111 			      name, vendor, attr,
112 			      data_size, data);
113 }
114 
115 static efi_status_t virt_efi_get_next_variable(unsigned long *name_size,
116 					       efi_char16_t *name,
117 					       efi_guid_t *vendor)
118 {
119 	return efi_call_virt3(get_next_variable,
120 			      name_size, name, vendor);
121 }
122 
123 static efi_status_t virt_efi_set_variable(efi_char16_t *name,
124 					  efi_guid_t *vendor,
125 					  unsigned long attr,
126 					  unsigned long data_size,
127 					  void *data)
128 {
129 	return efi_call_virt5(set_variable,
130 			      name, vendor, attr,
131 			      data_size, data);
132 }
133 
134 static efi_status_t virt_efi_get_next_high_mono_count(u32 *count)
135 {
136 	return efi_call_virt1(get_next_high_mono_count, count);
137 }
138 
139 static void virt_efi_reset_system(int reset_type,
140 				  efi_status_t status,
141 				  unsigned long data_size,
142 				  efi_char16_t *data)
143 {
144 	efi_call_virt4(reset_system, reset_type, status,
145 		       data_size, data);
146 }
147 
148 static efi_status_t virt_efi_set_virtual_address_map(
149 	unsigned long memory_map_size,
150 	unsigned long descriptor_size,
151 	u32 descriptor_version,
152 	efi_memory_desc_t *virtual_map)
153 {
154 	return efi_call_virt4(set_virtual_address_map,
155 			      memory_map_size, descriptor_size,
156 			      descriptor_version, virtual_map);
157 }
158 
159 static efi_status_t __init phys_efi_set_virtual_address_map(
160 	unsigned long memory_map_size,
161 	unsigned long descriptor_size,
162 	u32 descriptor_version,
163 	efi_memory_desc_t *virtual_map)
164 {
165 	efi_status_t status;
166 
167 	efi_call_phys_prelog();
168 	status = efi_call_phys4(efi_phys.set_virtual_address_map,
169 				memory_map_size, descriptor_size,
170 				descriptor_version, virtual_map);
171 	efi_call_phys_epilog();
172 	return status;
173 }
174 
175 static efi_status_t __init phys_efi_get_time(efi_time_t *tm,
176 					     efi_time_cap_t *tc)
177 {
178 	efi_status_t status;
179 
180 	efi_call_phys_prelog();
181 	status = efi_call_phys2(efi_phys.get_time, tm, tc);
182 	efi_call_phys_epilog();
183 	return status;
184 }
185 
186 int efi_set_rtc_mmss(unsigned long nowtime)
187 {
188 	int real_seconds, real_minutes;
189 	efi_status_t 	status;
190 	efi_time_t 	eft;
191 	efi_time_cap_t 	cap;
192 
193 	status = efi.get_time(&eft, &cap);
194 	if (status != EFI_SUCCESS) {
195 		printk(KERN_ERR "Oops: efitime: can't read time!\n");
196 		return -1;
197 	}
198 
199 	real_seconds = nowtime % 60;
200 	real_minutes = nowtime / 60;
201 	if (((abs(real_minutes - eft.minute) + 15)/30) & 1)
202 		real_minutes += 30;
203 	real_minutes %= 60;
204 	eft.minute = real_minutes;
205 	eft.second = real_seconds;
206 
207 	status = efi.set_time(&eft);
208 	if (status != EFI_SUCCESS) {
209 		printk(KERN_ERR "Oops: efitime: can't write time!\n");
210 		return -1;
211 	}
212 	return 0;
213 }
214 
215 unsigned long efi_get_time(void)
216 {
217 	efi_status_t status;
218 	efi_time_t eft;
219 	efi_time_cap_t cap;
220 
221 	status = efi.get_time(&eft, &cap);
222 	if (status != EFI_SUCCESS)
223 		printk(KERN_ERR "Oops: efitime: can't read time!\n");
224 
225 	return mktime(eft.year, eft.month, eft.day, eft.hour,
226 		      eft.minute, eft.second);
227 }
228 
229 /*
230  * Tell the kernel about the EFI memory map.  This might include
231  * more than the max 128 entries that can fit in the e820 legacy
232  * (zeropage) memory map.
233  */
234 
235 static void __init do_add_efi_memmap(void)
236 {
237 	void *p;
238 
239 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
240 		efi_memory_desc_t *md = p;
241 		unsigned long long start = md->phys_addr;
242 		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
243 		int e820_type;
244 
245 		switch (md->type) {
246 		case EFI_LOADER_CODE:
247 		case EFI_LOADER_DATA:
248 		case EFI_BOOT_SERVICES_CODE:
249 		case EFI_BOOT_SERVICES_DATA:
250 		case EFI_CONVENTIONAL_MEMORY:
251 			if (md->attribute & EFI_MEMORY_WB)
252 				e820_type = E820_RAM;
253 			else
254 				e820_type = E820_RESERVED;
255 			break;
256 		case EFI_ACPI_RECLAIM_MEMORY:
257 			e820_type = E820_ACPI;
258 			break;
259 		case EFI_ACPI_MEMORY_NVS:
260 			e820_type = E820_NVS;
261 			break;
262 		case EFI_UNUSABLE_MEMORY:
263 			e820_type = E820_UNUSABLE;
264 			break;
265 		default:
266 			/*
267 			 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
268 			 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
269 			 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
270 			 */
271 			e820_type = E820_RESERVED;
272 			break;
273 		}
274 		e820_add_region(start, size, e820_type);
275 	}
276 	sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
277 }
278 
279 void __init efi_memblock_x86_reserve_range(void)
280 {
281 	unsigned long pmap;
282 
283 #ifdef CONFIG_X86_32
284 	pmap = boot_params.efi_info.efi_memmap;
285 #else
286 	pmap = (boot_params.efi_info.efi_memmap |
287 		((__u64)boot_params.efi_info.efi_memmap_hi<<32));
288 #endif
289 	memmap.phys_map = (void *)pmap;
290 	memmap.nr_map = boot_params.efi_info.efi_memmap_size /
291 		boot_params.efi_info.efi_memdesc_size;
292 	memmap.desc_version = boot_params.efi_info.efi_memdesc_version;
293 	memmap.desc_size = boot_params.efi_info.efi_memdesc_size;
294 	memblock_x86_reserve_range(pmap, pmap + memmap.nr_map * memmap.desc_size,
295 		      "EFI memmap");
296 }
297 
298 #if EFI_DEBUG
299 static void __init print_efi_memmap(void)
300 {
301 	efi_memory_desc_t *md;
302 	void *p;
303 	int i;
304 
305 	for (p = memmap.map, i = 0;
306 	     p < memmap.map_end;
307 	     p += memmap.desc_size, i++) {
308 		md = p;
309 		printk(KERN_INFO PFX "mem%02u: type=%u, attr=0x%llx, "
310 			"range=[0x%016llx-0x%016llx) (%lluMB)\n",
311 			i, md->type, md->attribute, md->phys_addr,
312 			md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
313 			(md->num_pages >> (20 - EFI_PAGE_SHIFT)));
314 	}
315 }
316 #endif  /*  EFI_DEBUG  */
317 
318 void __init efi_init(void)
319 {
320 	efi_config_table_t *config_tables;
321 	efi_runtime_services_t *runtime;
322 	efi_char16_t *c16;
323 	char vendor[100] = "unknown";
324 	int i = 0;
325 	void *tmp;
326 
327 #ifdef CONFIG_X86_32
328 	efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
329 #else
330 	efi_phys.systab = (efi_system_table_t *)
331 		(boot_params.efi_info.efi_systab |
332 		 ((__u64)boot_params.efi_info.efi_systab_hi<<32));
333 #endif
334 
335 	efi.systab = early_ioremap((unsigned long)efi_phys.systab,
336 				   sizeof(efi_system_table_t));
337 	if (efi.systab == NULL)
338 		printk(KERN_ERR "Couldn't map the EFI system table!\n");
339 	memcpy(&efi_systab, efi.systab, sizeof(efi_system_table_t));
340 	early_iounmap(efi.systab, sizeof(efi_system_table_t));
341 	efi.systab = &efi_systab;
342 
343 	/*
344 	 * Verify the EFI Table
345 	 */
346 	if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
347 		printk(KERN_ERR "EFI system table signature incorrect!\n");
348 	if ((efi.systab->hdr.revision >> 16) == 0)
349 		printk(KERN_ERR "Warning: EFI system table version "
350 		       "%d.%02d, expected 1.00 or greater!\n",
351 		       efi.systab->hdr.revision >> 16,
352 		       efi.systab->hdr.revision & 0xffff);
353 
354 	/*
355 	 * Show what we know for posterity
356 	 */
357 	c16 = tmp = early_ioremap(efi.systab->fw_vendor, 2);
358 	if (c16) {
359 		for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i)
360 			vendor[i] = *c16++;
361 		vendor[i] = '\0';
362 	} else
363 		printk(KERN_ERR PFX "Could not map the firmware vendor!\n");
364 	early_iounmap(tmp, 2);
365 
366 	printk(KERN_INFO "EFI v%u.%.02u by %s\n",
367 	       efi.systab->hdr.revision >> 16,
368 	       efi.systab->hdr.revision & 0xffff, vendor);
369 
370 	/*
371 	 * Let's see what config tables the firmware passed to us.
372 	 */
373 	config_tables = early_ioremap(
374 		efi.systab->tables,
375 		efi.systab->nr_tables * sizeof(efi_config_table_t));
376 	if (config_tables == NULL)
377 		printk(KERN_ERR "Could not map EFI Configuration Table!\n");
378 
379 	printk(KERN_INFO);
380 	for (i = 0; i < efi.systab->nr_tables; i++) {
381 		if (!efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID)) {
382 			efi.mps = config_tables[i].table;
383 			printk(" MPS=0x%lx ", config_tables[i].table);
384 		} else if (!efi_guidcmp(config_tables[i].guid,
385 					ACPI_20_TABLE_GUID)) {
386 			efi.acpi20 = config_tables[i].table;
387 			printk(" ACPI 2.0=0x%lx ", config_tables[i].table);
388 		} else if (!efi_guidcmp(config_tables[i].guid,
389 					ACPI_TABLE_GUID)) {
390 			efi.acpi = config_tables[i].table;
391 			printk(" ACPI=0x%lx ", config_tables[i].table);
392 		} else if (!efi_guidcmp(config_tables[i].guid,
393 					SMBIOS_TABLE_GUID)) {
394 			efi.smbios = config_tables[i].table;
395 			printk(" SMBIOS=0x%lx ", config_tables[i].table);
396 #ifdef CONFIG_X86_UV
397 		} else if (!efi_guidcmp(config_tables[i].guid,
398 					UV_SYSTEM_TABLE_GUID)) {
399 			efi.uv_systab = config_tables[i].table;
400 			printk(" UVsystab=0x%lx ", config_tables[i].table);
401 #endif
402 		} else if (!efi_guidcmp(config_tables[i].guid,
403 					HCDP_TABLE_GUID)) {
404 			efi.hcdp = config_tables[i].table;
405 			printk(" HCDP=0x%lx ", config_tables[i].table);
406 		} else if (!efi_guidcmp(config_tables[i].guid,
407 					UGA_IO_PROTOCOL_GUID)) {
408 			efi.uga = config_tables[i].table;
409 			printk(" UGA=0x%lx ", config_tables[i].table);
410 		}
411 	}
412 	printk("\n");
413 	early_iounmap(config_tables,
414 			  efi.systab->nr_tables * sizeof(efi_config_table_t));
415 
416 	/*
417 	 * Check out the runtime services table. We need to map
418 	 * the runtime services table so that we can grab the physical
419 	 * address of several of the EFI runtime functions, needed to
420 	 * set the firmware into virtual mode.
421 	 */
422 	runtime = early_ioremap((unsigned long)efi.systab->runtime,
423 				sizeof(efi_runtime_services_t));
424 	if (runtime != NULL) {
425 		/*
426 		 * We will only need *early* access to the following
427 		 * two EFI runtime services before set_virtual_address_map
428 		 * is invoked.
429 		 */
430 		efi_phys.get_time = (efi_get_time_t *)runtime->get_time;
431 		efi_phys.set_virtual_address_map =
432 			(efi_set_virtual_address_map_t *)
433 			runtime->set_virtual_address_map;
434 		/*
435 		 * Make efi_get_time can be called before entering
436 		 * virtual mode.
437 		 */
438 		efi.get_time = phys_efi_get_time;
439 	} else
440 		printk(KERN_ERR "Could not map the EFI runtime service "
441 		       "table!\n");
442 	early_iounmap(runtime, sizeof(efi_runtime_services_t));
443 
444 	/* Map the EFI memory map */
445 	memmap.map = early_ioremap((unsigned long)memmap.phys_map,
446 				   memmap.nr_map * memmap.desc_size);
447 	if (memmap.map == NULL)
448 		printk(KERN_ERR "Could not map the EFI memory map!\n");
449 	memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
450 
451 	if (memmap.desc_size != sizeof(efi_memory_desc_t))
452 		printk(KERN_WARNING
453 		  "Kernel-defined memdesc doesn't match the one from EFI!\n");
454 
455 	if (add_efi_memmap)
456 		do_add_efi_memmap();
457 
458 #ifdef CONFIG_X86_32
459 	x86_platform.get_wallclock = efi_get_time;
460 	x86_platform.set_wallclock = efi_set_rtc_mmss;
461 #endif
462 
463 	/* Setup for EFI runtime service */
464 	reboot_type = BOOT_EFI;
465 
466 #if EFI_DEBUG
467 	print_efi_memmap();
468 #endif
469 }
470 
471 static void __init runtime_code_page_mkexec(void)
472 {
473 	efi_memory_desc_t *md;
474 	void *p;
475 	u64 addr, npages;
476 
477 	/* Make EFI runtime service code area executable */
478 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
479 		md = p;
480 
481 		if (md->type != EFI_RUNTIME_SERVICES_CODE)
482 			continue;
483 
484 		addr = md->virt_addr;
485 		npages = md->num_pages;
486 		memrange_efi_to_native(&addr, &npages);
487 		set_memory_x(addr, npages);
488 	}
489 }
490 
491 /*
492  * This function will switch the EFI runtime services to virtual mode.
493  * Essentially, look through the EFI memmap and map every region that
494  * has the runtime attribute bit set in its memory descriptor and update
495  * that memory descriptor with the virtual address obtained from ioremap().
496  * This enables the runtime services to be called without having to
497  * thunk back into physical mode for every invocation.
498  */
499 void __init efi_enter_virtual_mode(void)
500 {
501 	efi_memory_desc_t *md;
502 	efi_status_t status;
503 	unsigned long size;
504 	u64 end, systab, addr, npages, end_pfn;
505 	void *p, *va;
506 
507 	efi.systab = NULL;
508 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
509 		md = p;
510 		if (!(md->attribute & EFI_MEMORY_RUNTIME))
511 			continue;
512 
513 		size = md->num_pages << EFI_PAGE_SHIFT;
514 		end = md->phys_addr + size;
515 
516 		end_pfn = PFN_UP(end);
517 		if (end_pfn <= max_low_pfn_mapped
518 		    || (end_pfn > (1UL << (32 - PAGE_SHIFT))
519 			&& end_pfn <= max_pfn_mapped))
520 			va = __va(md->phys_addr);
521 		else
522 			va = efi_ioremap(md->phys_addr, size, md->type);
523 
524 		md->virt_addr = (u64) (unsigned long) va;
525 
526 		if (!va) {
527 			printk(KERN_ERR PFX "ioremap of 0x%llX failed!\n",
528 			       (unsigned long long)md->phys_addr);
529 			continue;
530 		}
531 
532 		if (!(md->attribute & EFI_MEMORY_WB)) {
533 			addr = md->virt_addr;
534 			npages = md->num_pages;
535 			memrange_efi_to_native(&addr, &npages);
536 			set_memory_uc(addr, npages);
537 		}
538 
539 		systab = (u64) (unsigned long) efi_phys.systab;
540 		if (md->phys_addr <= systab && systab < end) {
541 			systab += md->virt_addr - md->phys_addr;
542 			efi.systab = (efi_system_table_t *) (unsigned long) systab;
543 		}
544 	}
545 
546 	BUG_ON(!efi.systab);
547 
548 	status = phys_efi_set_virtual_address_map(
549 		memmap.desc_size * memmap.nr_map,
550 		memmap.desc_size,
551 		memmap.desc_version,
552 		memmap.phys_map);
553 
554 	if (status != EFI_SUCCESS) {
555 		printk(KERN_ALERT "Unable to switch EFI into virtual mode "
556 		       "(status=%lx)!\n", status);
557 		panic("EFI call to SetVirtualAddressMap() failed!");
558 	}
559 
560 	/*
561 	 * Now that EFI is in virtual mode, update the function
562 	 * pointers in the runtime service table to the new virtual addresses.
563 	 *
564 	 * Call EFI services through wrapper functions.
565 	 */
566 	efi.get_time = virt_efi_get_time;
567 	efi.set_time = virt_efi_set_time;
568 	efi.get_wakeup_time = virt_efi_get_wakeup_time;
569 	efi.set_wakeup_time = virt_efi_set_wakeup_time;
570 	efi.get_variable = virt_efi_get_variable;
571 	efi.get_next_variable = virt_efi_get_next_variable;
572 	efi.set_variable = virt_efi_set_variable;
573 	efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count;
574 	efi.reset_system = virt_efi_reset_system;
575 	efi.set_virtual_address_map = virt_efi_set_virtual_address_map;
576 	if (__supported_pte_mask & _PAGE_NX)
577 		runtime_code_page_mkexec();
578 	early_iounmap(memmap.map, memmap.nr_map * memmap.desc_size);
579 	memmap.map = NULL;
580 }
581 
582 /*
583  * Convenience functions to obtain memory types and attributes
584  */
585 u32 efi_mem_type(unsigned long phys_addr)
586 {
587 	efi_memory_desc_t *md;
588 	void *p;
589 
590 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
591 		md = p;
592 		if ((md->phys_addr <= phys_addr) &&
593 		    (phys_addr < (md->phys_addr +
594 				  (md->num_pages << EFI_PAGE_SHIFT))))
595 			return md->type;
596 	}
597 	return 0;
598 }
599 
600 u64 efi_mem_attributes(unsigned long phys_addr)
601 {
602 	efi_memory_desc_t *md;
603 	void *p;
604 
605 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
606 		md = p;
607 		if ((md->phys_addr <= phys_addr) &&
608 		    (phys_addr < (md->phys_addr +
609 				  (md->num_pages << EFI_PAGE_SHIFT))))
610 			return md->attribute;
611 	}
612 	return 0;
613 }
614