xref: /openbmc/linux/arch/x86/platform/efi/efi.c (revision afc98d90)
1 /*
2  * Common EFI (Extensible Firmware Interface) support functions
3  * Based on Extensible Firmware Interface Specification version 1.0
4  *
5  * Copyright (C) 1999 VA Linux Systems
6  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
7  * Copyright (C) 1999-2002 Hewlett-Packard Co.
8  *	David Mosberger-Tang <davidm@hpl.hp.com>
9  *	Stephane Eranian <eranian@hpl.hp.com>
10  * Copyright (C) 2005-2008 Intel Co.
11  *	Fenghua Yu <fenghua.yu@intel.com>
12  *	Bibo Mao <bibo.mao@intel.com>
13  *	Chandramouli Narayanan <mouli@linux.intel.com>
14  *	Huang Ying <ying.huang@intel.com>
15  * Copyright (C) 2013 SuSE Labs
16  *	Borislav Petkov <bp@suse.de> - runtime services VA mapping
17  *
18  * Copied from efi_32.c to eliminate the duplicated code between EFI
19  * 32/64 support code. --ying 2007-10-26
20  *
21  * All EFI Runtime Services are not implemented yet as EFI only
22  * supports physical mode addressing on SoftSDV. This is to be fixed
23  * in a future version.  --drummond 1999-07-20
24  *
25  * Implemented EFI runtime services and virtual mode calls.  --davidm
26  *
27  * Goutham Rao: <goutham.rao@intel.com>
28  *	Skip non-WB memory and ignore empty memory ranges.
29  */
30 
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/efi.h>
36 #include <linux/efi-bgrt.h>
37 #include <linux/export.h>
38 #include <linux/bootmem.h>
39 #include <linux/slab.h>
40 #include <linux/memblock.h>
41 #include <linux/spinlock.h>
42 #include <linux/uaccess.h>
43 #include <linux/time.h>
44 #include <linux/io.h>
45 #include <linux/reboot.h>
46 #include <linux/bcd.h>
47 
48 #include <asm/setup.h>
49 #include <asm/efi.h>
50 #include <asm/time.h>
51 #include <asm/cacheflush.h>
52 #include <asm/tlbflush.h>
53 #include <asm/x86_init.h>
54 #include <asm/rtc.h>
55 
56 #define EFI_DEBUG
57 
58 #define EFI_MIN_RESERVE 5120
59 
60 #define EFI_DUMMY_GUID \
61 	EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9)
62 
63 static efi_char16_t efi_dummy_name[6] = { 'D', 'U', 'M', 'M', 'Y', 0 };
64 
65 struct efi_memory_map memmap;
66 
67 static struct efi efi_phys __initdata;
68 static efi_system_table_t efi_systab __initdata;
69 
70 unsigned long x86_efi_facility;
71 
72 static __initdata efi_config_table_type_t arch_tables[] = {
73 #ifdef CONFIG_X86_UV
74 	{UV_SYSTEM_TABLE_GUID, "UVsystab", &efi.uv_systab},
75 #endif
76 	{NULL_GUID, NULL, NULL},
77 };
78 
79 u64 efi_setup;		/* efi setup_data physical address */
80 
81 /*
82  * Returns 1 if 'facility' is enabled, 0 otherwise.
83  */
84 int efi_enabled(int facility)
85 {
86 	return test_bit(facility, &x86_efi_facility) != 0;
87 }
88 EXPORT_SYMBOL(efi_enabled);
89 
90 static bool __initdata disable_runtime = false;
91 static int __init setup_noefi(char *arg)
92 {
93 	disable_runtime = true;
94 	return 0;
95 }
96 early_param("noefi", setup_noefi);
97 
98 int add_efi_memmap;
99 EXPORT_SYMBOL(add_efi_memmap);
100 
101 static int __init setup_add_efi_memmap(char *arg)
102 {
103 	add_efi_memmap = 1;
104 	return 0;
105 }
106 early_param("add_efi_memmap", setup_add_efi_memmap);
107 
108 static bool efi_no_storage_paranoia;
109 
110 static int __init setup_storage_paranoia(char *arg)
111 {
112 	efi_no_storage_paranoia = true;
113 	return 0;
114 }
115 early_param("efi_no_storage_paranoia", setup_storage_paranoia);
116 
117 static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
118 {
119 	unsigned long flags;
120 	efi_status_t status;
121 
122 	spin_lock_irqsave(&rtc_lock, flags);
123 	status = efi_call_virt2(get_time, tm, tc);
124 	spin_unlock_irqrestore(&rtc_lock, flags);
125 	return status;
126 }
127 
128 static efi_status_t virt_efi_set_time(efi_time_t *tm)
129 {
130 	unsigned long flags;
131 	efi_status_t status;
132 
133 	spin_lock_irqsave(&rtc_lock, flags);
134 	status = efi_call_virt1(set_time, tm);
135 	spin_unlock_irqrestore(&rtc_lock, flags);
136 	return status;
137 }
138 
139 static efi_status_t virt_efi_get_wakeup_time(efi_bool_t *enabled,
140 					     efi_bool_t *pending,
141 					     efi_time_t *tm)
142 {
143 	unsigned long flags;
144 	efi_status_t status;
145 
146 	spin_lock_irqsave(&rtc_lock, flags);
147 	status = efi_call_virt3(get_wakeup_time,
148 				enabled, pending, tm);
149 	spin_unlock_irqrestore(&rtc_lock, flags);
150 	return status;
151 }
152 
153 static efi_status_t virt_efi_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
154 {
155 	unsigned long flags;
156 	efi_status_t status;
157 
158 	spin_lock_irqsave(&rtc_lock, flags);
159 	status = efi_call_virt2(set_wakeup_time,
160 				enabled, tm);
161 	spin_unlock_irqrestore(&rtc_lock, flags);
162 	return status;
163 }
164 
165 static efi_status_t virt_efi_get_variable(efi_char16_t *name,
166 					  efi_guid_t *vendor,
167 					  u32 *attr,
168 					  unsigned long *data_size,
169 					  void *data)
170 {
171 	return efi_call_virt5(get_variable,
172 			      name, vendor, attr,
173 			      data_size, data);
174 }
175 
176 static efi_status_t virt_efi_get_next_variable(unsigned long *name_size,
177 					       efi_char16_t *name,
178 					       efi_guid_t *vendor)
179 {
180 	return efi_call_virt3(get_next_variable,
181 			      name_size, name, vendor);
182 }
183 
184 static efi_status_t virt_efi_set_variable(efi_char16_t *name,
185 					  efi_guid_t *vendor,
186 					  u32 attr,
187 					  unsigned long data_size,
188 					  void *data)
189 {
190 	return efi_call_virt5(set_variable,
191 			      name, vendor, attr,
192 			      data_size, data);
193 }
194 
195 static efi_status_t virt_efi_query_variable_info(u32 attr,
196 						 u64 *storage_space,
197 						 u64 *remaining_space,
198 						 u64 *max_variable_size)
199 {
200 	if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
201 		return EFI_UNSUPPORTED;
202 
203 	return efi_call_virt4(query_variable_info, attr, storage_space,
204 			      remaining_space, max_variable_size);
205 }
206 
207 static efi_status_t virt_efi_get_next_high_mono_count(u32 *count)
208 {
209 	return efi_call_virt1(get_next_high_mono_count, count);
210 }
211 
212 static void virt_efi_reset_system(int reset_type,
213 				  efi_status_t status,
214 				  unsigned long data_size,
215 				  efi_char16_t *data)
216 {
217 	efi_call_virt4(reset_system, reset_type, status,
218 		       data_size, data);
219 }
220 
221 static efi_status_t virt_efi_update_capsule(efi_capsule_header_t **capsules,
222 					    unsigned long count,
223 					    unsigned long sg_list)
224 {
225 	if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
226 		return EFI_UNSUPPORTED;
227 
228 	return efi_call_virt3(update_capsule, capsules, count, sg_list);
229 }
230 
231 static efi_status_t virt_efi_query_capsule_caps(efi_capsule_header_t **capsules,
232 						unsigned long count,
233 						u64 *max_size,
234 						int *reset_type)
235 {
236 	if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
237 		return EFI_UNSUPPORTED;
238 
239 	return efi_call_virt4(query_capsule_caps, capsules, count, max_size,
240 			      reset_type);
241 }
242 
243 static efi_status_t __init phys_efi_set_virtual_address_map(
244 	unsigned long memory_map_size,
245 	unsigned long descriptor_size,
246 	u32 descriptor_version,
247 	efi_memory_desc_t *virtual_map)
248 {
249 	efi_status_t status;
250 
251 	efi_call_phys_prelog();
252 	status = efi_call_phys4(efi_phys.set_virtual_address_map,
253 				memory_map_size, descriptor_size,
254 				descriptor_version, virtual_map);
255 	efi_call_phys_epilog();
256 	return status;
257 }
258 
259 static efi_status_t __init phys_efi_get_time(efi_time_t *tm,
260 					     efi_time_cap_t *tc)
261 {
262 	unsigned long flags;
263 	efi_status_t status;
264 
265 	spin_lock_irqsave(&rtc_lock, flags);
266 	efi_call_phys_prelog();
267 	status = efi_call_phys2(efi_phys.get_time, virt_to_phys(tm),
268 				virt_to_phys(tc));
269 	efi_call_phys_epilog();
270 	spin_unlock_irqrestore(&rtc_lock, flags);
271 	return status;
272 }
273 
274 int efi_set_rtc_mmss(const struct timespec *now)
275 {
276 	unsigned long nowtime = now->tv_sec;
277 	efi_status_t 	status;
278 	efi_time_t 	eft;
279 	efi_time_cap_t 	cap;
280 	struct rtc_time	tm;
281 
282 	status = efi.get_time(&eft, &cap);
283 	if (status != EFI_SUCCESS) {
284 		pr_err("Oops: efitime: can't read time!\n");
285 		return -1;
286 	}
287 
288 	rtc_time_to_tm(nowtime, &tm);
289 	if (!rtc_valid_tm(&tm)) {
290 		eft.year = tm.tm_year + 1900;
291 		eft.month = tm.tm_mon + 1;
292 		eft.day = tm.tm_mday;
293 		eft.minute = tm.tm_min;
294 		eft.second = tm.tm_sec;
295 		eft.nanosecond = 0;
296 	} else {
297 		printk(KERN_ERR
298 		       "%s: Invalid EFI RTC value: write of %lx to EFI RTC failed\n",
299 		       __FUNCTION__, nowtime);
300 		return -1;
301 	}
302 
303 	status = efi.set_time(&eft);
304 	if (status != EFI_SUCCESS) {
305 		pr_err("Oops: efitime: can't write time!\n");
306 		return -1;
307 	}
308 	return 0;
309 }
310 
311 void efi_get_time(struct timespec *now)
312 {
313 	efi_status_t status;
314 	efi_time_t eft;
315 	efi_time_cap_t cap;
316 
317 	status = efi.get_time(&eft, &cap);
318 	if (status != EFI_SUCCESS)
319 		pr_err("Oops: efitime: can't read time!\n");
320 
321 	now->tv_sec = mktime(eft.year, eft.month, eft.day, eft.hour,
322 			     eft.minute, eft.second);
323 	now->tv_nsec = 0;
324 }
325 
326 /*
327  * Tell the kernel about the EFI memory map.  This might include
328  * more than the max 128 entries that can fit in the e820 legacy
329  * (zeropage) memory map.
330  */
331 
332 static void __init do_add_efi_memmap(void)
333 {
334 	void *p;
335 
336 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
337 		efi_memory_desc_t *md = p;
338 		unsigned long long start = md->phys_addr;
339 		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
340 		int e820_type;
341 
342 		switch (md->type) {
343 		case EFI_LOADER_CODE:
344 		case EFI_LOADER_DATA:
345 		case EFI_BOOT_SERVICES_CODE:
346 		case EFI_BOOT_SERVICES_DATA:
347 		case EFI_CONVENTIONAL_MEMORY:
348 			if (md->attribute & EFI_MEMORY_WB)
349 				e820_type = E820_RAM;
350 			else
351 				e820_type = E820_RESERVED;
352 			break;
353 		case EFI_ACPI_RECLAIM_MEMORY:
354 			e820_type = E820_ACPI;
355 			break;
356 		case EFI_ACPI_MEMORY_NVS:
357 			e820_type = E820_NVS;
358 			break;
359 		case EFI_UNUSABLE_MEMORY:
360 			e820_type = E820_UNUSABLE;
361 			break;
362 		default:
363 			/*
364 			 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
365 			 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
366 			 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
367 			 */
368 			e820_type = E820_RESERVED;
369 			break;
370 		}
371 		e820_add_region(start, size, e820_type);
372 	}
373 	sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
374 }
375 
376 int __init efi_memblock_x86_reserve_range(void)
377 {
378 	struct efi_info *e = &boot_params.efi_info;
379 	unsigned long pmap;
380 
381 #ifdef CONFIG_X86_32
382 	/* Can't handle data above 4GB at this time */
383 	if (e->efi_memmap_hi) {
384 		pr_err("Memory map is above 4GB, disabling EFI.\n");
385 		return -EINVAL;
386 	}
387 	pmap =  e->efi_memmap;
388 #else
389 	pmap = (e->efi_memmap |	((__u64)e->efi_memmap_hi << 32));
390 #endif
391 	memmap.phys_map		= (void *)pmap;
392 	memmap.nr_map		= e->efi_memmap_size /
393 				  e->efi_memdesc_size;
394 	memmap.desc_size	= e->efi_memdesc_size;
395 	memmap.desc_version	= e->efi_memdesc_version;
396 
397 	memblock_reserve(pmap, memmap.nr_map * memmap.desc_size);
398 
399 	efi.memmap = &memmap;
400 
401 	return 0;
402 }
403 
404 static void __init print_efi_memmap(void)
405 {
406 #ifdef EFI_DEBUG
407 	efi_memory_desc_t *md;
408 	void *p;
409 	int i;
410 
411 	for (p = memmap.map, i = 0;
412 	     p < memmap.map_end;
413 	     p += memmap.desc_size, i++) {
414 		md = p;
415 		pr_info("mem%02u: type=%u, attr=0x%llx, "
416 			"range=[0x%016llx-0x%016llx) (%lluMB)\n",
417 			i, md->type, md->attribute, md->phys_addr,
418 			md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
419 			(md->num_pages >> (20 - EFI_PAGE_SHIFT)));
420 	}
421 #endif  /*  EFI_DEBUG  */
422 }
423 
424 void __init efi_reserve_boot_services(void)
425 {
426 	void *p;
427 
428 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
429 		efi_memory_desc_t *md = p;
430 		u64 start = md->phys_addr;
431 		u64 size = md->num_pages << EFI_PAGE_SHIFT;
432 
433 		if (md->type != EFI_BOOT_SERVICES_CODE &&
434 		    md->type != EFI_BOOT_SERVICES_DATA)
435 			continue;
436 		/* Only reserve where possible:
437 		 * - Not within any already allocated areas
438 		 * - Not over any memory area (really needed, if above?)
439 		 * - Not within any part of the kernel
440 		 * - Not the bios reserved area
441 		*/
442 		if ((start + size > __pa_symbol(_text)
443 				&& start <= __pa_symbol(_end)) ||
444 			!e820_all_mapped(start, start+size, E820_RAM) ||
445 			memblock_is_region_reserved(start, size)) {
446 			/* Could not reserve, skip it */
447 			md->num_pages = 0;
448 			memblock_dbg("Could not reserve boot range "
449 					"[0x%010llx-0x%010llx]\n",
450 						start, start+size-1);
451 		} else
452 			memblock_reserve(start, size);
453 	}
454 }
455 
456 void __init efi_unmap_memmap(void)
457 {
458 	clear_bit(EFI_MEMMAP, &x86_efi_facility);
459 	if (memmap.map) {
460 		early_iounmap(memmap.map, memmap.nr_map * memmap.desc_size);
461 		memmap.map = NULL;
462 	}
463 }
464 
465 void __init efi_free_boot_services(void)
466 {
467 	void *p;
468 
469 	if (!efi_is_native())
470 		return;
471 
472 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
473 		efi_memory_desc_t *md = p;
474 		unsigned long long start = md->phys_addr;
475 		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
476 
477 		if (md->type != EFI_BOOT_SERVICES_CODE &&
478 		    md->type != EFI_BOOT_SERVICES_DATA)
479 			continue;
480 
481 		/* Could not reserve boot area */
482 		if (!size)
483 			continue;
484 
485 		free_bootmem_late(start, size);
486 	}
487 
488 	efi_unmap_memmap();
489 }
490 
491 static int __init efi_systab_init(void *phys)
492 {
493 	if (efi_enabled(EFI_64BIT)) {
494 		efi_system_table_64_t *systab64;
495 		struct efi_setup_data *data = NULL;
496 		u64 tmp = 0;
497 
498 		if (efi_setup) {
499 			data = early_memremap(efi_setup, sizeof(*data));
500 			if (!data)
501 				return -ENOMEM;
502 		}
503 		systab64 = early_ioremap((unsigned long)phys,
504 					 sizeof(*systab64));
505 		if (systab64 == NULL) {
506 			pr_err("Couldn't map the system table!\n");
507 			if (data)
508 				early_iounmap(data, sizeof(*data));
509 			return -ENOMEM;
510 		}
511 
512 		efi_systab.hdr = systab64->hdr;
513 		efi_systab.fw_vendor = data ? (unsigned long)data->fw_vendor :
514 					      systab64->fw_vendor;
515 		tmp |= data ? data->fw_vendor : systab64->fw_vendor;
516 		efi_systab.fw_revision = systab64->fw_revision;
517 		efi_systab.con_in_handle = systab64->con_in_handle;
518 		tmp |= systab64->con_in_handle;
519 		efi_systab.con_in = systab64->con_in;
520 		tmp |= systab64->con_in;
521 		efi_systab.con_out_handle = systab64->con_out_handle;
522 		tmp |= systab64->con_out_handle;
523 		efi_systab.con_out = systab64->con_out;
524 		tmp |= systab64->con_out;
525 		efi_systab.stderr_handle = systab64->stderr_handle;
526 		tmp |= systab64->stderr_handle;
527 		efi_systab.stderr = systab64->stderr;
528 		tmp |= systab64->stderr;
529 		efi_systab.runtime = data ?
530 				     (void *)(unsigned long)data->runtime :
531 				     (void *)(unsigned long)systab64->runtime;
532 		tmp |= data ? data->runtime : systab64->runtime;
533 		efi_systab.boottime = (void *)(unsigned long)systab64->boottime;
534 		tmp |= systab64->boottime;
535 		efi_systab.nr_tables = systab64->nr_tables;
536 		efi_systab.tables = data ? (unsigned long)data->tables :
537 					   systab64->tables;
538 		tmp |= data ? data->tables : systab64->tables;
539 
540 		early_iounmap(systab64, sizeof(*systab64));
541 		if (data)
542 			early_iounmap(data, sizeof(*data));
543 #ifdef CONFIG_X86_32
544 		if (tmp >> 32) {
545 			pr_err("EFI data located above 4GB, disabling EFI.\n");
546 			return -EINVAL;
547 		}
548 #endif
549 	} else {
550 		efi_system_table_32_t *systab32;
551 
552 		systab32 = early_ioremap((unsigned long)phys,
553 					 sizeof(*systab32));
554 		if (systab32 == NULL) {
555 			pr_err("Couldn't map the system table!\n");
556 			return -ENOMEM;
557 		}
558 
559 		efi_systab.hdr = systab32->hdr;
560 		efi_systab.fw_vendor = systab32->fw_vendor;
561 		efi_systab.fw_revision = systab32->fw_revision;
562 		efi_systab.con_in_handle = systab32->con_in_handle;
563 		efi_systab.con_in = systab32->con_in;
564 		efi_systab.con_out_handle = systab32->con_out_handle;
565 		efi_systab.con_out = systab32->con_out;
566 		efi_systab.stderr_handle = systab32->stderr_handle;
567 		efi_systab.stderr = systab32->stderr;
568 		efi_systab.runtime = (void *)(unsigned long)systab32->runtime;
569 		efi_systab.boottime = (void *)(unsigned long)systab32->boottime;
570 		efi_systab.nr_tables = systab32->nr_tables;
571 		efi_systab.tables = systab32->tables;
572 
573 		early_iounmap(systab32, sizeof(*systab32));
574 	}
575 
576 	efi.systab = &efi_systab;
577 
578 	/*
579 	 * Verify the EFI Table
580 	 */
581 	if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
582 		pr_err("System table signature incorrect!\n");
583 		return -EINVAL;
584 	}
585 	if ((efi.systab->hdr.revision >> 16) == 0)
586 		pr_err("Warning: System table version "
587 		       "%d.%02d, expected 1.00 or greater!\n",
588 		       efi.systab->hdr.revision >> 16,
589 		       efi.systab->hdr.revision & 0xffff);
590 
591 	return 0;
592 }
593 
594 static int __init efi_runtime_init(void)
595 {
596 	efi_runtime_services_t *runtime;
597 
598 	/*
599 	 * Check out the runtime services table. We need to map
600 	 * the runtime services table so that we can grab the physical
601 	 * address of several of the EFI runtime functions, needed to
602 	 * set the firmware into virtual mode.
603 	 */
604 	runtime = early_ioremap((unsigned long)efi.systab->runtime,
605 				sizeof(efi_runtime_services_t));
606 	if (!runtime) {
607 		pr_err("Could not map the runtime service table!\n");
608 		return -ENOMEM;
609 	}
610 	/*
611 	 * We will only need *early* access to the following
612 	 * two EFI runtime services before set_virtual_address_map
613 	 * is invoked.
614 	 */
615 	efi_phys.get_time = (efi_get_time_t *)runtime->get_time;
616 	efi_phys.set_virtual_address_map =
617 		(efi_set_virtual_address_map_t *)
618 		runtime->set_virtual_address_map;
619 	/*
620 	 * Make efi_get_time can be called before entering
621 	 * virtual mode.
622 	 */
623 	efi.get_time = phys_efi_get_time;
624 	early_iounmap(runtime, sizeof(efi_runtime_services_t));
625 
626 	return 0;
627 }
628 
629 static int __init efi_memmap_init(void)
630 {
631 	/* Map the EFI memory map */
632 	memmap.map = early_ioremap((unsigned long)memmap.phys_map,
633 				   memmap.nr_map * memmap.desc_size);
634 	if (memmap.map == NULL) {
635 		pr_err("Could not map the memory map!\n");
636 		return -ENOMEM;
637 	}
638 	memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
639 
640 	if (add_efi_memmap)
641 		do_add_efi_memmap();
642 
643 	return 0;
644 }
645 
646 /*
647  * A number of config table entries get remapped to virtual addresses
648  * after entering EFI virtual mode. However, the kexec kernel requires
649  * their physical addresses therefore we pass them via setup_data and
650  * correct those entries to their respective physical addresses here.
651  *
652  * Currently only handles smbios which is necessary for some firmware
653  * implementation.
654  */
655 static int __init efi_reuse_config(u64 tables, int nr_tables)
656 {
657 	int i, sz, ret = 0;
658 	void *p, *tablep;
659 	struct efi_setup_data *data;
660 
661 	if (!efi_setup)
662 		return 0;
663 
664 	if (!efi_enabled(EFI_64BIT))
665 		return 0;
666 
667 	data = early_memremap(efi_setup, sizeof(*data));
668 	if (!data) {
669 		ret = -ENOMEM;
670 		goto out;
671 	}
672 
673 	if (!data->smbios)
674 		goto out_memremap;
675 
676 	sz = sizeof(efi_config_table_64_t);
677 
678 	p = tablep = early_memremap(tables, nr_tables * sz);
679 	if (!p) {
680 		pr_err("Could not map Configuration table!\n");
681 		ret = -ENOMEM;
682 		goto out_memremap;
683 	}
684 
685 	for (i = 0; i < efi.systab->nr_tables; i++) {
686 		efi_guid_t guid;
687 
688 		guid = ((efi_config_table_64_t *)p)->guid;
689 
690 		if (!efi_guidcmp(guid, SMBIOS_TABLE_GUID))
691 			((efi_config_table_64_t *)p)->table = data->smbios;
692 		p += sz;
693 	}
694 	early_iounmap(tablep, nr_tables * sz);
695 
696 out_memremap:
697 	early_iounmap(data, sizeof(*data));
698 out:
699 	return ret;
700 }
701 
702 void __init efi_init(void)
703 {
704 	efi_char16_t *c16;
705 	char vendor[100] = "unknown";
706 	int i = 0;
707 	void *tmp;
708 
709 #ifdef CONFIG_X86_32
710 	if (boot_params.efi_info.efi_systab_hi ||
711 	    boot_params.efi_info.efi_memmap_hi) {
712 		pr_info("Table located above 4GB, disabling EFI.\n");
713 		return;
714 	}
715 	efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
716 #else
717 	efi_phys.systab = (efi_system_table_t *)
718 			  (boot_params.efi_info.efi_systab |
719 			  ((__u64)boot_params.efi_info.efi_systab_hi<<32));
720 #endif
721 
722 	if (efi_systab_init(efi_phys.systab))
723 		return;
724 
725 	set_bit(EFI_SYSTEM_TABLES, &x86_efi_facility);
726 
727 	efi.config_table = (unsigned long)efi.systab->tables;
728 	efi.fw_vendor	 = (unsigned long)efi.systab->fw_vendor;
729 	efi.runtime	 = (unsigned long)efi.systab->runtime;
730 
731 	/*
732 	 * Show what we know for posterity
733 	 */
734 	c16 = tmp = early_ioremap(efi.systab->fw_vendor, 2);
735 	if (c16) {
736 		for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i)
737 			vendor[i] = *c16++;
738 		vendor[i] = '\0';
739 	} else
740 		pr_err("Could not map the firmware vendor!\n");
741 	early_iounmap(tmp, 2);
742 
743 	pr_info("EFI v%u.%.02u by %s\n",
744 		efi.systab->hdr.revision >> 16,
745 		efi.systab->hdr.revision & 0xffff, vendor);
746 
747 	if (efi_reuse_config(efi.systab->tables, efi.systab->nr_tables))
748 		return;
749 
750 	if (efi_config_init(arch_tables))
751 		return;
752 
753 	set_bit(EFI_CONFIG_TABLES, &x86_efi_facility);
754 
755 	/*
756 	 * Note: We currently don't support runtime services on an EFI
757 	 * that doesn't match the kernel 32/64-bit mode.
758 	 */
759 
760 	if (!efi_is_native())
761 		pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n");
762 	else {
763 		if (disable_runtime || efi_runtime_init())
764 			return;
765 		set_bit(EFI_RUNTIME_SERVICES, &x86_efi_facility);
766 	}
767 	if (efi_memmap_init())
768 		return;
769 
770 	set_bit(EFI_MEMMAP, &x86_efi_facility);
771 
772 	print_efi_memmap();
773 }
774 
775 void __init efi_late_init(void)
776 {
777 	efi_bgrt_init();
778 }
779 
780 void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
781 {
782 	u64 addr, npages;
783 
784 	addr = md->virt_addr;
785 	npages = md->num_pages;
786 
787 	memrange_efi_to_native(&addr, &npages);
788 
789 	if (executable)
790 		set_memory_x(addr, npages);
791 	else
792 		set_memory_nx(addr, npages);
793 }
794 
795 void __init runtime_code_page_mkexec(void)
796 {
797 	efi_memory_desc_t *md;
798 	void *p;
799 
800 	/* Make EFI runtime service code area executable */
801 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
802 		md = p;
803 
804 		if (md->type != EFI_RUNTIME_SERVICES_CODE)
805 			continue;
806 
807 		efi_set_executable(md, true);
808 	}
809 }
810 
811 void efi_memory_uc(u64 addr, unsigned long size)
812 {
813 	unsigned long page_shift = 1UL << EFI_PAGE_SHIFT;
814 	u64 npages;
815 
816 	npages = round_up(size, page_shift) / page_shift;
817 	memrange_efi_to_native(&addr, &npages);
818 	set_memory_uc(addr, npages);
819 }
820 
821 void __init old_map_region(efi_memory_desc_t *md)
822 {
823 	u64 start_pfn, end_pfn, end;
824 	unsigned long size;
825 	void *va;
826 
827 	start_pfn = PFN_DOWN(md->phys_addr);
828 	size	  = md->num_pages << PAGE_SHIFT;
829 	end	  = md->phys_addr + size;
830 	end_pfn   = PFN_UP(end);
831 
832 	if (pfn_range_is_mapped(start_pfn, end_pfn)) {
833 		va = __va(md->phys_addr);
834 
835 		if (!(md->attribute & EFI_MEMORY_WB))
836 			efi_memory_uc((u64)(unsigned long)va, size);
837 	} else
838 		va = efi_ioremap(md->phys_addr, size,
839 				 md->type, md->attribute);
840 
841 	md->virt_addr = (u64) (unsigned long) va;
842 	if (!va)
843 		pr_err("ioremap of 0x%llX failed!\n",
844 		       (unsigned long long)md->phys_addr);
845 }
846 
847 /* Merge contiguous regions of the same type and attribute */
848 static void __init efi_merge_regions(void)
849 {
850 	void *p;
851 	efi_memory_desc_t *md, *prev_md = NULL;
852 
853 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
854 		u64 prev_size;
855 		md = p;
856 
857 		if (!prev_md) {
858 			prev_md = md;
859 			continue;
860 		}
861 
862 		if (prev_md->type != md->type ||
863 		    prev_md->attribute != md->attribute) {
864 			prev_md = md;
865 			continue;
866 		}
867 
868 		prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
869 
870 		if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
871 			prev_md->num_pages += md->num_pages;
872 			md->type = EFI_RESERVED_TYPE;
873 			md->attribute = 0;
874 			continue;
875 		}
876 		prev_md = md;
877 	}
878 }
879 
880 static void __init get_systab_virt_addr(efi_memory_desc_t *md)
881 {
882 	unsigned long size;
883 	u64 end, systab;
884 
885 	size = md->num_pages << EFI_PAGE_SHIFT;
886 	end = md->phys_addr + size;
887 	systab = (u64)(unsigned long)efi_phys.systab;
888 	if (md->phys_addr <= systab && systab < end) {
889 		systab += md->virt_addr - md->phys_addr;
890 		efi.systab = (efi_system_table_t *)(unsigned long)systab;
891 	}
892 }
893 
894 static int __init save_runtime_map(void)
895 {
896 	efi_memory_desc_t *md;
897 	void *tmp, *p, *q = NULL;
898 	int count = 0;
899 
900 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
901 		md = p;
902 
903 		if (!(md->attribute & EFI_MEMORY_RUNTIME) ||
904 		    (md->type == EFI_BOOT_SERVICES_CODE) ||
905 		    (md->type == EFI_BOOT_SERVICES_DATA))
906 			continue;
907 		tmp = krealloc(q, (count + 1) * memmap.desc_size, GFP_KERNEL);
908 		if (!tmp)
909 			goto out;
910 		q = tmp;
911 
912 		memcpy(q + count * memmap.desc_size, md, memmap.desc_size);
913 		count++;
914 	}
915 
916 	efi_runtime_map_setup(q, count, memmap.desc_size);
917 
918 	return 0;
919 out:
920 	kfree(q);
921 	return -ENOMEM;
922 }
923 
924 /*
925  * Map efi regions which were passed via setup_data. The virt_addr is a fixed
926  * addr which was used in first kernel of a kexec boot.
927  */
928 static void __init efi_map_regions_fixed(void)
929 {
930 	void *p;
931 	efi_memory_desc_t *md;
932 
933 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
934 		md = p;
935 		efi_map_region_fixed(md); /* FIXME: add error handling */
936 		get_systab_virt_addr(md);
937 	}
938 
939 }
940 
941 /*
942  * Map efi memory ranges for runtime serivce and update new_memmap with virtual
943  * addresses.
944  */
945 static void * __init efi_map_regions(int *count)
946 {
947 	efi_memory_desc_t *md;
948 	void *p, *tmp, *new_memmap = NULL;
949 
950 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
951 		md = p;
952 		if (!(md->attribute & EFI_MEMORY_RUNTIME)) {
953 #ifdef CONFIG_X86_64
954 			if (md->type != EFI_BOOT_SERVICES_CODE &&
955 			    md->type != EFI_BOOT_SERVICES_DATA)
956 #endif
957 				continue;
958 		}
959 
960 		efi_map_region(md);
961 		get_systab_virt_addr(md);
962 
963 		tmp = krealloc(new_memmap, (*count + 1) * memmap.desc_size,
964 			       GFP_KERNEL);
965 		if (!tmp)
966 			goto out;
967 		new_memmap = tmp;
968 		memcpy(new_memmap + (*count * memmap.desc_size), md,
969 		       memmap.desc_size);
970 		(*count)++;
971 	}
972 
973 	return new_memmap;
974 out:
975 	kfree(new_memmap);
976 	return NULL;
977 }
978 
979 /*
980  * This function will switch the EFI runtime services to virtual mode.
981  * Essentially, we look through the EFI memmap and map every region that
982  * has the runtime attribute bit set in its memory descriptor into the
983  * ->trampoline_pgd page table using a top-down VA allocation scheme.
984  *
985  * The old method which used to update that memory descriptor with the
986  * virtual address obtained from ioremap() is still supported when the
987  * kernel is booted with efi=old_map on its command line. Same old
988  * method enabled the runtime services to be called without having to
989  * thunk back into physical mode for every invocation.
990  *
991  * The new method does a pagetable switch in a preemption-safe manner
992  * so that we're in a different address space when calling a runtime
993  * function. For function arguments passing we do copy the PGDs of the
994  * kernel page table into ->trampoline_pgd prior to each call.
995  *
996  * Specially for kexec boot, efi runtime maps in previous kernel should
997  * be passed in via setup_data. In that case runtime ranges will be mapped
998  * to the same virtual addresses as the first kernel.
999  */
1000 void __init efi_enter_virtual_mode(void)
1001 {
1002 	efi_status_t status;
1003 	void *new_memmap = NULL;
1004 	int err, count = 0;
1005 
1006 	efi.systab = NULL;
1007 
1008 	/*
1009 	 * We don't do virtual mode, since we don't do runtime services, on
1010 	 * non-native EFI
1011 	 */
1012 	if (!efi_is_native()) {
1013 		efi_unmap_memmap();
1014 		return;
1015 	}
1016 
1017 	if (efi_setup) {
1018 		efi_map_regions_fixed();
1019 	} else {
1020 		efi_merge_regions();
1021 		new_memmap = efi_map_regions(&count);
1022 		if (!new_memmap) {
1023 			pr_err("Error reallocating memory, EFI runtime non-functional!\n");
1024 			return;
1025 		}
1026 	}
1027 
1028 	err = save_runtime_map();
1029 	if (err)
1030 		pr_err("Error saving runtime map, efi runtime on kexec non-functional!!\n");
1031 
1032 	BUG_ON(!efi.systab);
1033 
1034 	efi_setup_page_tables();
1035 	efi_sync_low_kernel_mappings();
1036 
1037 	if (!efi_setup) {
1038 		status = phys_efi_set_virtual_address_map(
1039 			memmap.desc_size * count,
1040 			memmap.desc_size,
1041 			memmap.desc_version,
1042 			(efi_memory_desc_t *)__pa(new_memmap));
1043 
1044 		if (status != EFI_SUCCESS) {
1045 			pr_alert("Unable to switch EFI into virtual mode (status=%lx)!\n",
1046 				 status);
1047 			panic("EFI call to SetVirtualAddressMap() failed!");
1048 		}
1049 	}
1050 
1051 	/*
1052 	 * Now that EFI is in virtual mode, update the function
1053 	 * pointers in the runtime service table to the new virtual addresses.
1054 	 *
1055 	 * Call EFI services through wrapper functions.
1056 	 */
1057 	efi.runtime_version = efi_systab.hdr.revision;
1058 	efi.get_time = virt_efi_get_time;
1059 	efi.set_time = virt_efi_set_time;
1060 	efi.get_wakeup_time = virt_efi_get_wakeup_time;
1061 	efi.set_wakeup_time = virt_efi_set_wakeup_time;
1062 	efi.get_variable = virt_efi_get_variable;
1063 	efi.get_next_variable = virt_efi_get_next_variable;
1064 	efi.set_variable = virt_efi_set_variable;
1065 	efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count;
1066 	efi.reset_system = virt_efi_reset_system;
1067 	efi.set_virtual_address_map = NULL;
1068 	efi.query_variable_info = virt_efi_query_variable_info;
1069 	efi.update_capsule = virt_efi_update_capsule;
1070 	efi.query_capsule_caps = virt_efi_query_capsule_caps;
1071 
1072 	efi_runtime_mkexec();
1073 
1074 	kfree(new_memmap);
1075 
1076 	/* clean DUMMY object */
1077 	efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
1078 			 EFI_VARIABLE_NON_VOLATILE |
1079 			 EFI_VARIABLE_BOOTSERVICE_ACCESS |
1080 			 EFI_VARIABLE_RUNTIME_ACCESS,
1081 			 0, NULL);
1082 }
1083 
1084 /*
1085  * Convenience functions to obtain memory types and attributes
1086  */
1087 u32 efi_mem_type(unsigned long phys_addr)
1088 {
1089 	efi_memory_desc_t *md;
1090 	void *p;
1091 
1092 	if (!efi_enabled(EFI_MEMMAP))
1093 		return 0;
1094 
1095 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
1096 		md = p;
1097 		if ((md->phys_addr <= phys_addr) &&
1098 		    (phys_addr < (md->phys_addr +
1099 				  (md->num_pages << EFI_PAGE_SHIFT))))
1100 			return md->type;
1101 	}
1102 	return 0;
1103 }
1104 
1105 u64 efi_mem_attributes(unsigned long phys_addr)
1106 {
1107 	efi_memory_desc_t *md;
1108 	void *p;
1109 
1110 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
1111 		md = p;
1112 		if ((md->phys_addr <= phys_addr) &&
1113 		    (phys_addr < (md->phys_addr +
1114 				  (md->num_pages << EFI_PAGE_SHIFT))))
1115 			return md->attribute;
1116 	}
1117 	return 0;
1118 }
1119 
1120 /*
1121  * Some firmware has serious problems when using more than 50% of the EFI
1122  * variable store, i.e. it triggers bugs that can brick machines. Ensure that
1123  * we never use more than this safe limit.
1124  *
1125  * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable
1126  * store.
1127  */
1128 efi_status_t efi_query_variable_store(u32 attributes, unsigned long size)
1129 {
1130 	efi_status_t status;
1131 	u64 storage_size, remaining_size, max_size;
1132 
1133 	if (!(attributes & EFI_VARIABLE_NON_VOLATILE))
1134 		return 0;
1135 
1136 	status = efi.query_variable_info(attributes, &storage_size,
1137 					 &remaining_size, &max_size);
1138 	if (status != EFI_SUCCESS)
1139 		return status;
1140 
1141 	/*
1142 	 * Some firmware implementations refuse to boot if there's insufficient
1143 	 * space in the variable store. We account for that by refusing the
1144 	 * write if permitting it would reduce the available space to under
1145 	 * 5KB. This figure was provided by Samsung, so should be safe.
1146 	 */
1147 	if ((remaining_size - size < EFI_MIN_RESERVE) &&
1148 		!efi_no_storage_paranoia) {
1149 
1150 		/*
1151 		 * Triggering garbage collection may require that the firmware
1152 		 * generate a real EFI_OUT_OF_RESOURCES error. We can force
1153 		 * that by attempting to use more space than is available.
1154 		 */
1155 		unsigned long dummy_size = remaining_size + 1024;
1156 		void *dummy = kzalloc(dummy_size, GFP_ATOMIC);
1157 
1158 		if (!dummy)
1159 			return EFI_OUT_OF_RESOURCES;
1160 
1161 		status = efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
1162 					  EFI_VARIABLE_NON_VOLATILE |
1163 					  EFI_VARIABLE_BOOTSERVICE_ACCESS |
1164 					  EFI_VARIABLE_RUNTIME_ACCESS,
1165 					  dummy_size, dummy);
1166 
1167 		if (status == EFI_SUCCESS) {
1168 			/*
1169 			 * This should have failed, so if it didn't make sure
1170 			 * that we delete it...
1171 			 */
1172 			efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
1173 					 EFI_VARIABLE_NON_VOLATILE |
1174 					 EFI_VARIABLE_BOOTSERVICE_ACCESS |
1175 					 EFI_VARIABLE_RUNTIME_ACCESS,
1176 					 0, dummy);
1177 		}
1178 
1179 		kfree(dummy);
1180 
1181 		/*
1182 		 * The runtime code may now have triggered a garbage collection
1183 		 * run, so check the variable info again
1184 		 */
1185 		status = efi.query_variable_info(attributes, &storage_size,
1186 						 &remaining_size, &max_size);
1187 
1188 		if (status != EFI_SUCCESS)
1189 			return status;
1190 
1191 		/*
1192 		 * There still isn't enough room, so return an error
1193 		 */
1194 		if (remaining_size - size < EFI_MIN_RESERVE)
1195 			return EFI_OUT_OF_RESOURCES;
1196 	}
1197 
1198 	return EFI_SUCCESS;
1199 }
1200 EXPORT_SYMBOL_GPL(efi_query_variable_store);
1201 
1202 static int __init parse_efi_cmdline(char *str)
1203 {
1204 	if (*str == '=')
1205 		str++;
1206 
1207 	if (!strncmp(str, "old_map", 7))
1208 		set_bit(EFI_OLD_MEMMAP, &x86_efi_facility);
1209 
1210 	return 0;
1211 }
1212 early_param("efi", parse_efi_cmdline);
1213