1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Common EFI (Extensible Firmware Interface) support functions 4 * Based on Extensible Firmware Interface Specification version 1.0 5 * 6 * Copyright (C) 1999 VA Linux Systems 7 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> 8 * Copyright (C) 1999-2002 Hewlett-Packard Co. 9 * David Mosberger-Tang <davidm@hpl.hp.com> 10 * Stephane Eranian <eranian@hpl.hp.com> 11 * Copyright (C) 2005-2008 Intel Co. 12 * Fenghua Yu <fenghua.yu@intel.com> 13 * Bibo Mao <bibo.mao@intel.com> 14 * Chandramouli Narayanan <mouli@linux.intel.com> 15 * Huang Ying <ying.huang@intel.com> 16 * Copyright (C) 2013 SuSE Labs 17 * Borislav Petkov <bp@suse.de> - runtime services VA mapping 18 * 19 * Copied from efi_32.c to eliminate the duplicated code between EFI 20 * 32/64 support code. --ying 2007-10-26 21 * 22 * All EFI Runtime Services are not implemented yet as EFI only 23 * supports physical mode addressing on SoftSDV. This is to be fixed 24 * in a future version. --drummond 1999-07-20 25 * 26 * Implemented EFI runtime services and virtual mode calls. --davidm 27 * 28 * Goutham Rao: <goutham.rao@intel.com> 29 * Skip non-WB memory and ignore empty memory ranges. 30 */ 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 34 #include <linux/kernel.h> 35 #include <linux/init.h> 36 #include <linux/efi.h> 37 #include <linux/efi-bgrt.h> 38 #include <linux/export.h> 39 #include <linux/memblock.h> 40 #include <linux/slab.h> 41 #include <linux/spinlock.h> 42 #include <linux/uaccess.h> 43 #include <linux/time.h> 44 #include <linux/io.h> 45 #include <linux/reboot.h> 46 #include <linux/bcd.h> 47 48 #include <asm/setup.h> 49 #include <asm/efi.h> 50 #include <asm/e820/api.h> 51 #include <asm/time.h> 52 #include <asm/set_memory.h> 53 #include <asm/tlbflush.h> 54 #include <asm/x86_init.h> 55 #include <asm/uv/uv.h> 56 57 static struct efi efi_phys __initdata; 58 static efi_system_table_t efi_systab __initdata; 59 60 static efi_config_table_type_t arch_tables[] __initdata = { 61 #ifdef CONFIG_X86_UV 62 {UV_SYSTEM_TABLE_GUID, "UVsystab", &uv_systab_phys}, 63 #endif 64 {NULL_GUID, NULL, NULL}, 65 }; 66 67 static const unsigned long * const efi_tables[] = { 68 &efi.mps, 69 &efi.acpi, 70 &efi.acpi20, 71 &efi.smbios, 72 &efi.smbios3, 73 &efi.boot_info, 74 &efi.hcdp, 75 &efi.uga, 76 #ifdef CONFIG_X86_UV 77 &uv_systab_phys, 78 #endif 79 &efi.fw_vendor, 80 &efi.runtime, 81 &efi.config_table, 82 &efi.esrt, 83 &efi.properties_table, 84 &efi.mem_attr_table, 85 #ifdef CONFIG_EFI_RCI2_TABLE 86 &rci2_table_phys, 87 #endif 88 }; 89 90 u64 efi_setup; /* efi setup_data physical address */ 91 92 static int add_efi_memmap __initdata; 93 static int __init setup_add_efi_memmap(char *arg) 94 { 95 add_efi_memmap = 1; 96 return 0; 97 } 98 early_param("add_efi_memmap", setup_add_efi_memmap); 99 100 static efi_status_t __init phys_efi_set_virtual_address_map( 101 unsigned long memory_map_size, 102 unsigned long descriptor_size, 103 u32 descriptor_version, 104 efi_memory_desc_t *virtual_map) 105 { 106 efi_status_t status; 107 unsigned long flags; 108 pgd_t *save_pgd; 109 110 save_pgd = efi_call_phys_prolog(); 111 if (!save_pgd) 112 return EFI_ABORTED; 113 114 /* Disable interrupts around EFI calls: */ 115 local_irq_save(flags); 116 status = efi_call_phys(efi_phys.set_virtual_address_map, 117 memory_map_size, descriptor_size, 118 descriptor_version, virtual_map); 119 local_irq_restore(flags); 120 121 efi_call_phys_epilog(save_pgd); 122 123 return status; 124 } 125 126 void __init efi_find_mirror(void) 127 { 128 efi_memory_desc_t *md; 129 u64 mirror_size = 0, total_size = 0; 130 131 if (!efi_enabled(EFI_MEMMAP)) 132 return; 133 134 for_each_efi_memory_desc(md) { 135 unsigned long long start = md->phys_addr; 136 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT; 137 138 total_size += size; 139 if (md->attribute & EFI_MEMORY_MORE_RELIABLE) { 140 memblock_mark_mirror(start, size); 141 mirror_size += size; 142 } 143 } 144 if (mirror_size) 145 pr_info("Memory: %lldM/%lldM mirrored memory\n", 146 mirror_size>>20, total_size>>20); 147 } 148 149 /* 150 * Tell the kernel about the EFI memory map. This might include 151 * more than the max 128 entries that can fit in the passed in e820 152 * legacy (zeropage) memory map, but the kernel's e820 table can hold 153 * E820_MAX_ENTRIES. 154 */ 155 156 static void __init do_add_efi_memmap(void) 157 { 158 efi_memory_desc_t *md; 159 160 if (!efi_enabled(EFI_MEMMAP)) 161 return; 162 163 for_each_efi_memory_desc(md) { 164 unsigned long long start = md->phys_addr; 165 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT; 166 int e820_type; 167 168 switch (md->type) { 169 case EFI_LOADER_CODE: 170 case EFI_LOADER_DATA: 171 case EFI_BOOT_SERVICES_CODE: 172 case EFI_BOOT_SERVICES_DATA: 173 case EFI_CONVENTIONAL_MEMORY: 174 if (efi_soft_reserve_enabled() 175 && (md->attribute & EFI_MEMORY_SP)) 176 e820_type = E820_TYPE_SOFT_RESERVED; 177 else if (md->attribute & EFI_MEMORY_WB) 178 e820_type = E820_TYPE_RAM; 179 else 180 e820_type = E820_TYPE_RESERVED; 181 break; 182 case EFI_ACPI_RECLAIM_MEMORY: 183 e820_type = E820_TYPE_ACPI; 184 break; 185 case EFI_ACPI_MEMORY_NVS: 186 e820_type = E820_TYPE_NVS; 187 break; 188 case EFI_UNUSABLE_MEMORY: 189 e820_type = E820_TYPE_UNUSABLE; 190 break; 191 case EFI_PERSISTENT_MEMORY: 192 e820_type = E820_TYPE_PMEM; 193 break; 194 default: 195 /* 196 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE 197 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO 198 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE 199 */ 200 e820_type = E820_TYPE_RESERVED; 201 break; 202 } 203 204 e820__range_add(start, size, e820_type); 205 } 206 e820__update_table(e820_table); 207 } 208 209 /* 210 * Given add_efi_memmap defaults to 0 and there there is no alternative 211 * e820 mechanism for soft-reserved memory, import the full EFI memory 212 * map if soft reservations are present and enabled. Otherwise, the 213 * mechanism to disable the kernel's consideration of EFI_MEMORY_SP is 214 * the efi=nosoftreserve option. 215 */ 216 static bool do_efi_soft_reserve(void) 217 { 218 efi_memory_desc_t *md; 219 220 if (!efi_enabled(EFI_MEMMAP)) 221 return false; 222 223 if (!efi_soft_reserve_enabled()) 224 return false; 225 226 for_each_efi_memory_desc(md) 227 if (md->type == EFI_CONVENTIONAL_MEMORY && 228 (md->attribute & EFI_MEMORY_SP)) 229 return true; 230 return false; 231 } 232 233 int __init efi_memblock_x86_reserve_range(void) 234 { 235 struct efi_info *e = &boot_params.efi_info; 236 struct efi_memory_map_data data; 237 phys_addr_t pmap; 238 int rv; 239 240 if (efi_enabled(EFI_PARAVIRT)) 241 return 0; 242 243 #ifdef CONFIG_X86_32 244 /* Can't handle data above 4GB at this time */ 245 if (e->efi_memmap_hi) { 246 pr_err("Memory map is above 4GB, disabling EFI.\n"); 247 return -EINVAL; 248 } 249 pmap = e->efi_memmap; 250 #else 251 pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32)); 252 #endif 253 data.phys_map = pmap; 254 data.size = e->efi_memmap_size; 255 data.desc_size = e->efi_memdesc_size; 256 data.desc_version = e->efi_memdesc_version; 257 258 rv = efi_memmap_init_early(&data); 259 if (rv) 260 return rv; 261 262 if (add_efi_memmap || do_efi_soft_reserve()) 263 do_add_efi_memmap(); 264 265 efi_fake_memmap_early(); 266 267 WARN(efi.memmap.desc_version != 1, 268 "Unexpected EFI_MEMORY_DESCRIPTOR version %ld", 269 efi.memmap.desc_version); 270 271 memblock_reserve(pmap, efi.memmap.nr_map * efi.memmap.desc_size); 272 273 return 0; 274 } 275 276 #define OVERFLOW_ADDR_SHIFT (64 - EFI_PAGE_SHIFT) 277 #define OVERFLOW_ADDR_MASK (U64_MAX << OVERFLOW_ADDR_SHIFT) 278 #define U64_HIGH_BIT (~(U64_MAX >> 1)) 279 280 static bool __init efi_memmap_entry_valid(const efi_memory_desc_t *md, int i) 281 { 282 u64 end = (md->num_pages << EFI_PAGE_SHIFT) + md->phys_addr - 1; 283 u64 end_hi = 0; 284 char buf[64]; 285 286 if (md->num_pages == 0) { 287 end = 0; 288 } else if (md->num_pages > EFI_PAGES_MAX || 289 EFI_PAGES_MAX - md->num_pages < 290 (md->phys_addr >> EFI_PAGE_SHIFT)) { 291 end_hi = (md->num_pages & OVERFLOW_ADDR_MASK) 292 >> OVERFLOW_ADDR_SHIFT; 293 294 if ((md->phys_addr & U64_HIGH_BIT) && !(end & U64_HIGH_BIT)) 295 end_hi += 1; 296 } else { 297 return true; 298 } 299 300 pr_warn_once(FW_BUG "Invalid EFI memory map entries:\n"); 301 302 if (end_hi) { 303 pr_warn("mem%02u: %s range=[0x%016llx-0x%llx%016llx] (invalid)\n", 304 i, efi_md_typeattr_format(buf, sizeof(buf), md), 305 md->phys_addr, end_hi, end); 306 } else { 307 pr_warn("mem%02u: %s range=[0x%016llx-0x%016llx] (invalid)\n", 308 i, efi_md_typeattr_format(buf, sizeof(buf), md), 309 md->phys_addr, end); 310 } 311 return false; 312 } 313 314 static void __init efi_clean_memmap(void) 315 { 316 efi_memory_desc_t *out = efi.memmap.map; 317 const efi_memory_desc_t *in = out; 318 const efi_memory_desc_t *end = efi.memmap.map_end; 319 int i, n_removal; 320 321 for (i = n_removal = 0; in < end; i++) { 322 if (efi_memmap_entry_valid(in, i)) { 323 if (out != in) 324 memcpy(out, in, efi.memmap.desc_size); 325 out = (void *)out + efi.memmap.desc_size; 326 } else { 327 n_removal++; 328 } 329 in = (void *)in + efi.memmap.desc_size; 330 } 331 332 if (n_removal > 0) { 333 u64 size = efi.memmap.nr_map - n_removal; 334 335 pr_warn("Removing %d invalid memory map entries.\n", n_removal); 336 efi_memmap_install(efi.memmap.phys_map, size); 337 } 338 } 339 340 void __init efi_print_memmap(void) 341 { 342 efi_memory_desc_t *md; 343 int i = 0; 344 345 for_each_efi_memory_desc(md) { 346 char buf[64]; 347 348 pr_info("mem%02u: %s range=[0x%016llx-0x%016llx] (%lluMB)\n", 349 i++, efi_md_typeattr_format(buf, sizeof(buf), md), 350 md->phys_addr, 351 md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1, 352 (md->num_pages >> (20 - EFI_PAGE_SHIFT))); 353 } 354 } 355 356 static int __init efi_systab_init(void *phys) 357 { 358 if (efi_enabled(EFI_64BIT)) { 359 efi_system_table_64_t *systab64; 360 struct efi_setup_data *data = NULL; 361 u64 tmp = 0; 362 363 if (efi_setup) { 364 data = early_memremap(efi_setup, sizeof(*data)); 365 if (!data) 366 return -ENOMEM; 367 } 368 systab64 = early_memremap((unsigned long)phys, 369 sizeof(*systab64)); 370 if (systab64 == NULL) { 371 pr_err("Couldn't map the system table!\n"); 372 if (data) 373 early_memunmap(data, sizeof(*data)); 374 return -ENOMEM; 375 } 376 377 efi_systab.hdr = systab64->hdr; 378 efi_systab.fw_vendor = data ? (unsigned long)data->fw_vendor : 379 systab64->fw_vendor; 380 tmp |= data ? data->fw_vendor : systab64->fw_vendor; 381 efi_systab.fw_revision = systab64->fw_revision; 382 efi_systab.con_in_handle = systab64->con_in_handle; 383 tmp |= systab64->con_in_handle; 384 efi_systab.con_in = systab64->con_in; 385 tmp |= systab64->con_in; 386 efi_systab.con_out_handle = systab64->con_out_handle; 387 tmp |= systab64->con_out_handle; 388 efi_systab.con_out = systab64->con_out; 389 tmp |= systab64->con_out; 390 efi_systab.stderr_handle = systab64->stderr_handle; 391 tmp |= systab64->stderr_handle; 392 efi_systab.stderr = systab64->stderr; 393 tmp |= systab64->stderr; 394 efi_systab.runtime = data ? 395 (void *)(unsigned long)data->runtime : 396 (void *)(unsigned long)systab64->runtime; 397 tmp |= data ? data->runtime : systab64->runtime; 398 efi_systab.boottime = (void *)(unsigned long)systab64->boottime; 399 tmp |= systab64->boottime; 400 efi_systab.nr_tables = systab64->nr_tables; 401 efi_systab.tables = data ? (unsigned long)data->tables : 402 systab64->tables; 403 tmp |= data ? data->tables : systab64->tables; 404 405 early_memunmap(systab64, sizeof(*systab64)); 406 if (data) 407 early_memunmap(data, sizeof(*data)); 408 #ifdef CONFIG_X86_32 409 if (tmp >> 32) { 410 pr_err("EFI data located above 4GB, disabling EFI.\n"); 411 return -EINVAL; 412 } 413 #endif 414 } else { 415 efi_system_table_32_t *systab32; 416 417 systab32 = early_memremap((unsigned long)phys, 418 sizeof(*systab32)); 419 if (systab32 == NULL) { 420 pr_err("Couldn't map the system table!\n"); 421 return -ENOMEM; 422 } 423 424 efi_systab.hdr = systab32->hdr; 425 efi_systab.fw_vendor = systab32->fw_vendor; 426 efi_systab.fw_revision = systab32->fw_revision; 427 efi_systab.con_in_handle = systab32->con_in_handle; 428 efi_systab.con_in = systab32->con_in; 429 efi_systab.con_out_handle = systab32->con_out_handle; 430 efi_systab.con_out = systab32->con_out; 431 efi_systab.stderr_handle = systab32->stderr_handle; 432 efi_systab.stderr = systab32->stderr; 433 efi_systab.runtime = (void *)(unsigned long)systab32->runtime; 434 efi_systab.boottime = (void *)(unsigned long)systab32->boottime; 435 efi_systab.nr_tables = systab32->nr_tables; 436 efi_systab.tables = systab32->tables; 437 438 early_memunmap(systab32, sizeof(*systab32)); 439 } 440 441 efi.systab = &efi_systab; 442 443 /* 444 * Verify the EFI Table 445 */ 446 if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) { 447 pr_err("System table signature incorrect!\n"); 448 return -EINVAL; 449 } 450 if ((efi.systab->hdr.revision >> 16) == 0) 451 pr_err("Warning: System table version %d.%02d, expected 1.00 or greater!\n", 452 efi.systab->hdr.revision >> 16, 453 efi.systab->hdr.revision & 0xffff); 454 455 return 0; 456 } 457 458 static int __init efi_runtime_init32(void) 459 { 460 efi_runtime_services_32_t *runtime; 461 462 runtime = early_memremap((unsigned long)efi.systab->runtime, 463 sizeof(efi_runtime_services_32_t)); 464 if (!runtime) { 465 pr_err("Could not map the runtime service table!\n"); 466 return -ENOMEM; 467 } 468 469 /* 470 * We will only need *early* access to the SetVirtualAddressMap 471 * EFI runtime service. All other runtime services will be called 472 * via the virtual mapping. 473 */ 474 efi_phys.set_virtual_address_map = 475 (efi_set_virtual_address_map_t *) 476 (unsigned long)runtime->set_virtual_address_map; 477 early_memunmap(runtime, sizeof(efi_runtime_services_32_t)); 478 479 return 0; 480 } 481 482 static int __init efi_runtime_init64(void) 483 { 484 efi_runtime_services_64_t *runtime; 485 486 runtime = early_memremap((unsigned long)efi.systab->runtime, 487 sizeof(efi_runtime_services_64_t)); 488 if (!runtime) { 489 pr_err("Could not map the runtime service table!\n"); 490 return -ENOMEM; 491 } 492 493 /* 494 * We will only need *early* access to the SetVirtualAddressMap 495 * EFI runtime service. All other runtime services will be called 496 * via the virtual mapping. 497 */ 498 efi_phys.set_virtual_address_map = 499 (efi_set_virtual_address_map_t *) 500 (unsigned long)runtime->set_virtual_address_map; 501 early_memunmap(runtime, sizeof(efi_runtime_services_64_t)); 502 503 return 0; 504 } 505 506 static int __init efi_runtime_init(void) 507 { 508 int rv; 509 510 /* 511 * Check out the runtime services table. We need to map 512 * the runtime services table so that we can grab the physical 513 * address of several of the EFI runtime functions, needed to 514 * set the firmware into virtual mode. 515 * 516 * When EFI_PARAVIRT is in force then we could not map runtime 517 * service memory region because we do not have direct access to it. 518 * However, runtime services are available through proxy functions 519 * (e.g. in case of Xen dom0 EFI implementation they call special 520 * hypercall which executes relevant EFI functions) and that is why 521 * they are always enabled. 522 */ 523 524 if (!efi_enabled(EFI_PARAVIRT)) { 525 if (efi_enabled(EFI_64BIT)) 526 rv = efi_runtime_init64(); 527 else 528 rv = efi_runtime_init32(); 529 530 if (rv) 531 return rv; 532 } 533 534 set_bit(EFI_RUNTIME_SERVICES, &efi.flags); 535 536 return 0; 537 } 538 539 void __init efi_init(void) 540 { 541 efi_char16_t *c16; 542 char vendor[100] = "unknown"; 543 int i = 0; 544 void *tmp; 545 546 #ifdef CONFIG_X86_32 547 if (boot_params.efi_info.efi_systab_hi || 548 boot_params.efi_info.efi_memmap_hi) { 549 pr_info("Table located above 4GB, disabling EFI.\n"); 550 return; 551 } 552 efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab; 553 #else 554 efi_phys.systab = (efi_system_table_t *) 555 (boot_params.efi_info.efi_systab | 556 ((__u64)boot_params.efi_info.efi_systab_hi<<32)); 557 #endif 558 559 if (efi_systab_init(efi_phys.systab)) 560 return; 561 562 efi.config_table = (unsigned long)efi.systab->tables; 563 efi.fw_vendor = (unsigned long)efi.systab->fw_vendor; 564 efi.runtime = (unsigned long)efi.systab->runtime; 565 566 /* 567 * Show what we know for posterity 568 */ 569 c16 = tmp = early_memremap(efi.systab->fw_vendor, 2); 570 if (c16) { 571 for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i) 572 vendor[i] = *c16++; 573 vendor[i] = '\0'; 574 } else 575 pr_err("Could not map the firmware vendor!\n"); 576 early_memunmap(tmp, 2); 577 578 pr_info("EFI v%u.%.02u by %s\n", 579 efi.systab->hdr.revision >> 16, 580 efi.systab->hdr.revision & 0xffff, vendor); 581 582 if (efi_reuse_config(efi.systab->tables, efi.systab->nr_tables)) 583 return; 584 585 if (efi_config_init(arch_tables)) 586 return; 587 588 /* 589 * Note: We currently don't support runtime services on an EFI 590 * that doesn't match the kernel 32/64-bit mode. 591 */ 592 593 if (!efi_runtime_supported()) 594 pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n"); 595 else { 596 if (efi_runtime_disabled() || efi_runtime_init()) { 597 efi_memmap_unmap(); 598 return; 599 } 600 } 601 602 efi_clean_memmap(); 603 604 if (efi_enabled(EFI_DBG)) 605 efi_print_memmap(); 606 } 607 608 void __init efi_set_executable(efi_memory_desc_t *md, bool executable) 609 { 610 u64 addr, npages; 611 612 addr = md->virt_addr; 613 npages = md->num_pages; 614 615 memrange_efi_to_native(&addr, &npages); 616 617 if (executable) 618 set_memory_x(addr, npages); 619 else 620 set_memory_nx(addr, npages); 621 } 622 623 void __init runtime_code_page_mkexec(void) 624 { 625 efi_memory_desc_t *md; 626 627 /* Make EFI runtime service code area executable */ 628 for_each_efi_memory_desc(md) { 629 if (md->type != EFI_RUNTIME_SERVICES_CODE) 630 continue; 631 632 efi_set_executable(md, true); 633 } 634 } 635 636 void __init efi_memory_uc(u64 addr, unsigned long size) 637 { 638 unsigned long page_shift = 1UL << EFI_PAGE_SHIFT; 639 u64 npages; 640 641 npages = round_up(size, page_shift) / page_shift; 642 memrange_efi_to_native(&addr, &npages); 643 set_memory_uc(addr, npages); 644 } 645 646 void __init old_map_region(efi_memory_desc_t *md) 647 { 648 u64 start_pfn, end_pfn, end; 649 unsigned long size; 650 void *va; 651 652 start_pfn = PFN_DOWN(md->phys_addr); 653 size = md->num_pages << PAGE_SHIFT; 654 end = md->phys_addr + size; 655 end_pfn = PFN_UP(end); 656 657 if (pfn_range_is_mapped(start_pfn, end_pfn)) { 658 va = __va(md->phys_addr); 659 660 if (!(md->attribute & EFI_MEMORY_WB)) 661 efi_memory_uc((u64)(unsigned long)va, size); 662 } else 663 va = efi_ioremap(md->phys_addr, size, 664 md->type, md->attribute); 665 666 md->virt_addr = (u64) (unsigned long) va; 667 if (!va) 668 pr_err("ioremap of 0x%llX failed!\n", 669 (unsigned long long)md->phys_addr); 670 } 671 672 /* Merge contiguous regions of the same type and attribute */ 673 static void __init efi_merge_regions(void) 674 { 675 efi_memory_desc_t *md, *prev_md = NULL; 676 677 for_each_efi_memory_desc(md) { 678 u64 prev_size; 679 680 if (!prev_md) { 681 prev_md = md; 682 continue; 683 } 684 685 if (prev_md->type != md->type || 686 prev_md->attribute != md->attribute) { 687 prev_md = md; 688 continue; 689 } 690 691 prev_size = prev_md->num_pages << EFI_PAGE_SHIFT; 692 693 if (md->phys_addr == (prev_md->phys_addr + prev_size)) { 694 prev_md->num_pages += md->num_pages; 695 md->type = EFI_RESERVED_TYPE; 696 md->attribute = 0; 697 continue; 698 } 699 prev_md = md; 700 } 701 } 702 703 static void __init get_systab_virt_addr(efi_memory_desc_t *md) 704 { 705 unsigned long size; 706 u64 end, systab; 707 708 size = md->num_pages << EFI_PAGE_SHIFT; 709 end = md->phys_addr + size; 710 systab = (u64)(unsigned long)efi_phys.systab; 711 if (md->phys_addr <= systab && systab < end) { 712 systab += md->virt_addr - md->phys_addr; 713 efi.systab = (efi_system_table_t *)(unsigned long)systab; 714 } 715 } 716 717 static void *realloc_pages(void *old_memmap, int old_shift) 718 { 719 void *ret; 720 721 ret = (void *)__get_free_pages(GFP_KERNEL, old_shift + 1); 722 if (!ret) 723 goto out; 724 725 /* 726 * A first-time allocation doesn't have anything to copy. 727 */ 728 if (!old_memmap) 729 return ret; 730 731 memcpy(ret, old_memmap, PAGE_SIZE << old_shift); 732 733 out: 734 free_pages((unsigned long)old_memmap, old_shift); 735 return ret; 736 } 737 738 /* 739 * Iterate the EFI memory map in reverse order because the regions 740 * will be mapped top-down. The end result is the same as if we had 741 * mapped things forward, but doesn't require us to change the 742 * existing implementation of efi_map_region(). 743 */ 744 static inline void *efi_map_next_entry_reverse(void *entry) 745 { 746 /* Initial call */ 747 if (!entry) 748 return efi.memmap.map_end - efi.memmap.desc_size; 749 750 entry -= efi.memmap.desc_size; 751 if (entry < efi.memmap.map) 752 return NULL; 753 754 return entry; 755 } 756 757 /* 758 * efi_map_next_entry - Return the next EFI memory map descriptor 759 * @entry: Previous EFI memory map descriptor 760 * 761 * This is a helper function to iterate over the EFI memory map, which 762 * we do in different orders depending on the current configuration. 763 * 764 * To begin traversing the memory map @entry must be %NULL. 765 * 766 * Returns %NULL when we reach the end of the memory map. 767 */ 768 static void *efi_map_next_entry(void *entry) 769 { 770 if (!efi_enabled(EFI_OLD_MEMMAP) && efi_enabled(EFI_64BIT)) { 771 /* 772 * Starting in UEFI v2.5 the EFI_PROPERTIES_TABLE 773 * config table feature requires us to map all entries 774 * in the same order as they appear in the EFI memory 775 * map. That is to say, entry N must have a lower 776 * virtual address than entry N+1. This is because the 777 * firmware toolchain leaves relative references in 778 * the code/data sections, which are split and become 779 * separate EFI memory regions. Mapping things 780 * out-of-order leads to the firmware accessing 781 * unmapped addresses. 782 * 783 * Since we need to map things this way whether or not 784 * the kernel actually makes use of 785 * EFI_PROPERTIES_TABLE, let's just switch to this 786 * scheme by default for 64-bit. 787 */ 788 return efi_map_next_entry_reverse(entry); 789 } 790 791 /* Initial call */ 792 if (!entry) 793 return efi.memmap.map; 794 795 entry += efi.memmap.desc_size; 796 if (entry >= efi.memmap.map_end) 797 return NULL; 798 799 return entry; 800 } 801 802 static bool should_map_region(efi_memory_desc_t *md) 803 { 804 /* 805 * Runtime regions always require runtime mappings (obviously). 806 */ 807 if (md->attribute & EFI_MEMORY_RUNTIME) 808 return true; 809 810 /* 811 * 32-bit EFI doesn't suffer from the bug that requires us to 812 * reserve boot services regions, and mixed mode support 813 * doesn't exist for 32-bit kernels. 814 */ 815 if (IS_ENABLED(CONFIG_X86_32)) 816 return false; 817 818 /* 819 * EFI specific purpose memory may be reserved by default 820 * depending on kernel config and boot options. 821 */ 822 if (md->type == EFI_CONVENTIONAL_MEMORY && 823 efi_soft_reserve_enabled() && 824 (md->attribute & EFI_MEMORY_SP)) 825 return false; 826 827 /* 828 * Map all of RAM so that we can access arguments in the 1:1 829 * mapping when making EFI runtime calls. 830 */ 831 if (IS_ENABLED(CONFIG_EFI_MIXED) && !efi_is_native()) { 832 if (md->type == EFI_CONVENTIONAL_MEMORY || 833 md->type == EFI_LOADER_DATA || 834 md->type == EFI_LOADER_CODE) 835 return true; 836 } 837 838 /* 839 * Map boot services regions as a workaround for buggy 840 * firmware that accesses them even when they shouldn't. 841 * 842 * See efi_{reserve,free}_boot_services(). 843 */ 844 if (md->type == EFI_BOOT_SERVICES_CODE || 845 md->type == EFI_BOOT_SERVICES_DATA) 846 return true; 847 848 return false; 849 } 850 851 /* 852 * Map the efi memory ranges of the runtime services and update new_mmap with 853 * virtual addresses. 854 */ 855 static void * __init efi_map_regions(int *count, int *pg_shift) 856 { 857 void *p, *new_memmap = NULL; 858 unsigned long left = 0; 859 unsigned long desc_size; 860 efi_memory_desc_t *md; 861 862 desc_size = efi.memmap.desc_size; 863 864 p = NULL; 865 while ((p = efi_map_next_entry(p))) { 866 md = p; 867 868 if (!should_map_region(md)) 869 continue; 870 871 efi_map_region(md); 872 get_systab_virt_addr(md); 873 874 if (left < desc_size) { 875 new_memmap = realloc_pages(new_memmap, *pg_shift); 876 if (!new_memmap) 877 return NULL; 878 879 left += PAGE_SIZE << *pg_shift; 880 (*pg_shift)++; 881 } 882 883 memcpy(new_memmap + (*count * desc_size), md, desc_size); 884 885 left -= desc_size; 886 (*count)++; 887 } 888 889 return new_memmap; 890 } 891 892 static void __init kexec_enter_virtual_mode(void) 893 { 894 #ifdef CONFIG_KEXEC_CORE 895 efi_memory_desc_t *md; 896 unsigned int num_pages; 897 898 efi.systab = NULL; 899 900 /* 901 * We don't do virtual mode, since we don't do runtime services, on 902 * non-native EFI. With efi=old_map, we don't do runtime services in 903 * kexec kernel because in the initial boot something else might 904 * have been mapped at these virtual addresses. 905 */ 906 if (!efi_is_native() || efi_enabled(EFI_OLD_MEMMAP)) { 907 efi_memmap_unmap(); 908 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); 909 return; 910 } 911 912 if (efi_alloc_page_tables()) { 913 pr_err("Failed to allocate EFI page tables\n"); 914 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); 915 return; 916 } 917 918 /* 919 * Map efi regions which were passed via setup_data. The virt_addr is a 920 * fixed addr which was used in first kernel of a kexec boot. 921 */ 922 for_each_efi_memory_desc(md) { 923 efi_map_region_fixed(md); /* FIXME: add error handling */ 924 get_systab_virt_addr(md); 925 } 926 927 /* 928 * Unregister the early EFI memmap from efi_init() and install 929 * the new EFI memory map. 930 */ 931 efi_memmap_unmap(); 932 933 if (efi_memmap_init_late(efi.memmap.phys_map, 934 efi.memmap.desc_size * efi.memmap.nr_map)) { 935 pr_err("Failed to remap late EFI memory map\n"); 936 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); 937 return; 938 } 939 940 BUG_ON(!efi.systab); 941 942 num_pages = ALIGN(efi.memmap.nr_map * efi.memmap.desc_size, PAGE_SIZE); 943 num_pages >>= PAGE_SHIFT; 944 945 if (efi_setup_page_tables(efi.memmap.phys_map, num_pages)) { 946 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); 947 return; 948 } 949 950 efi_sync_low_kernel_mappings(); 951 952 /* 953 * Now that EFI is in virtual mode, update the function 954 * pointers in the runtime service table to the new virtual addresses. 955 * 956 * Call EFI services through wrapper functions. 957 */ 958 efi.runtime_version = efi_systab.hdr.revision; 959 960 efi_native_runtime_setup(); 961 962 efi.set_virtual_address_map = NULL; 963 964 if (efi_enabled(EFI_OLD_MEMMAP) && (__supported_pte_mask & _PAGE_NX)) 965 runtime_code_page_mkexec(); 966 #endif 967 } 968 969 /* 970 * This function will switch the EFI runtime services to virtual mode. 971 * Essentially, we look through the EFI memmap and map every region that 972 * has the runtime attribute bit set in its memory descriptor into the 973 * efi_pgd page table. 974 * 975 * The old method which used to update that memory descriptor with the 976 * virtual address obtained from ioremap() is still supported when the 977 * kernel is booted with efi=old_map on its command line. Same old 978 * method enabled the runtime services to be called without having to 979 * thunk back into physical mode for every invocation. 980 * 981 * The new method does a pagetable switch in a preemption-safe manner 982 * so that we're in a different address space when calling a runtime 983 * function. For function arguments passing we do copy the PUDs of the 984 * kernel page table into efi_pgd prior to each call. 985 * 986 * Specially for kexec boot, efi runtime maps in previous kernel should 987 * be passed in via setup_data. In that case runtime ranges will be mapped 988 * to the same virtual addresses as the first kernel, see 989 * kexec_enter_virtual_mode(). 990 */ 991 static void __init __efi_enter_virtual_mode(void) 992 { 993 int count = 0, pg_shift = 0; 994 void *new_memmap = NULL; 995 efi_status_t status; 996 unsigned long pa; 997 998 efi.systab = NULL; 999 1000 if (efi_alloc_page_tables()) { 1001 pr_err("Failed to allocate EFI page tables\n"); 1002 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); 1003 return; 1004 } 1005 1006 efi_merge_regions(); 1007 new_memmap = efi_map_regions(&count, &pg_shift); 1008 if (!new_memmap) { 1009 pr_err("Error reallocating memory, EFI runtime non-functional!\n"); 1010 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); 1011 return; 1012 } 1013 1014 pa = __pa(new_memmap); 1015 1016 /* 1017 * Unregister the early EFI memmap from efi_init() and install 1018 * the new EFI memory map that we are about to pass to the 1019 * firmware via SetVirtualAddressMap(). 1020 */ 1021 efi_memmap_unmap(); 1022 1023 if (efi_memmap_init_late(pa, efi.memmap.desc_size * count)) { 1024 pr_err("Failed to remap late EFI memory map\n"); 1025 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); 1026 return; 1027 } 1028 1029 if (efi_enabled(EFI_DBG)) { 1030 pr_info("EFI runtime memory map:\n"); 1031 efi_print_memmap(); 1032 } 1033 1034 BUG_ON(!efi.systab); 1035 1036 if (efi_setup_page_tables(pa, 1 << pg_shift)) { 1037 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); 1038 return; 1039 } 1040 1041 efi_sync_low_kernel_mappings(); 1042 1043 if (efi_is_native()) { 1044 status = phys_efi_set_virtual_address_map( 1045 efi.memmap.desc_size * count, 1046 efi.memmap.desc_size, 1047 efi.memmap.desc_version, 1048 (efi_memory_desc_t *)pa); 1049 } else { 1050 status = efi_thunk_set_virtual_address_map( 1051 efi_phys.set_virtual_address_map, 1052 efi.memmap.desc_size * count, 1053 efi.memmap.desc_size, 1054 efi.memmap.desc_version, 1055 (efi_memory_desc_t *)pa); 1056 } 1057 1058 if (status != EFI_SUCCESS) { 1059 pr_alert("Unable to switch EFI into virtual mode (status=%lx)!\n", 1060 status); 1061 panic("EFI call to SetVirtualAddressMap() failed!"); 1062 } 1063 1064 efi_free_boot_services(); 1065 1066 /* 1067 * Now that EFI is in virtual mode, update the function 1068 * pointers in the runtime service table to the new virtual addresses. 1069 * 1070 * Call EFI services through wrapper functions. 1071 */ 1072 efi.runtime_version = efi_systab.hdr.revision; 1073 1074 if (efi_is_native()) 1075 efi_native_runtime_setup(); 1076 else 1077 efi_thunk_runtime_setup(); 1078 1079 efi.set_virtual_address_map = NULL; 1080 1081 /* 1082 * Apply more restrictive page table mapping attributes now that 1083 * SVAM() has been called and the firmware has performed all 1084 * necessary relocation fixups for the new virtual addresses. 1085 */ 1086 efi_runtime_update_mappings(); 1087 1088 /* clean DUMMY object */ 1089 efi_delete_dummy_variable(); 1090 } 1091 1092 void __init efi_enter_virtual_mode(void) 1093 { 1094 if (efi_enabled(EFI_PARAVIRT)) 1095 return; 1096 1097 if (efi_setup) 1098 kexec_enter_virtual_mode(); 1099 else 1100 __efi_enter_virtual_mode(); 1101 1102 efi_dump_pagetable(); 1103 } 1104 1105 static int __init arch_parse_efi_cmdline(char *str) 1106 { 1107 if (!str) { 1108 pr_warn("need at least one option\n"); 1109 return -EINVAL; 1110 } 1111 1112 if (parse_option_str(str, "old_map")) 1113 set_bit(EFI_OLD_MEMMAP, &efi.flags); 1114 1115 return 0; 1116 } 1117 early_param("efi", arch_parse_efi_cmdline); 1118 1119 bool efi_is_table_address(unsigned long phys_addr) 1120 { 1121 unsigned int i; 1122 1123 if (phys_addr == EFI_INVALID_TABLE_ADDR) 1124 return false; 1125 1126 for (i = 0; i < ARRAY_SIZE(efi_tables); i++) 1127 if (*(efi_tables[i]) == phys_addr) 1128 return true; 1129 1130 return false; 1131 } 1132