xref: /openbmc/linux/arch/x86/platform/efi/efi.c (revision a347279d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common EFI (Extensible Firmware Interface) support functions
4  * Based on Extensible Firmware Interface Specification version 1.0
5  *
6  * Copyright (C) 1999 VA Linux Systems
7  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
8  * Copyright (C) 1999-2002 Hewlett-Packard Co.
9  *	David Mosberger-Tang <davidm@hpl.hp.com>
10  *	Stephane Eranian <eranian@hpl.hp.com>
11  * Copyright (C) 2005-2008 Intel Co.
12  *	Fenghua Yu <fenghua.yu@intel.com>
13  *	Bibo Mao <bibo.mao@intel.com>
14  *	Chandramouli Narayanan <mouli@linux.intel.com>
15  *	Huang Ying <ying.huang@intel.com>
16  * Copyright (C) 2013 SuSE Labs
17  *	Borislav Petkov <bp@suse.de> - runtime services VA mapping
18  *
19  * Copied from efi_32.c to eliminate the duplicated code between EFI
20  * 32/64 support code. --ying 2007-10-26
21  *
22  * All EFI Runtime Services are not implemented yet as EFI only
23  * supports physical mode addressing on SoftSDV. This is to be fixed
24  * in a future version.  --drummond 1999-07-20
25  *
26  * Implemented EFI runtime services and virtual mode calls.  --davidm
27  *
28  * Goutham Rao: <goutham.rao@intel.com>
29  *	Skip non-WB memory and ignore empty memory ranges.
30  */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/efi.h>
37 #include <linux/efi-bgrt.h>
38 #include <linux/export.h>
39 #include <linux/memblock.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/uaccess.h>
43 #include <linux/time.h>
44 #include <linux/io.h>
45 #include <linux/reboot.h>
46 #include <linux/bcd.h>
47 
48 #include <asm/setup.h>
49 #include <asm/efi.h>
50 #include <asm/e820/api.h>
51 #include <asm/time.h>
52 #include <asm/tlbflush.h>
53 #include <asm/x86_init.h>
54 #include <asm/uv/uv.h>
55 
56 static unsigned long efi_systab_phys __initdata;
57 static unsigned long prop_phys = EFI_INVALID_TABLE_ADDR;
58 static unsigned long uga_phys = EFI_INVALID_TABLE_ADDR;
59 static unsigned long efi_runtime, efi_nr_tables;
60 
61 unsigned long efi_fw_vendor, efi_config_table;
62 
63 static const efi_config_table_type_t arch_tables[] __initconst = {
64 	{EFI_PROPERTIES_TABLE_GUID,	&prop_phys,		"PROP"		},
65 	{UGA_IO_PROTOCOL_GUID,		&uga_phys,		"UGA"		},
66 #ifdef CONFIG_X86_UV
67 	{UV_SYSTEM_TABLE_GUID,		&uv_systab_phys,	"UVsystab"	},
68 #endif
69 	{},
70 };
71 
72 static const unsigned long * const efi_tables[] = {
73 	&efi.acpi,
74 	&efi.acpi20,
75 	&efi.smbios,
76 	&efi.smbios3,
77 	&uga_phys,
78 #ifdef CONFIG_X86_UV
79 	&uv_systab_phys,
80 #endif
81 	&efi_fw_vendor,
82 	&efi_runtime,
83 	&efi_config_table,
84 	&efi.esrt,
85 	&prop_phys,
86 	&efi_mem_attr_table,
87 #ifdef CONFIG_EFI_RCI2_TABLE
88 	&rci2_table_phys,
89 #endif
90 	&efi.tpm_log,
91 	&efi.tpm_final_log,
92 	&efi_rng_seed,
93 #ifdef CONFIG_LOAD_UEFI_KEYS
94 	&efi.mokvar_table,
95 #endif
96 #ifdef CONFIG_EFI_COCO_SECRET
97 	&efi.coco_secret,
98 #endif
99 };
100 
101 u64 efi_setup;		/* efi setup_data physical address */
102 
103 static int add_efi_memmap __initdata;
104 static int __init setup_add_efi_memmap(char *arg)
105 {
106 	add_efi_memmap = 1;
107 	return 0;
108 }
109 early_param("add_efi_memmap", setup_add_efi_memmap);
110 
111 /*
112  * Tell the kernel about the EFI memory map.  This might include
113  * more than the max 128 entries that can fit in the passed in e820
114  * legacy (zeropage) memory map, but the kernel's e820 table can hold
115  * E820_MAX_ENTRIES.
116  */
117 
118 static void __init do_add_efi_memmap(void)
119 {
120 	efi_memory_desc_t *md;
121 
122 	if (!efi_enabled(EFI_MEMMAP))
123 		return;
124 
125 	for_each_efi_memory_desc(md) {
126 		unsigned long long start = md->phys_addr;
127 		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
128 		int e820_type;
129 
130 		switch (md->type) {
131 		case EFI_LOADER_CODE:
132 		case EFI_LOADER_DATA:
133 		case EFI_BOOT_SERVICES_CODE:
134 		case EFI_BOOT_SERVICES_DATA:
135 		case EFI_CONVENTIONAL_MEMORY:
136 			if (efi_soft_reserve_enabled()
137 			    && (md->attribute & EFI_MEMORY_SP))
138 				e820_type = E820_TYPE_SOFT_RESERVED;
139 			else if (md->attribute & EFI_MEMORY_WB)
140 				e820_type = E820_TYPE_RAM;
141 			else
142 				e820_type = E820_TYPE_RESERVED;
143 			break;
144 		case EFI_ACPI_RECLAIM_MEMORY:
145 			e820_type = E820_TYPE_ACPI;
146 			break;
147 		case EFI_ACPI_MEMORY_NVS:
148 			e820_type = E820_TYPE_NVS;
149 			break;
150 		case EFI_UNUSABLE_MEMORY:
151 			e820_type = E820_TYPE_UNUSABLE;
152 			break;
153 		case EFI_PERSISTENT_MEMORY:
154 			e820_type = E820_TYPE_PMEM;
155 			break;
156 		default:
157 			/*
158 			 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
159 			 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
160 			 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
161 			 */
162 			e820_type = E820_TYPE_RESERVED;
163 			break;
164 		}
165 
166 		e820__range_add(start, size, e820_type);
167 	}
168 	e820__update_table(e820_table);
169 }
170 
171 /*
172  * Given add_efi_memmap defaults to 0 and there is no alternative
173  * e820 mechanism for soft-reserved memory, import the full EFI memory
174  * map if soft reservations are present and enabled. Otherwise, the
175  * mechanism to disable the kernel's consideration of EFI_MEMORY_SP is
176  * the efi=nosoftreserve option.
177  */
178 static bool do_efi_soft_reserve(void)
179 {
180 	efi_memory_desc_t *md;
181 
182 	if (!efi_enabled(EFI_MEMMAP))
183 		return false;
184 
185 	if (!efi_soft_reserve_enabled())
186 		return false;
187 
188 	for_each_efi_memory_desc(md)
189 		if (md->type == EFI_CONVENTIONAL_MEMORY &&
190 		    (md->attribute & EFI_MEMORY_SP))
191 			return true;
192 	return false;
193 }
194 
195 int __init efi_memblock_x86_reserve_range(void)
196 {
197 	struct efi_info *e = &boot_params.efi_info;
198 	struct efi_memory_map_data data;
199 	phys_addr_t pmap;
200 	int rv;
201 
202 	if (efi_enabled(EFI_PARAVIRT))
203 		return 0;
204 
205 	/* Can't handle firmware tables above 4GB on i386 */
206 	if (IS_ENABLED(CONFIG_X86_32) && e->efi_memmap_hi > 0) {
207 		pr_err("Memory map is above 4GB, disabling EFI.\n");
208 		return -EINVAL;
209 	}
210 	pmap = (phys_addr_t)(e->efi_memmap | ((u64)e->efi_memmap_hi << 32));
211 
212 	data.phys_map		= pmap;
213 	data.size 		= e->efi_memmap_size;
214 	data.desc_size		= e->efi_memdesc_size;
215 	data.desc_version	= e->efi_memdesc_version;
216 
217 	if (!efi_enabled(EFI_PARAVIRT)) {
218 		rv = efi_memmap_init_early(&data);
219 		if (rv)
220 			return rv;
221 	}
222 
223 	if (add_efi_memmap || do_efi_soft_reserve())
224 		do_add_efi_memmap();
225 
226 	efi_fake_memmap_early();
227 
228 	WARN(efi.memmap.desc_version != 1,
229 	     "Unexpected EFI_MEMORY_DESCRIPTOR version %ld",
230 	     efi.memmap.desc_version);
231 
232 	memblock_reserve(pmap, efi.memmap.nr_map * efi.memmap.desc_size);
233 	set_bit(EFI_PRESERVE_BS_REGIONS, &efi.flags);
234 
235 	return 0;
236 }
237 
238 #define OVERFLOW_ADDR_SHIFT	(64 - EFI_PAGE_SHIFT)
239 #define OVERFLOW_ADDR_MASK	(U64_MAX << OVERFLOW_ADDR_SHIFT)
240 #define U64_HIGH_BIT		(~(U64_MAX >> 1))
241 
242 static bool __init efi_memmap_entry_valid(const efi_memory_desc_t *md, int i)
243 {
244 	u64 end = (md->num_pages << EFI_PAGE_SHIFT) + md->phys_addr - 1;
245 	u64 end_hi = 0;
246 	char buf[64];
247 
248 	if (md->num_pages == 0) {
249 		end = 0;
250 	} else if (md->num_pages > EFI_PAGES_MAX ||
251 		   EFI_PAGES_MAX - md->num_pages <
252 		   (md->phys_addr >> EFI_PAGE_SHIFT)) {
253 		end_hi = (md->num_pages & OVERFLOW_ADDR_MASK)
254 			>> OVERFLOW_ADDR_SHIFT;
255 
256 		if ((md->phys_addr & U64_HIGH_BIT) && !(end & U64_HIGH_BIT))
257 			end_hi += 1;
258 	} else {
259 		return true;
260 	}
261 
262 	pr_warn_once(FW_BUG "Invalid EFI memory map entries:\n");
263 
264 	if (end_hi) {
265 		pr_warn("mem%02u: %s range=[0x%016llx-0x%llx%016llx] (invalid)\n",
266 			i, efi_md_typeattr_format(buf, sizeof(buf), md),
267 			md->phys_addr, end_hi, end);
268 	} else {
269 		pr_warn("mem%02u: %s range=[0x%016llx-0x%016llx] (invalid)\n",
270 			i, efi_md_typeattr_format(buf, sizeof(buf), md),
271 			md->phys_addr, end);
272 	}
273 	return false;
274 }
275 
276 static void __init efi_clean_memmap(void)
277 {
278 	efi_memory_desc_t *out = efi.memmap.map;
279 	const efi_memory_desc_t *in = out;
280 	const efi_memory_desc_t *end = efi.memmap.map_end;
281 	int i, n_removal;
282 
283 	for (i = n_removal = 0; in < end; i++) {
284 		if (efi_memmap_entry_valid(in, i)) {
285 			if (out != in)
286 				memcpy(out, in, efi.memmap.desc_size);
287 			out = (void *)out + efi.memmap.desc_size;
288 		} else {
289 			n_removal++;
290 		}
291 		in = (void *)in + efi.memmap.desc_size;
292 	}
293 
294 	if (n_removal > 0) {
295 		struct efi_memory_map_data data = {
296 			.phys_map	= efi.memmap.phys_map,
297 			.desc_version	= efi.memmap.desc_version,
298 			.desc_size	= efi.memmap.desc_size,
299 			.size		= efi.memmap.desc_size * (efi.memmap.nr_map - n_removal),
300 			.flags		= 0,
301 		};
302 
303 		pr_warn("Removing %d invalid memory map entries.\n", n_removal);
304 		efi_memmap_install(&data);
305 	}
306 }
307 
308 /*
309  * Firmware can use EfiMemoryMappedIO to request that MMIO regions be
310  * mapped by the OS so they can be accessed by EFI runtime services, but
311  * should have no other significance to the OS (UEFI r2.10, sec 7.2).
312  * However, most bootloaders and EFI stubs convert EfiMemoryMappedIO
313  * regions to E820_TYPE_RESERVED entries, which prevent Linux from
314  * allocating space from them (see remove_e820_regions()).
315  *
316  * Some platforms use EfiMemoryMappedIO entries for PCI MMCONFIG space and
317  * PCI host bridge windows, which means Linux can't allocate BAR space for
318  * hot-added devices.
319  *
320  * Remove large EfiMemoryMappedIO regions from the E820 map to avoid this
321  * problem.
322  *
323  * Retain small EfiMemoryMappedIO regions because on some platforms, these
324  * describe non-window space that's included in host bridge _CRS.  If we
325  * assign that space to PCI devices, they don't work.
326  */
327 static void __init efi_remove_e820_mmio(void)
328 {
329 	efi_memory_desc_t *md;
330 	u64 size, start, end;
331 	int i = 0;
332 
333 	for_each_efi_memory_desc(md) {
334 		if (md->type == EFI_MEMORY_MAPPED_IO) {
335 			size = md->num_pages << EFI_PAGE_SHIFT;
336 			start = md->phys_addr;
337 			end = start + size - 1;
338 			if (size >= 256*1024) {
339 				pr_info("Remove mem%02u: MMIO range=[0x%08llx-0x%08llx] (%lluMB) from e820 map\n",
340 					i, start, end, size >> 20);
341 				e820__range_remove(start, size,
342 						   E820_TYPE_RESERVED, 1);
343 			} else {
344 				pr_info("Not removing mem%02u: MMIO range=[0x%08llx-0x%08llx] (%lluKB) from e820 map\n",
345 					i, start, end, size >> 10);
346 			}
347 		}
348 		i++;
349 	}
350 }
351 
352 void __init efi_print_memmap(void)
353 {
354 	efi_memory_desc_t *md;
355 	int i = 0;
356 
357 	for_each_efi_memory_desc(md) {
358 		char buf[64];
359 
360 		pr_info("mem%02u: %s range=[0x%016llx-0x%016llx] (%lluMB)\n",
361 			i++, efi_md_typeattr_format(buf, sizeof(buf), md),
362 			md->phys_addr,
363 			md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1,
364 			(md->num_pages >> (20 - EFI_PAGE_SHIFT)));
365 	}
366 }
367 
368 static int __init efi_systab_init(unsigned long phys)
369 {
370 	int size = efi_enabled(EFI_64BIT) ? sizeof(efi_system_table_64_t)
371 					  : sizeof(efi_system_table_32_t);
372 	const efi_table_hdr_t *hdr;
373 	bool over4g = false;
374 	void *p;
375 	int ret;
376 
377 	hdr = p = early_memremap_ro(phys, size);
378 	if (p == NULL) {
379 		pr_err("Couldn't map the system table!\n");
380 		return -ENOMEM;
381 	}
382 
383 	ret = efi_systab_check_header(hdr);
384 	if (ret) {
385 		early_memunmap(p, size);
386 		return ret;
387 	}
388 
389 	if (efi_enabled(EFI_64BIT)) {
390 		const efi_system_table_64_t *systab64 = p;
391 
392 		efi_runtime	= systab64->runtime;
393 		over4g		= systab64->runtime > U32_MAX;
394 
395 		if (efi_setup) {
396 			struct efi_setup_data *data;
397 
398 			data = early_memremap_ro(efi_setup, sizeof(*data));
399 			if (!data) {
400 				early_memunmap(p, size);
401 				return -ENOMEM;
402 			}
403 
404 			efi_fw_vendor		= (unsigned long)data->fw_vendor;
405 			efi_config_table	= (unsigned long)data->tables;
406 
407 			over4g |= data->fw_vendor	> U32_MAX ||
408 				  data->tables		> U32_MAX;
409 
410 			early_memunmap(data, sizeof(*data));
411 		} else {
412 			efi_fw_vendor		= systab64->fw_vendor;
413 			efi_config_table	= systab64->tables;
414 
415 			over4g |= systab64->fw_vendor	> U32_MAX ||
416 				  systab64->tables	> U32_MAX;
417 		}
418 		efi_nr_tables = systab64->nr_tables;
419 	} else {
420 		const efi_system_table_32_t *systab32 = p;
421 
422 		efi_fw_vendor		= systab32->fw_vendor;
423 		efi_runtime		= systab32->runtime;
424 		efi_config_table	= systab32->tables;
425 		efi_nr_tables		= systab32->nr_tables;
426 	}
427 
428 	efi.runtime_version = hdr->revision;
429 
430 	efi_systab_report_header(hdr, efi_fw_vendor);
431 	early_memunmap(p, size);
432 
433 	if (IS_ENABLED(CONFIG_X86_32) && over4g) {
434 		pr_err("EFI data located above 4GB, disabling EFI.\n");
435 		return -EINVAL;
436 	}
437 
438 	return 0;
439 }
440 
441 static int __init efi_config_init(const efi_config_table_type_t *arch_tables)
442 {
443 	void *config_tables;
444 	int sz, ret;
445 
446 	if (efi_nr_tables == 0)
447 		return 0;
448 
449 	if (efi_enabled(EFI_64BIT))
450 		sz = sizeof(efi_config_table_64_t);
451 	else
452 		sz = sizeof(efi_config_table_32_t);
453 
454 	/*
455 	 * Let's see what config tables the firmware passed to us.
456 	 */
457 	config_tables = early_memremap(efi_config_table, efi_nr_tables * sz);
458 	if (config_tables == NULL) {
459 		pr_err("Could not map Configuration table!\n");
460 		return -ENOMEM;
461 	}
462 
463 	ret = efi_config_parse_tables(config_tables, efi_nr_tables,
464 				      arch_tables);
465 
466 	early_memunmap(config_tables, efi_nr_tables * sz);
467 	return ret;
468 }
469 
470 void __init efi_init(void)
471 {
472 	if (IS_ENABLED(CONFIG_X86_32) &&
473 	    (boot_params.efi_info.efi_systab_hi ||
474 	     boot_params.efi_info.efi_memmap_hi)) {
475 		pr_info("Table located above 4GB, disabling EFI.\n");
476 		return;
477 	}
478 
479 	efi_systab_phys = boot_params.efi_info.efi_systab |
480 			  ((__u64)boot_params.efi_info.efi_systab_hi << 32);
481 
482 	if (efi_systab_init(efi_systab_phys))
483 		return;
484 
485 	if (efi_reuse_config(efi_config_table, efi_nr_tables))
486 		return;
487 
488 	if (efi_config_init(arch_tables))
489 		return;
490 
491 	/*
492 	 * Note: We currently don't support runtime services on an EFI
493 	 * that doesn't match the kernel 32/64-bit mode.
494 	 */
495 
496 	if (!efi_runtime_supported())
497 		pr_err("No EFI runtime due to 32/64-bit mismatch with kernel\n");
498 
499 	if (!efi_runtime_supported() || efi_runtime_disabled()) {
500 		efi_memmap_unmap();
501 		return;
502 	}
503 
504 	/* Parse the EFI Properties table if it exists */
505 	if (prop_phys != EFI_INVALID_TABLE_ADDR) {
506 		efi_properties_table_t *tbl;
507 
508 		tbl = early_memremap_ro(prop_phys, sizeof(*tbl));
509 		if (tbl == NULL) {
510 			pr_err("Could not map Properties table!\n");
511 		} else {
512 			if (tbl->memory_protection_attribute &
513 			    EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA)
514 				set_bit(EFI_NX_PE_DATA, &efi.flags);
515 
516 			early_memunmap(tbl, sizeof(*tbl));
517 		}
518 	}
519 
520 	set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
521 	efi_clean_memmap();
522 
523 	efi_remove_e820_mmio();
524 
525 	if (efi_enabled(EFI_DBG))
526 		efi_print_memmap();
527 }
528 
529 /* Merge contiguous regions of the same type and attribute */
530 static void __init efi_merge_regions(void)
531 {
532 	efi_memory_desc_t *md, *prev_md = NULL;
533 
534 	for_each_efi_memory_desc(md) {
535 		u64 prev_size;
536 
537 		if (!prev_md) {
538 			prev_md = md;
539 			continue;
540 		}
541 
542 		if (prev_md->type != md->type ||
543 		    prev_md->attribute != md->attribute) {
544 			prev_md = md;
545 			continue;
546 		}
547 
548 		prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
549 
550 		if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
551 			prev_md->num_pages += md->num_pages;
552 			md->type = EFI_RESERVED_TYPE;
553 			md->attribute = 0;
554 			continue;
555 		}
556 		prev_md = md;
557 	}
558 }
559 
560 static void *realloc_pages(void *old_memmap, int old_shift)
561 {
562 	void *ret;
563 
564 	ret = (void *)__get_free_pages(GFP_KERNEL, old_shift + 1);
565 	if (!ret)
566 		goto out;
567 
568 	/*
569 	 * A first-time allocation doesn't have anything to copy.
570 	 */
571 	if (!old_memmap)
572 		return ret;
573 
574 	memcpy(ret, old_memmap, PAGE_SIZE << old_shift);
575 
576 out:
577 	free_pages((unsigned long)old_memmap, old_shift);
578 	return ret;
579 }
580 
581 /*
582  * Iterate the EFI memory map in reverse order because the regions
583  * will be mapped top-down. The end result is the same as if we had
584  * mapped things forward, but doesn't require us to change the
585  * existing implementation of efi_map_region().
586  */
587 static inline void *efi_map_next_entry_reverse(void *entry)
588 {
589 	/* Initial call */
590 	if (!entry)
591 		return efi.memmap.map_end - efi.memmap.desc_size;
592 
593 	entry -= efi.memmap.desc_size;
594 	if (entry < efi.memmap.map)
595 		return NULL;
596 
597 	return entry;
598 }
599 
600 /*
601  * efi_map_next_entry - Return the next EFI memory map descriptor
602  * @entry: Previous EFI memory map descriptor
603  *
604  * This is a helper function to iterate over the EFI memory map, which
605  * we do in different orders depending on the current configuration.
606  *
607  * To begin traversing the memory map @entry must be %NULL.
608  *
609  * Returns %NULL when we reach the end of the memory map.
610  */
611 static void *efi_map_next_entry(void *entry)
612 {
613 	if (efi_enabled(EFI_64BIT)) {
614 		/*
615 		 * Starting in UEFI v2.5 the EFI_PROPERTIES_TABLE
616 		 * config table feature requires us to map all entries
617 		 * in the same order as they appear in the EFI memory
618 		 * map. That is to say, entry N must have a lower
619 		 * virtual address than entry N+1. This is because the
620 		 * firmware toolchain leaves relative references in
621 		 * the code/data sections, which are split and become
622 		 * separate EFI memory regions. Mapping things
623 		 * out-of-order leads to the firmware accessing
624 		 * unmapped addresses.
625 		 *
626 		 * Since we need to map things this way whether or not
627 		 * the kernel actually makes use of
628 		 * EFI_PROPERTIES_TABLE, let's just switch to this
629 		 * scheme by default for 64-bit.
630 		 */
631 		return efi_map_next_entry_reverse(entry);
632 	}
633 
634 	/* Initial call */
635 	if (!entry)
636 		return efi.memmap.map;
637 
638 	entry += efi.memmap.desc_size;
639 	if (entry >= efi.memmap.map_end)
640 		return NULL;
641 
642 	return entry;
643 }
644 
645 static bool should_map_region(efi_memory_desc_t *md)
646 {
647 	/*
648 	 * Runtime regions always require runtime mappings (obviously).
649 	 */
650 	if (md->attribute & EFI_MEMORY_RUNTIME)
651 		return true;
652 
653 	/*
654 	 * 32-bit EFI doesn't suffer from the bug that requires us to
655 	 * reserve boot services regions, and mixed mode support
656 	 * doesn't exist for 32-bit kernels.
657 	 */
658 	if (IS_ENABLED(CONFIG_X86_32))
659 		return false;
660 
661 	/*
662 	 * EFI specific purpose memory may be reserved by default
663 	 * depending on kernel config and boot options.
664 	 */
665 	if (md->type == EFI_CONVENTIONAL_MEMORY &&
666 	    efi_soft_reserve_enabled() &&
667 	    (md->attribute & EFI_MEMORY_SP))
668 		return false;
669 
670 	/*
671 	 * Map all of RAM so that we can access arguments in the 1:1
672 	 * mapping when making EFI runtime calls.
673 	 */
674 	if (efi_is_mixed()) {
675 		if (md->type == EFI_CONVENTIONAL_MEMORY ||
676 		    md->type == EFI_LOADER_DATA ||
677 		    md->type == EFI_LOADER_CODE)
678 			return true;
679 	}
680 
681 	/*
682 	 * Map boot services regions as a workaround for buggy
683 	 * firmware that accesses them even when they shouldn't.
684 	 *
685 	 * See efi_{reserve,free}_boot_services().
686 	 */
687 	if (md->type == EFI_BOOT_SERVICES_CODE ||
688 	    md->type == EFI_BOOT_SERVICES_DATA)
689 		return true;
690 
691 	return false;
692 }
693 
694 /*
695  * Map the efi memory ranges of the runtime services and update new_mmap with
696  * virtual addresses.
697  */
698 static void * __init efi_map_regions(int *count, int *pg_shift)
699 {
700 	void *p, *new_memmap = NULL;
701 	unsigned long left = 0;
702 	unsigned long desc_size;
703 	efi_memory_desc_t *md;
704 
705 	desc_size = efi.memmap.desc_size;
706 
707 	p = NULL;
708 	while ((p = efi_map_next_entry(p))) {
709 		md = p;
710 
711 		if (!should_map_region(md))
712 			continue;
713 
714 		efi_map_region(md);
715 
716 		if (left < desc_size) {
717 			new_memmap = realloc_pages(new_memmap, *pg_shift);
718 			if (!new_memmap)
719 				return NULL;
720 
721 			left += PAGE_SIZE << *pg_shift;
722 			(*pg_shift)++;
723 		}
724 
725 		memcpy(new_memmap + (*count * desc_size), md, desc_size);
726 
727 		left -= desc_size;
728 		(*count)++;
729 	}
730 
731 	return new_memmap;
732 }
733 
734 static void __init kexec_enter_virtual_mode(void)
735 {
736 #ifdef CONFIG_KEXEC_CORE
737 	efi_memory_desc_t *md;
738 	unsigned int num_pages;
739 
740 	/*
741 	 * We don't do virtual mode, since we don't do runtime services, on
742 	 * non-native EFI.
743 	 */
744 	if (efi_is_mixed()) {
745 		efi_memmap_unmap();
746 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
747 		return;
748 	}
749 
750 	if (efi_alloc_page_tables()) {
751 		pr_err("Failed to allocate EFI page tables\n");
752 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
753 		return;
754 	}
755 
756 	/*
757 	* Map efi regions which were passed via setup_data. The virt_addr is a
758 	* fixed addr which was used in first kernel of a kexec boot.
759 	*/
760 	for_each_efi_memory_desc(md)
761 		efi_map_region_fixed(md); /* FIXME: add error handling */
762 
763 	/*
764 	 * Unregister the early EFI memmap from efi_init() and install
765 	 * the new EFI memory map.
766 	 */
767 	efi_memmap_unmap();
768 
769 	if (efi_memmap_init_late(efi.memmap.phys_map,
770 				 efi.memmap.desc_size * efi.memmap.nr_map)) {
771 		pr_err("Failed to remap late EFI memory map\n");
772 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
773 		return;
774 	}
775 
776 	num_pages = ALIGN(efi.memmap.nr_map * efi.memmap.desc_size, PAGE_SIZE);
777 	num_pages >>= PAGE_SHIFT;
778 
779 	if (efi_setup_page_tables(efi.memmap.phys_map, num_pages)) {
780 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
781 		return;
782 	}
783 
784 	efi_sync_low_kernel_mappings();
785 	efi_native_runtime_setup();
786 #endif
787 }
788 
789 /*
790  * This function will switch the EFI runtime services to virtual mode.
791  * Essentially, we look through the EFI memmap and map every region that
792  * has the runtime attribute bit set in its memory descriptor into the
793  * efi_pgd page table.
794  *
795  * The new method does a pagetable switch in a preemption-safe manner
796  * so that we're in a different address space when calling a runtime
797  * function. For function arguments passing we do copy the PUDs of the
798  * kernel page table into efi_pgd prior to each call.
799  *
800  * Specially for kexec boot, efi runtime maps in previous kernel should
801  * be passed in via setup_data. In that case runtime ranges will be mapped
802  * to the same virtual addresses as the first kernel, see
803  * kexec_enter_virtual_mode().
804  */
805 static void __init __efi_enter_virtual_mode(void)
806 {
807 	int count = 0, pg_shift = 0;
808 	void *new_memmap = NULL;
809 	efi_status_t status;
810 	unsigned long pa;
811 
812 	if (efi_alloc_page_tables()) {
813 		pr_err("Failed to allocate EFI page tables\n");
814 		goto err;
815 	}
816 
817 	efi_merge_regions();
818 	new_memmap = efi_map_regions(&count, &pg_shift);
819 	if (!new_memmap) {
820 		pr_err("Error reallocating memory, EFI runtime non-functional!\n");
821 		goto err;
822 	}
823 
824 	pa = __pa(new_memmap);
825 
826 	/*
827 	 * Unregister the early EFI memmap from efi_init() and install
828 	 * the new EFI memory map that we are about to pass to the
829 	 * firmware via SetVirtualAddressMap().
830 	 */
831 	efi_memmap_unmap();
832 
833 	if (efi_memmap_init_late(pa, efi.memmap.desc_size * count)) {
834 		pr_err("Failed to remap late EFI memory map\n");
835 		goto err;
836 	}
837 
838 	if (efi_enabled(EFI_DBG)) {
839 		pr_info("EFI runtime memory map:\n");
840 		efi_print_memmap();
841 	}
842 
843 	if (efi_setup_page_tables(pa, 1 << pg_shift))
844 		goto err;
845 
846 	efi_sync_low_kernel_mappings();
847 
848 	status = efi_set_virtual_address_map(efi.memmap.desc_size * count,
849 					     efi.memmap.desc_size,
850 					     efi.memmap.desc_version,
851 					     (efi_memory_desc_t *)pa,
852 					     efi_systab_phys);
853 	if (status != EFI_SUCCESS) {
854 		pr_err("Unable to switch EFI into virtual mode (status=%lx)!\n",
855 		       status);
856 		goto err;
857 	}
858 
859 	efi_check_for_embedded_firmwares();
860 	efi_free_boot_services();
861 
862 	if (!efi_is_mixed())
863 		efi_native_runtime_setup();
864 	else
865 		efi_thunk_runtime_setup();
866 
867 	/*
868 	 * Apply more restrictive page table mapping attributes now that
869 	 * SVAM() has been called and the firmware has performed all
870 	 * necessary relocation fixups for the new virtual addresses.
871 	 */
872 	efi_runtime_update_mappings();
873 
874 	/* clean DUMMY object */
875 	efi_delete_dummy_variable();
876 	return;
877 
878 err:
879 	clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
880 }
881 
882 void __init efi_enter_virtual_mode(void)
883 {
884 	if (efi_enabled(EFI_PARAVIRT))
885 		return;
886 
887 	efi.runtime = (efi_runtime_services_t *)efi_runtime;
888 
889 	if (efi_setup)
890 		kexec_enter_virtual_mode();
891 	else
892 		__efi_enter_virtual_mode();
893 
894 	efi_dump_pagetable();
895 }
896 
897 bool efi_is_table_address(unsigned long phys_addr)
898 {
899 	unsigned int i;
900 
901 	if (phys_addr == EFI_INVALID_TABLE_ADDR)
902 		return false;
903 
904 	for (i = 0; i < ARRAY_SIZE(efi_tables); i++)
905 		if (*(efi_tables[i]) == phys_addr)
906 			return true;
907 
908 	return false;
909 }
910 
911 char *efi_systab_show_arch(char *str)
912 {
913 	if (uga_phys != EFI_INVALID_TABLE_ADDR)
914 		str += sprintf(str, "UGA=0x%lx\n", uga_phys);
915 	return str;
916 }
917 
918 #define EFI_FIELD(var) efi_ ## var
919 
920 #define EFI_ATTR_SHOW(name) \
921 static ssize_t name##_show(struct kobject *kobj, \
922 				struct kobj_attribute *attr, char *buf) \
923 { \
924 	return sprintf(buf, "0x%lx\n", EFI_FIELD(name)); \
925 }
926 
927 EFI_ATTR_SHOW(fw_vendor);
928 EFI_ATTR_SHOW(runtime);
929 EFI_ATTR_SHOW(config_table);
930 
931 struct kobj_attribute efi_attr_fw_vendor = __ATTR_RO(fw_vendor);
932 struct kobj_attribute efi_attr_runtime = __ATTR_RO(runtime);
933 struct kobj_attribute efi_attr_config_table = __ATTR_RO(config_table);
934 
935 umode_t efi_attr_is_visible(struct kobject *kobj, struct attribute *attr, int n)
936 {
937 	if (attr == &efi_attr_fw_vendor.attr) {
938 		if (efi_enabled(EFI_PARAVIRT) ||
939 				efi_fw_vendor == EFI_INVALID_TABLE_ADDR)
940 			return 0;
941 	} else if (attr == &efi_attr_runtime.attr) {
942 		if (efi_runtime == EFI_INVALID_TABLE_ADDR)
943 			return 0;
944 	} else if (attr == &efi_attr_config_table.attr) {
945 		if (efi_config_table == EFI_INVALID_TABLE_ADDR)
946 			return 0;
947 	}
948 	return attr->mode;
949 }
950